$$
\text { DSC } 190
$$

ecture 6 | Part 1

And now for something completely different...

- This and the next lecture will be linear algebra refreshers.
- Today: what is a matrix?
- Next lecture: what are eigenvectors/values?

Vectors

- A vector \vec{x} is an arrow from the origin to a point.
- We can make new arrows by:
$>$ scaling: $\alpha \vec{x}$
\Rightarrow addition: $\vec{x}+\vec{y}$
\Rightarrow both: $\alpha \vec{x}+\beta \vec{y}$
- $\|\vec{x}\|$ is the norm (or length) of \vec{x}

Linear Combinations

- We can add together a bunch of arrows:

$$
\vec{y}=\alpha_{1} \vec{x}^{(1)}+\alpha_{2} \vec{x}^{(2)}+\ldots+\alpha_{n} \vec{x}^{(n)}
$$

- This is a linear combination of $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$

Parallel Vectors

Two vectors \vec{x} and \vec{y} are parallel if (and only if) there is a scalar λ such that $\vec{x}=\lambda \vec{y}$.

Standard Basis Vectors

$\hat{e}^{(1)}$ and $\hat{e}^{(2)}$ are the standard basis vectors in \mathbb{R}^{2}. $\Rightarrow\left\|\hat{e}^{(1)}\right\|=\left\|\hat{e}^{(2)}\right\|=1$

Standard Basis Vectors

$\hat{e}^{(1)}, \ldots, \hat{e}^{(d)}$ are the standard basis vectors in \mathbb{R}^{d}.

Decompositions

- We can decompose any vector $\vec{x} \in \mathbb{R}^{2}$ in terms of $\hat{e}^{(1)}$ and $\hat{e}^{(1)}$
- Write: $\vec{x}=x_{1} \hat{e}^{(1)}+x_{2} \hat{e}^{(2)}$

Decompositions

\downarrow We can decompose any vector $\vec{x} \in \mathbb{R}^{d}$ in terms of $\hat{e}^{(1)}, \hat{e}^{(2)}, \ldots, \hat{e}^{(d)}$

Write: $\vec{x}=x_{1} \hat{e}^{(1)}+x_{2} \hat{e}^{(2)}+\ldots+x_{d} \hat{e}^{(d)}$

Coordinate Vectors

- We often write a vector \vec{x} as a coordinate vector:

$$
\vec{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right)
$$

- Meaning: $\vec{x}=x_{1} \hat{e}^{(1)}+x_{2} \hat{e}^{(2)}+\ldots+x_{d} \hat{e}^{(d)}$

Dot Product

- The dot product of \vec{u} and \vec{v} is defined as:

$$
\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta
$$

where θ is the angle between \vec{u} and \vec{v}.

- $\vec{u} \cdot \vec{v}=0$ if and only if \vec{u} and \vec{v} are orthogonal

Dot Product (Coordinate Form)

- In terms of coordinate vectors:

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =\vec{u}^{\top} \vec{v} \\
& =\left(\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{d}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\ldots \\
v_{d}
\end{array}\right) \\
& =
\end{aligned}
$$

Exercise

Show that $\vec{v} \cdot \vec{v}=\|\vec{v}\|^{2}$.

Projections

- If \hat{u} is a unit vector, $\vec{v} \cdot \hat{u}$ is the "part of \vec{v} that lies in the direction of \hat{u} ".
v $\vec{v} \cdot \hat{u}=\|\vec{v}\|\|\hat{u}\| \cos \theta$

Projections

Namely, if $\vec{x}=\left(x_{1}, \ldots, x_{d}\right)^{T}$, then $\vec{x} \cdot \hat{e}^{(k)}=x_{k}$.

DEC 190 Lecture $6 \mid$ Part 2

Functions of a Vector

- In ML, we often work with functions of a vector: $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$.
- Example: a prediction function, $H(\vec{x})$.
- Functions of a vector can return:
$>$ a number: $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{1}$
$>$ a vector $\vec{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$
- something else?

Transformations

- A transformation \vec{f} is a function that takes in a vector, and returns a vector of the same dimensionality.
- That is, $\vec{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$.

Visualizing Transformations

- A transformation is a vector field.
$>$ Assigns a vector to each point in space.
- Example: $\vec{f}(\vec{x})=\left(3 x_{1}, x_{2}\right)^{T}$

Example

- $\vec{f}(\vec{x})=\left(3 x_{1}, x_{2}\right)^{\top}$

Arbitrary Transformations

- Arbitrary transformations can be quite complex.

Arbitrary Transformations

- Arbitrary transformations can be quite complex.

Linear Transformations

- Luckily, we often ${ }^{1}$ work with simpler, linear transformations.
- A transformation f is linear if:

$$
\vec{f}(\alpha \vec{x}+\beta \vec{y})=\alpha \vec{f}(\vec{x})+\beta \vec{f}(\vec{y})
$$

[^0]
Implications of Linearity

- Suppose \vec{f} is a linear transformation. Then:

$$
\begin{aligned}
\vec{f}(\vec{x}) & =\vec{f}\left(x_{1} \hat{e}^{(1)}+x_{2} \hat{e}^{(2)}\right) \\
& =x_{1} \vec{f}\left(\hat{e}^{(1)}\right)+x_{2} \vec{f}\left(\hat{e}^{(2)}\right)
\end{aligned}
$$

- I.e., \vec{f} is totally determined by what it does to the basis vectors.

The Complexity of Arbitrary Transformations

- Suppose f is an arbitrary transformation.
- I tell you $\vec{f}\left(\hat{e}^{(1)}\right)=(2,1)^{T}$ and $\vec{f}\left(\hat{e}^{(2)}\right)=(-3,0)^{T}$.
- I tell you $\vec{x}=\left(x_{1}, x_{2}\right)^{\top}$.
- What is $\vec{f}(\vec{x})$?

The Simplicity of Linear Transformations

- Suppose f is a linear transformation.
- I tell you $\vec{f}\left(\hat{e}^{(1)}\right)=(2,1)^{T}$ and $\vec{f}\left(\hat{e}^{(2)}\right)=(-3,0)^{T}$.
- I tell you $\vec{x}=\left(x_{1}, x_{2}\right)^{\top}$.
- What is $\vec{f}(\vec{x})$?

Exercise

- Suppose f is a linear transformation.
- I tell you $\vec{f}\left(\hat{e}^{(1)}\right)=(2,1)^{\top}$ and $\vec{f}\left(\hat{e}^{(2)}\right)=(-3,0)^{\top}$.
- I tell you $\vec{x}=(3,-4)^{\top}$.
- What is $\vec{f}(\vec{x})$?

Key Fact

- Linear functions are determined entirely by what they do on the basis vectors.
- I.e., to tell you what f does, I only need to tell you $\vec{f}\left(\hat{e}^{(1)}\right)$ and $\vec{f}\left(\hat{e}^{(2)}\right)$.
- This makes the math easy!

Example Linear Transformation

- $\vec{f}(\vec{x})=\left(x_{1}+3 x_{2},-3 x_{1}+5 x_{2}\right)^{T}$

Another Example Linear Transformation

$\Rightarrow \vec{f}(\vec{x})=\left(2 x_{1}-x_{2},-x_{1}+3 x_{2}\right)^{T}$

Note

- Because of linearity, along any given direction \vec{f} changes only in scale.

$$
\vec{f}(\lambda \hat{x})=\lambda \vec{f}(\hat{x})
$$

SC 190
Machine Learning: Representations
Lecture 6 Part 3
Matrices

Matrices?

- I thought this was supposed to be about linear algebra... Where are the matrices?

Matrices?

- I thought this was supposed to be about linear algebra... Where are the matrices?
- What is a matrix, anyways?

What is a matrix?

$\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$

What is matrix multiplication?

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{c}
-2 \\
1 \\
3
\end{array}\right)=(\quad)
$$

A low-level definition

$$
(A \vec{x})_{i}=\sum_{j=1}^{n} A_{i j} x_{j}
$$

A low-level interpretation

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{c}
-2 \\
1 \\
3
\end{array}\right)=-2\left(\begin{array}{l}
1 \\
4 \\
7
\end{array}\right)+1\left(\begin{array}{l}
2 \\
5 \\
8
\end{array}\right)+3\left(\begin{array}{l}
3 \\
6 \\
9
\end{array}\right)
$$

In general...

$$
\left(\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
\vec{a}^{(1)} & \vec{a}^{(2)} & \vec{a}^{(3)} \\
\downarrow & \downarrow & \downarrow
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{1} \vec{a}^{(1)}+x_{2} \vec{a}^{(2)}+x_{3} \vec{a}^{(3)}
$$

What are they, really?

- Matrices are sometimes just tables of numbers.
- But they often have a deeper meaning.

Main Idea

A square $(n \times n)$ matrix can be interpreted as a compact representation of a linear transformation $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

What's more, if A represents \vec{f}, then $A \vec{x}=\vec{f}(\vec{x})$; that is, multiplying by A is the same as evaluating \vec{f}.

Recall: Linear Transformations

- A transformation $\vec{f}(\vec{x})$ is a function which takes a vector as input and returns a vector of the same dimensionality.
- A transformation f is linear if

$$
\vec{f}(\alpha \vec{u}+\beta \vec{v})=\alpha \vec{f}(\vec{u})+\beta \vec{f}(\vec{v})
$$

Recall: Linear Transformations

- A key property: to compute $\vec{f}(\vec{x})$, we only need to know what f does to basis vectors.
- Example:

$$
\begin{aligned}
\vec{x} & =3 \hat{e}^{(1)}-4 \hat{e}^{(2)}=\binom{3}{-4} \\
\vec{f}\left(\hat{e}^{(1)}\right) & =-\hat{e}^{(1)}+3 \hat{e}^{(2)} \\
\vec{f}\left(\hat{e}^{(2)}\right) & =2 \hat{e}^{(1)} \\
\vec{f}(\vec{x}) & =
\end{aligned}
$$

Matrices

- f defined by what it does to basis vectors
- Place $\vec{f}\left(\hat{e}^{(1)}\right), \vec{f}\left(\hat{e}^{(2)}\right), \ldots$ into a table as columns
- This is the matrix representing ${ }^{2} f$

$$
\begin{aligned}
& \vec{f}\left(\hat{e}^{(1)}\right)=-\hat{e}^{(1)}+3 \hat{e}^{(2)}=\binom{-1}{3} \\
& \vec{f}\left(\hat{e}^{(2)}\right)=2 \hat{e}^{(1)}=\binom{2}{0}
\end{aligned}
$$

$\left(\begin{array}{cc}-1 & 2 \\ 3 & 0\end{array}\right)$
${ }^{2}$ with respect to the basis $\hat{e}^{(1)}, \hat{e}^{(2)}$

Example

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

$$
\begin{aligned}
& \vec{f}\left(\hat{e}^{(1)}\right)=(1,4,7)^{\top} \\
& \vec{f}\left(\hat{e}^{(2)}\right)=(2,5,7)^{\top} \\
& \vec{f}\left(\hat{e}^{(3)}\right)=(3,6,9)^{\top}
\end{aligned}
$$

Main Idea

A square ($n \times n$) matrix can be interpreted as a compact representation of a linear transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

Matrix Multiplication

- Matrix A represents a function f
- Matrix multiplication $A \vec{x}$ evaluates $\vec{f}(\vec{x})$

Matrix Multiplication

$$
\begin{aligned}
\vec{x} & =x_{1} \hat{e}^{(1)}+x_{2} \hat{e}^{(2)}+x_{3} \hat{e}^{(3)}=\left(x_{1}, x_{2}, x_{3}\right)^{T} \\
\vec{f}(\vec{x}) & =x_{1} \vec{f}\left(\hat{e}^{(1)}\right)+x_{2} \vec{f}\left(\hat{e}^{(2)}\right)+x_{3} \vec{f}\left(\hat{e}^{(3)}\right) \\
A & =\left(\begin{array}{ccc}
\vec{~} \uparrow\left(\hat{e}^{(1)}\right) & \vec{f}\left(\hat{e}^{(2)}\right) & \vec{f}\left(\hat{e}^{(3)}\right) \\
\downarrow & \downarrow & \downarrow \\
\uparrow & \uparrow & \uparrow \\
A \vec{x} & =\left(\begin{array}{ccc}
\vec{f}(\hat{e}(1) \\
\downarrow & \vec{f}\left(\hat{e}^{(2)}\right) & \vec{f}\left(\hat{e}^{(3)}\right) \\
\downarrow & \downarrow & \downarrow
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
& =x_{1} \vec{f}\left(\hat{e}^{(1)}\right)+x_{2} \vec{f}\left(\hat{e}^{(2)}\right)+x_{3} \vec{f}\left(\hat{e}^{(3)}\right)
\end{array}\right.
\end{aligned}
$$

Example

$$
\begin{aligned}
\vec{x} & =3 \hat{e}^{(1)}-4 \hat{e}^{(2)}=\binom{3}{-4} & & A= \\
\vec{f}\left(\hat{e}^{(1)}\right) & =-\hat{e}^{(1)}+3 \hat{e}^{(2)} & & \\
\vec{f}\left(\hat{e}^{(2)}\right) & =2 \hat{e}^{(1)} & & A \vec{x}= \\
\vec{f}(\vec{x}) & = & &
\end{aligned}
$$

Main Idea

A square ($n \times n$) matrix can be interpreted as a compact representation of a linear transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Matrix multiplication with a vector \vec{x} evaluates $\vec{f}(\vec{x})$.

Note

- All of this works because we assumed \vec{f} is linear.
- If it isn't, evaluating \vec{f} isn't so simple.

Note

- All of this works because we assumed \vec{f} is linear.
- If it isn't, evaluating \vec{f} isn't so simple.
- Linear algebra = simple!

[^0]: ${ }^{1}$ Sometimes, just to make the math tractable!

