DSC 190 Machine Learning: Representations

Lecture 6 | Part 1

Vectors

And now for something completely different...

- This and the next lecture will be linear algebra refreshers.
- Today: what is a matrix?
- Next lecture: what are eigenvectors/values?

Vectors

A vector \vec{x} is an arrow from the origin to a point.

We can make new arrows by:

- scaling: αx̄
- addition: $\vec{x} + \vec{y}$
- both: $\alpha \vec{x} + \beta \vec{y}$

▶ $\|\vec{x}\|$ is the **norm** (or length) of \vec{x}

Linear Combinations

We can add together a bunch of arrows:

$$\vec{y} = \alpha_1 \vec{x}^{(1)} + \alpha_2 \vec{x}^{(2)} + \dots + \alpha_n \vec{x}^{(n)}$$

▶ This is a **linear combination** of $\vec{x}^{(1)}, ..., \vec{x}^{(n)}$

Parallel Vectors

Two vectors \vec{x} and \vec{y} are **parallel** if (and only if) there is a scalar λ such that $\vec{x} = \lambda \vec{y}$.

Standard Basis Vectors

▶ $\hat{e}^{(1)}$ and $\hat{e}^{(2)}$ are the standard basis vectors in \mathbb{R}^2 . ▶ $\|\hat{e}^{(1)}\| = \|\hat{e}^{(2)}\| = 1$

Standard Basis Vectors

▶ $\hat{e}^{(1)}, ..., \hat{e}^{(d)}$ are the standard basis vectors in \mathbb{R}^d .

Decompositions

► We can **decompose** any vector $\vec{x} \in \mathbb{R}^2$ in terms of $\hat{e}^{(1)}$ and $\hat{e}^{(1)}$ ► Write: $\vec{x} = x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)}$

Decompositions

▶ We can **decompose** any vector $\vec{x} \in \mathbb{R}^d$ in terms of $\hat{e}^{(1)}, \hat{e}^{(2)}, \dots, \hat{e}^{(d)}$ ▶ Write: $\vec{x} = x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)} + \dots + x_d \hat{e}^{(d)}$

Coordinate Vectors

• We often write a vector \vec{x} as a **coordinate vector**:

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix}$$

Dot Product

The **dot product** of \vec{u} and \vec{v} is defined as: $\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta$

where θ is the angle between \vec{u} and \vec{v} .

 $\vec{u} \cdot \vec{v} = 0$ if and only if \vec{u} and \vec{v} are orthogonal

Dot Product (Coordinate Form)

In terms of coordinate vectors:

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v}$$
$$= \begin{pmatrix} u_1 & u_2 & \cdots & u_d \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \cdots \\ v_d \end{pmatrix}$$

=

Exercise

Show that $\vec{v} \cdot \vec{v} = \|\vec{v}\|^2$.

Projections

If û is a unit vector, v · û is the "part of v that lies in the direction of û".
 v · û = ||v|||û|| cos θ

Projections

Namely, if
$$\vec{x} = (x_1, \dots, x_d)^T$$
, then $\vec{x} \cdot \hat{e}^{(k)} = x_k$.

DSC 190 Machine Learning: Representations

Lecture 6 | Part 2

Functions of a Vector

Functions of a Vector

- In ML, we often work with functions of a vector: $f : \mathbb{R}^d \to \mathbb{R}^{d'}$.
- Example: a prediction function, $H(\vec{x})$.
- Functions of a vector can return:

 a number: f : ℝ^d → ℝ¹
 a vector \vec{f} : ℝ^d → ℝ^{d'}
 something else?

Transformations

A transformation f is a function that takes in a vector, and returns a vector of the same dimensionality.

• That is,
$$\vec{f} : \mathbb{R}^d \to \mathbb{R}^d$$
.

Visualizing Transformations

A transformation is a **vector field**.

Assigns a vector to each point in space.

• Example: $\vec{f}(\vec{x}) = (3x_1, x_2)^T$

Example

► $\vec{f}(\vec{x}) = (3x_1, x_2)^T$

Arbitrary Transformations

Arbitrary transformations can be quite complex.

Arbitrary Transformations

Arbitrary transformations can be quite complex.

Linear Transformations

Luckily, we often¹ work with simpler, linear transformations.

► A transformation *f* is linear if:

$$\vec{f}(\alpha \vec{x} + \beta \vec{y}) = \alpha \vec{f}(\vec{x}) + \beta \vec{f}(\vec{y})$$

¹Sometimes, just to make the math tractable!

Implications of Linearity

Suppose \vec{f} is a linear transformation. Then:

$$\vec{f}(\vec{x}) = \vec{f}(x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)})$$
$$= x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)})$$

I.e., *f* is totally determined by what it does to the basis vectors.

The Complexity of Arbitrary Transformations

Suppose *f* is an **arbitrary** transformation.

► I tell you
$$\vec{f}(\hat{e}^{(1)}) = (2, 1)^T$$
 and $\vec{f}(\hat{e}^{(2)}) = (-3, 0)^T$.

► I tell you
$$\vec{x} = (x_1, x_2)^T$$
.

• What is
$$\vec{f}(\vec{x})$$
?

The Simplicity of Linear Transformations

Suppose *f* is a **linear** transformation.

► I tell you
$$\vec{f}(\hat{e}^{(1)}) = (2, 1)^T$$
 and $\vec{f}(\hat{e}^{(2)}) = (-3, 0)^T$.

► I tell you
$$\vec{x} = (x_1, x_2)^T$$
.

• What is
$$\vec{f}(\vec{x})$$
?

Exercise

- Suppose *f* is a **linear** transformation.
- ► I tell you $\vec{f}(\hat{e}^{(1)}) = (2, 1)^T$ and $\vec{f}(\hat{e}^{(2)}) = (-3, 0)^T$.
- ▶ I tell you $\vec{x} = (3, -4)^T$.
- What is $\vec{f}(\vec{x})$?

Key Fact

- Linear functions are determined **entirely** by what they do on the basis vectors.
- ▶ I.e., to tell you what f does, I only need to tell you $\vec{f}(\hat{e}^{(1)})$ and $\vec{f}(\hat{e}^{(2)})$.
- This makes the math easy!

Example Linear Transformation

•
$$\vec{f}(\vec{x}) = (x_1 + 3x_2, -3x_1 + 5x_2)^T$$

Another Example Linear Transformation

$$\vec{f}(\vec{x}) = (2x_1 - x_2, -x_1 + 3x_2)^T$$

Note

Because of linearity, along any given direction \vec{f} changes only in scale.

$$\vec{f}(\lambda \hat{x}) = \lambda \vec{f}(\hat{x})$$

DSC 190 Machine Learning: Representations

Lecture 6 | Part 3

Matrices

Matrices?

I thought this was supposed to be about linear algebra... Where are the matrices?

Matrices?

- I thought this was supposed to be about linear algebra... Where are the matrices?
- What is a matrix, anyways?

What is a matrix?

$$\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}$$

What is matrix multiplication?

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} & & \\ & & \\ \end{pmatrix}$$

A low-level definition

$$(A\vec{x})_i = \sum_{j=1}^n A_{ij} x_j$$

A low-level interpretation

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix} = -2 \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix} + 1 \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix} + 3 \begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix}$$

In general...

$$\begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{a}^{(1)} & \vec{a}^{(2)} & \vec{a}^{(3)} \\ \downarrow & \downarrow & \downarrow \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_1 \vec{a}^{(1)} + x_2 \vec{a}^{(2)} + x_3 \vec{a}^{(3)}$$

What are they, *really*?

- Matrices are sometimes just tables of numbers.
- But they often have a deeper meaning.

Main Idea

A square $(n \times n)$ matrix can be interpreted as a compact representation of a linear transformation $\vec{f} : \mathbb{R}^n \to \mathbb{R}^n$.

What's more, if A represents \vec{f} , then $A\vec{x} = \vec{f}(\vec{x})$; that is, multiplying by A is the same as evaluating \vec{f} .

Recall: Linear Transformations

- A **transformation** $\vec{f}(\vec{x})$ is a function which takes a vector as input and returns a vector of the same dimensionality.
- ► A transformation *f* is **linear** if

$$\vec{f}(\alpha \vec{u} + \beta \vec{v}) = \alpha \vec{f}(\vec{u}) + \beta \vec{f}(\vec{v})$$

Recall: Linear Transformations

A **key** property: to compute $\vec{f}(\vec{x})$, we only need to know what f does to basis vectors.

Example:

$$\vec{x} = 3\hat{e}^{(1)} - 4\hat{e}^{(2)} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$
$$\vec{f}(\hat{e}^{(1)}) = -\hat{e}^{(1)} + 3\hat{e}^{(2)}$$
$$\vec{f}(\hat{e}^{(2)}) = 2\hat{e}^{(1)}$$
$$\vec{f}(\vec{x}) =$$

Matrices

f defined by what it does to basis vectors

▶ Place $\vec{f}(\hat{e}^{(1)}), \vec{f}(\hat{e}^{(2)}), \dots$ into a table as columns

• This is the matrix representing² f

$$\vec{f}(\hat{e}^{(1)}) = -\hat{e}^{(1)} + 3\hat{e}^{(2)} = \begin{pmatrix} -1\\3 \end{pmatrix} \qquad \begin{pmatrix} -1 & 2\\3 & 0 \end{pmatrix}$$
$$\vec{f}(\hat{e}^{(2)}) = 2\hat{e}^{(1)} = \begin{pmatrix} 2\\0 \end{pmatrix}$$

²with respect to the basis $\hat{e}^{(1)}$, $\hat{e}^{(2)}$

Example

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

$$\vec{f}(\hat{e}^{(1)}) = (1, 4, 7)^T$$

 $\vec{f}(\hat{e}^{(2)}) = (2, 5, 7)^T$
 $\vec{f}(\hat{e}^{(3)}) = (3, 6, 9)^T$

Main Idea

A square $(n \times n)$ matrix can be interpreted as a compact representation of a linear transformation $f : \mathbb{R}^n \to \mathbb{R}^n$.

Matrix Multiplication

- Matrix A represents a function f
- Matrix multiplication $A\vec{x}$ evaluates $\vec{f}(\vec{x})$

Matrix Multiplication

$$\vec{x} = x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)} + x_3 \hat{e}^{(3)} = (x_1, x_2, x_3)^T$$

$$\vec{f}(\vec{x}) = x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)}) + x_3 \vec{f}(\hat{e}^{(3)})$$

$$A = \begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \vec{f}(\hat{e}^{(3)}) \\ \downarrow & \downarrow & \downarrow \end{pmatrix}$$
$$A\vec{x} = \begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \vec{f}(\hat{e}^{(3)}) \\ \downarrow & \downarrow & \downarrow \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
$$= x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)}) + x_3 \vec{f}(\hat{e}^{(3)})$$

Example

$$\vec{x} = 3\hat{e}^{(1)} - 4\hat{e}^{(2)} = \begin{pmatrix} 3 \\ -4 \end{pmatrix} \qquad A =$$

$$\vec{f}(\hat{e}^{(1)}) = -\hat{e}^{(1)} + 3\hat{e}^{(2)}$$

$$\vec{f}(\hat{e}^{(2)}) = 2\hat{e}^{(1)}$$

$$\vec{f}(\vec{x}) = \qquad A\vec{x} =$$

Main Idea

A square $(n \times n)$ matrix can be interpreted as a compact representation of a linear transformation $f : \mathbb{R}^n \to \mathbb{R}^n$. Matrix multiplication with a vector \vec{x} evaluates $\vec{f}(\vec{x})$.

Note

• All of this works because we assumed \vec{f} is **linear**.

• If it isn't, evaluating \vec{f} isn't so simple.

Note

• All of this works because we assumed \vec{f} is **linear**.

- If it isn't, evaluating \vec{f} isn't so simple.
- Linear algebra = simple!