
Lecture 6 | Part 1

Vectors
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And now for something completely
different...

▶ This and the next lecture will be linear algebra
refreshers.

▶ Today: what is a matrix?

▶ Next lecture: what are eigenvectors/values?
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Vectors
▶ A vector ⃗𝑥 is an arrow from the origin to a point.

▶ We can make new arrows by:
▶ scaling: 𝛼 ⃗𝑥
▶ addition: ⃗𝑥 + ⃗𝑦
▶ both: 𝛼 ⃗𝑥 + 𝛽 ⃗𝑦

▶ ‖ ⃗𝑥‖ is the norm (or length) of ⃗𝑥
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Linear Combinations
▶ We can add together a bunch of arrows:

⃗𝑦 = 𝛼1 ⃗𝑥(1) + 𝛼2 ⃗𝑥(2) + … + 𝛼𝑛 ⃗𝑥(𝑛)

▶ This is a linear combination of ⃗𝑥(1), … , ⃗𝑥(𝑛)
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Parallel Vectors
▶ Two vectors ⃗𝑥 and ⃗𝑦 are parallel if (and only if)
there is a scalar 𝜆 such that ⃗𝑥 = 𝜆 ⃗𝑦.
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Standard Basis Vectors
▶ ̂𝑒(1) and ̂𝑒(2) are the standard basis vectors in ℝ2.

▶ ‖ ̂𝑒(1)‖ = ‖ ̂𝑒(2)‖ = 1
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Standard Basis Vectors
▶ ̂𝑒(1), … , ̂𝑒(𝑑) are the standard basis vectors in ℝ𝑑 .
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Decompositions

▶ We can decompose any vector ⃗𝑥 ∈ ℝ2 in terms of
̂𝑒(1) and ̂𝑒(1)
▶ Write: ⃗𝑥 = 𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2)
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Decompositions

▶ We can decompose any vector ⃗𝑥 ∈ ℝ𝑑 in terms of
̂𝑒(1), ̂𝑒(2), … , ̂𝑒(𝑑)
▶ Write: ⃗𝑥 = 𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2) + … + 𝑥𝑑 ̂𝑒(𝑑)
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Coordinate Vectors
▶ We often write a vector ⃗𝑥 as a coordinate vector:

⃗𝑥 = (
𝑥1
𝑥2
⋮
𝑥𝑑

)

▶ Meaning: ⃗𝑥 = 𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2) + … + 𝑥𝑑 ̂𝑒(𝑑)
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Dot Product
▶ The dot product of 𝑢⃗ and ⃗𝑣 is defined as:

𝑢⃗ ⋅ ⃗𝑣 = ‖𝑢⃗‖‖ ⃗𝑣‖ cos 𝜃

where 𝜃 is the angle between 𝑢⃗ and ⃗𝑣.

▶ 𝑢⃗ ⋅ ⃗𝑣 = 0 if and only if 𝑢⃗ and ⃗𝑣 are orthogonal
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Dot Product (Coordinate Form)
▶ In terms of coordinate vectors:

𝑢⃗ ⋅ ⃗𝑣 = 𝑢⃗𝑇 ⃗𝑣

= (𝑢1 𝑢2 ⋯ 𝑢𝑑) (
𝑣1
𝑣2
⋯
𝑣𝑑

)

=
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Exercise

Show that ⃗𝑣 ⋅ ⃗𝑣 = ‖ ⃗𝑣‖2.
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Projections
▶ If 𝑢̂ is a unit vector, ⃗𝑣 ⋅ 𝑢̂ is the “part of ⃗𝑣 that lies
in the direction of 𝑢̂”.
▶ ⃗𝑣 ⋅ 𝑢̂ = ‖ ⃗𝑣‖‖𝑢̂‖ cos 𝜃
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Projections

▶ Namely, if ⃗𝑥 = (𝑥1, … , 𝑥𝑑)𝑇 , then ⃗𝑥 ⋅ ̂𝑒(𝑘) = 𝑥𝑘.
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Lecture 6 | Part 2

Functions of a Vector
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Functions of a Vector
▶ In ML, we often work with functions of a vector:
𝑓 ∶ ℝ𝑑 → ℝ𝑑′.

▶ Example: a prediction function, 𝐻( ⃗𝑥).

▶ Functions of a vector can return:
▶ a number: 𝑓 ∶ ℝ𝑑 → ℝ1

▶ a vector ⃗𝑓 ∶ ℝ𝑑 → ℝ𝑑′

▶ something else?
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Transformations
▶ A transformation ⃗𝑓 is a function that takes in a
vector, and returns a vector of the same
dimensionality.

▶ That is, ⃗𝑓 ∶ ℝ𝑑 → ℝ𝑑 .
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Visualizing Transformations
▶ A transformation is a vector field.

▶ Assigns a vector to each point in space.
▶ Example: ⃗𝑓( ⃗𝑥) = (3𝑥1, 𝑥2)𝑇
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Example

▶ ⃗𝑓( ⃗𝑥) = (3𝑥1, 𝑥2)𝑇
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Arbitrary Transformations
▶ Arbitrary transformations can be quite complex.
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Arbitrary Transformations
▶ Arbitrary transformations can be quite complex.
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Linear Transformations
▶ Luckily, we often1 work with simpler, linear
transformations.

▶ A transformation 𝑓 is linear if:

⃗𝑓(𝛼 ⃗𝑥 + 𝛽 ⃗𝑦) = 𝛼 ⃗𝑓( ⃗𝑥) + 𝛽 ⃗𝑓( ⃗𝑦)

1Sometimes, just to make the math tractable!
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Implications of Linearity

▶ Suppose ⃗𝑓 is a linear transformation. Then:

⃗𝑓( ⃗𝑥) = ⃗𝑓(𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2))
= 𝑥1 ⃗𝑓( ̂𝑒(1)) + 𝑥2 ⃗𝑓( ̂𝑒(2))

▶ I.e., ⃗𝑓 is totally determined by what it does to the
basis vectors.
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The Complexity of Arbitrary
Transformations

▶ Suppose 𝑓 is an arbitrary transformation.

▶ I tell you ⃗𝑓( ̂𝑒(1)) = (2, 1)𝑇 and ⃗𝑓( ̂𝑒(2)) = (−3, 0)𝑇 .

▶ I tell you ⃗𝑥 = (𝑥1, 𝑥2)𝑇 .

▶ What is ⃗𝑓( ⃗𝑥)?
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The Simplicity of Linear
Transformations

▶ Suppose 𝑓 is a linear transformation.

▶ I tell you ⃗𝑓( ̂𝑒(1)) = (2, 1)𝑇 and ⃗𝑓( ̂𝑒(2)) = (−3, 0)𝑇 .

▶ I tell you ⃗𝑥 = (𝑥1, 𝑥2)𝑇 .

▶ What is ⃗𝑓( ⃗𝑥)?
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Exercise
▶ Suppose 𝑓 is a linear transformation.
▶ I tell you ⃗𝑓( ̂𝑒(1)) = (2, 1)𝑇 and ⃗𝑓( ̂𝑒(2)) = (−3, 0)𝑇 .
▶ I tell you ⃗𝑥 = (3, −4)𝑇 .
▶ What is ⃗𝑓( ⃗𝑥)?
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Key Fact
▶ Linear functions are determined entirely by what
they do on the basis vectors.

▶ I.e., to tell you what 𝑓 does, I only need to tell
you ⃗𝑓( ̂𝑒(1)) and ⃗𝑓( ̂𝑒(2)).

▶ This makes the math easy!
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Example Linear Transformation

▶ ⃗𝑓( ⃗𝑥) = (𝑥1 + 3𝑥2, −3𝑥1 + 5𝑥2)𝑇
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Another Example Linear
Transformation

▶ ⃗𝑓( ⃗𝑥) = (2𝑥1 − 𝑥2, −𝑥1 + 3𝑥2)𝑇
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Note
▶ Because of linearity, along any given direction ⃗𝑓
changes only in scale.

⃗𝑓(𝜆𝑥̂) = 𝜆 ⃗𝑓(𝑥̂)
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Lecture 6 | Part 3

Matrices
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Matrices?
▶ I thought this was supposed to be about linear
algebra... Where are the matrices?

▶ What is a matrix, anyways?
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Matrices?
▶ I thought this was supposed to be about linear
algebra... Where are the matrices?

▶ What is a matrix, anyways?
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What is a matrix?

(
1 2 3
4 5 6
7 8 9

)
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What is matrix multiplication?

(
1 2 3
4 5 6
7 8 9

) (
−2
1
3
) = ( )
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A low-level definition

(𝐴 ⃗𝑥)𝑖 =
𝑛
∑
𝑗=1
𝐴𝑖𝑗𝑥𝑗
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A low-level interpretation

(
1 2 3
4 5 6
7 8 9

) (
−2
1
3
) = −2 (

1
4
7
) + 1 (

2
5
8
) + 3 (

3
6
9
)
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In general...

(
↑ ↑ ↑
𝑎⃗(1) 𝑎⃗(2) 𝑎⃗(3)
↓ ↓ ↓

) (
𝑥1
𝑥2
𝑥3
) = 𝑥1𝑎⃗(1) + 𝑥2𝑎⃗(2) + 𝑥3𝑎⃗(3)

38 / 50



What are they, really?
▶ Matrices are sometimes just tables of numbers.

▶ But they often have a deeper meaning.
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Main Idea

A square (𝑛 × 𝑛) matrix can be interpreted as a
compact representation of a linear transformation
⃗𝑓 ∶ ℝ𝑛 → ℝ𝑛.

What’s more, if 𝐴 represents ⃗𝑓 , then 𝐴 ⃗𝑥 = ⃗𝑓( ⃗𝑥); that
is, multiplying by 𝐴 is the same as evaluating ⃗𝑓 .
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Recall: Linear Transformations
▶ A transformation ⃗𝑓( ⃗𝑥) is a function which takes a
vector as input and returns a vector of the same
dimensionality.

▶ A transformation 𝑓 is linear if

⃗𝑓(𝛼𝑢⃗ + 𝛽 ⃗𝑣) = 𝛼 ⃗𝑓(𝑢⃗) + 𝛽 ⃗𝑓( ⃗𝑣)
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Recall: Linear Transformations
▶ A key property: to compute ⃗𝑓( ⃗𝑥), we only need to
know what 𝑓 does to basis vectors.

▶ Example:

⃗𝑥 = 3 ̂𝑒(1) − 4 ̂𝑒(2) = ( 3−4)
⃗𝑓( ̂𝑒(1)) = − ̂𝑒(1) + 3 ̂𝑒(2)
⃗𝑓( ̂𝑒(2)) = 2 ̂𝑒(1)
⃗𝑓( ⃗𝑥) =
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Matrices
▶ 𝑓 defined by what it does to basis vectors

▶ Place ⃗𝑓( ̂𝑒(1)), ⃗𝑓( ̂𝑒(2)), … into a table as columns

▶ This is the matrix representing2 𝑓

⃗𝑓( ̂𝑒(1)) = − ̂𝑒(1) + 3 ̂𝑒(2) = (−13 )

⃗𝑓( ̂𝑒(2)) = 2 ̂𝑒(1) = (20)
(−1 2
3 0)

2with respect to the basis ̂𝑒(1), ̂𝑒(2)
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Example

(
1 2 3
4 5 6
7 8 9

)

⃗𝑓( ̂𝑒(1)) = (1, 4, 7)𝑇
⃗𝑓( ̂𝑒(2)) = (2, 5, 7)𝑇
⃗𝑓( ̂𝑒(3)) = (3, 6, 9)𝑇
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Main Idea

A square (𝑛 × 𝑛) matrix can be interpreted as a
compact representation of a linear transformation
𝑓 ∶ ℝ𝑛 → ℝ𝑛.
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Matrix Multiplication
▶ Matrix 𝐴 represents a function 𝑓

▶ Matrix multiplication 𝐴 ⃗𝑥 evaluates ⃗𝑓( ⃗𝑥)
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Matrix Multiplication

⃗𝑥 = 𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2) + 𝑥3 ̂𝑒(3) = (𝑥1, 𝑥2, 𝑥3)𝑇
⃗𝑓( ⃗𝑥) = 𝑥1 ⃗𝑓( ̂𝑒(1)) + 𝑥2 ⃗𝑓( ̂𝑒(2)) + 𝑥3 ⃗𝑓( ̂𝑒(3))

𝐴 = (
↑ ↑ ↑
⃗𝑓( ̂𝑒(1)) ⃗𝑓( ̂𝑒(2)) ⃗𝑓( ̂𝑒(3))
↓ ↓ ↓

)

𝐴 ⃗𝑥 = (
↑ ↑ ↑
⃗𝑓( ̂𝑒(1)) ⃗𝑓( ̂𝑒(2)) ⃗𝑓( ̂𝑒(3))
↓ ↓ ↓

) (
𝑥1𝑥2𝑥3
)

= 𝑥1 ⃗𝑓( ̂𝑒(1)) + 𝑥2 ⃗𝑓( ̂𝑒(2)) + 𝑥3 ⃗𝑓( ̂𝑒(3))
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Example

⃗𝑥 = 3 ̂𝑒(1) − 4 ̂𝑒(2) = ( 3−4)
⃗𝑓( ̂𝑒(1)) = − ̂𝑒(1) + 3 ̂𝑒(2)
⃗𝑓( ̂𝑒(2)) = 2 ̂𝑒(1)
⃗𝑓( ⃗𝑥) =

𝐴 =

𝐴 ⃗𝑥 =
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Main Idea

A square (𝑛 × 𝑛) matrix can be interpreted as a
compact representation of a linear transformation
𝑓 ∶ ℝ𝑛 → ℝ𝑛. Matrix multiplication with a vector ⃗𝑥
evaluates ⃗𝑓( ⃗𝑥).
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Note
▶ All of this works because we assumed ⃗𝑓 is linear.

▶ If it isn’t, evaluating ⃗𝑓 isn’t so simple.

▶ Linear algebra = simple!
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