DSC 190
Machine Learning: Representations
Lecture 7 Part 1
The Spectral Theorem

## Eigenvectors

Let $A$ be an $n \times n$ matrix. An eigenvector of $A$ with eigenvalue $\lambda$ is a nonzero vector $\vec{v}$ such that $A \vec{v}=\lambda \vec{v}$.

## Eigenvectors (of Linear Transformations)

- Let $\vec{f}$ be a linear transformation. An eigenvector of $\vec{f}$ with eigenvalue $\lambda$ is a nonzero vector $\vec{v}$ such that $f(\vec{v})=\lambda \vec{v}$.


## Geometric Interpretation

- When $\vec{f}$ is applied to one of its eigenvectors, $\vec{f}$ simply scales it.
$>$ That is, it doesn't rotate it.



## Symmetric Matrices

Recall: a matrix $A$ is symmetric if $A^{T}=A$.

## The Spectral Theorem ${ }^{1}$

- Theorem: Let $A$ be an $n \times n$ symmetric matrix. Then there exist $n$ eigenvectors of $A$ which are all mutually orthogonal.

[^0]
## What?

What does the spectral theorem mean?
$\Rightarrow$ What is an eigenvector, really?

- Why are they useful?


## Example Linear Transformation



$$
A=\left(\begin{array}{cc}
5 & 5 \\
-10 & 12
\end{array}\right)
$$

## Example Linear Transformation



$$
A=\left(\begin{array}{cc}
-2 & -1 \\
-5 & 3
\end{array}\right)
$$

## Example Symmetric Linear Transformation



$$
A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right)
$$

## Example Symmetric Linear Transformation



$$
A=\left(\begin{array}{ll}
5 & 0 \\
0 & 2
\end{array}\right)
$$

## Observation \#1



- Symmetric linear transformations have axes of symmetry.


## Observation \#2



The axes of symmetry are orthogonal to one another.

## Observation \#3



The action of $\vec{f}$ along an axis of symmetry is simply to scale its input.

## Observation \#4



The size of this scaling can be different for each axis.

## Main Idea

The eigenvectors of a symmetric linear transformation (matrix) are its axes of symmetry. The eigenvalues describe how much each axis of symmetry is scaled.

## Example



$$
\begin{aligned}
& \ggg \gg \text { np.array }([[2,-1],[-1,3]]) \\
& \ggg \text { np. linalg.eigh(A) } \\
& \text { (array }([1.38196601,3.61803399]), \\
& \quad \operatorname{array}([[-0.85065081,-0.52573111], \\
& \quad[-0.52573111,0.85065081]]))
\end{aligned}
$$

## Off-diagonal elements



$$
A=\left(\begin{array}{cc}
5 & -0.1 \\
-0.1 & 2
\end{array}\right)
$$

## Off-diagonal elements



$$
A=\left(\begin{array}{cc}
5 & -0.2 \\
-0.2 & 2
\end{array}\right)
$$

## Off-diagonal elements



$$
A=\left(\begin{array}{cc}
5 & -0.3 \\
-0.3 & 2
\end{array}\right)
$$

## Off-diagonal elements



$$
A=\left(\begin{array}{cc}
5 & -0.4 \\
-0.4 & 2
\end{array}\right)
$$

## Off-diagonal elements



$$
A=\left(\begin{array}{cc}
5 & -0.5 \\
-0.5 & 2
\end{array}\right)
$$

## Off-diagonal elements



$$
A=\left(\begin{array}{cc}
5 & -0.6 \\
-0.6 & 2
\end{array}\right)
$$

## Off-diagonal elements



$$
A=\left(\begin{array}{cc}
5 & -0.7 \\
-0.7 & 2
\end{array}\right)
$$

## Off-diagonal elements



$$
A=\left(\begin{array}{cc}
5 & -0.8 \\
-0.8 & 2
\end{array}\right)
$$

## Off-diagonal elements



$$
A=\left(\begin{array}{cc}
5 & -0.9 \\
-0.9 & 2
\end{array}\right)
$$

## Why does $A^{T}=A$ result in symmetry?

$$
A^{T}=A \Longrightarrow \vec{f}\left(\hat{e}^{(1)}\right) \cdot \hat{e}^{(2)}=\vec{f}\left(\hat{e}^{(2)}\right) \cdot \hat{e}^{(1)}
$$

## The Spectral Theorem ${ }^{2}$

- Theorem: Let $A$ be an $n \times n$ symmetric matrix. Then there exist $n$ eigenvectors of $A$ which are all mutually orthogonal.


[^1]
## What about total symmetry?



Every vector is an eigenvector.

$$
A=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right)
$$

Machine Learning: Representations
Lecture 7 Part 2
Why are eigenvectors useful?

## OK, but why are eigenvectors ${ }^{3}$ useful?

- Eigenvectors are nice "building blocks" (basis vectors).
- Eigenvectors are maximizers (or minimizers).
- Eigenvectors are equilibria.

[^2]
## Eigendecomposition

- Any vector $\vec{x}$ can be written in terms of the eigenvectors of a symmetric matrix.
> This is called its eigendecomposition.


## Observation \#1



- $\vec{f}(\vec{x})$ is longest along the "main" axis of symmetry.
- In the direction of the eigenvector with largest eigenvalue.


## Main Idea

To maximize $\|\vec{f}(\vec{x})\|$ over unit vectors, pick $\vec{x}$ to be an eigenvector of $\vec{f}$ with the largest eigenvalue (in abs. value).

## Main Idea

To minimize $\|\vec{f}(\vec{x})\|$ over unit vectors, pick $\vec{x}$ to be an eigenvector of $\vec{f}$ with the smallest eigenvalue (in abs. value).

## Proof

Show that the maximizer of $\|A \vec{x}\|$ s.t., $\|\vec{x}\|=1$ is the top eigenvector of $A$.

## Corollary

To maximize $\vec{x} \cdot A \vec{x}$ over unit vectors, pick $\vec{x}$ to be top eigenvector of $A$.

## Example

Maximize $4 x_{1}^{2}+2 x_{2}+3 x_{1} x_{2}$ subject to $x_{1}^{2}+x_{2}^{2}=1$

## Observation \#2


$\vec{f}(\vec{x})$ rotates $\vec{x}$ towards the "top" eigenvector $\vec{v}$.
$\vec{v}$ is an equilibrium.

## The Power Method

- Method for computing the top eigenvector/value of $A$.
- Initialize $\vec{x}^{(0)}$ randomly
- Repeat until convergence:
$\Rightarrow$ Set $\vec{x}^{(i+1)}=A \vec{x}^{(i)} /\left\|A \vec{x}^{(i)}\right\|$

Machine Learning: Representations
Lecture 7 Part 3
Diagonalization

## Spectral Theorem (Again)

- Theorem: Let $A$ be an $n \times n$ symmetric matrix. Then there exists an orthogonal matrix $U$ and a diagonal matrix $\wedge$ such that $A=U^{T} \wedge U$.
- The rows of $U$ are the eigenvectors of $A$, and the entries of $\Lambda$ are its eigenvalues.
> $U$ is said to diagonalize $A$.


## Note about Bases

- To write the matrix representation of $f$, you must first choose a basis.
- If it isn't stated, we'll assume the standard basis.
- But we can also write a matrix representing $f$ in some other basis.

$$
\begin{aligned}
& f\left(\hat{u}^{(1)}\right)=2 \hat{u}^{(1)}+3 \hat{u}^{(2)}=(2,3)_{u}^{\top} \\
& f\left(\hat{u}^{(2)}\right)=-5 \hat{u}^{(1)}-\hat{u}^{(2)}=(-5,-1)_{u}^{\top}
\end{aligned}
$$

$$
A_{u}=
$$

## Eigenbasis

- A basis of eigenvectors is particularly natural.
- Example: $\vec{f}\left(\vec{v}^{(1)}\right)=\lambda_{1} \vec{v}^{(1)}, \vec{f}\left(\vec{v}^{(2)}\right)=\lambda_{2} \vec{v}^{(2)}$
- Matrix representing $\vec{f}$ in the eigenbasis:


## Two Approaches

- Approach 1:
- Write matrix for A w.r.t. standard basis
- $\vec{f}(\vec{x})=A \vec{x}$
- Approach 2:
- Change basis to eigenbasis
- Apply matrix representing $\vec{f}$ in the eigenbasis (simple)
- Change basis back to original basis


## Spectral Theorem (Again)

- Theorem: Let $A$ be an $n \times n$ symmetric matrix. Then there exists an orthogonal matrix $U$ and a diagonal matrix $\wedge$ such that $A=U^{\top} \wedge U$.
- Interpretation:
- Change basis by multiplying by $U$
$\checkmark \Lambda$ is the representation of $\vec{f}$ in the eigenbasis
- Change basis back by multiplying by $U^{\top}$


## Geometric Interpretation of $\vec{u} \cdot \vec{v}$

- $\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$.



## Change of Basis



$$
\begin{aligned}
& \vec{x}=a_{1} \hat{e}^{(1)}+a_{2} \hat{e}^{(2)} \\
& \vec{x}=b_{1} \hat{u}^{(1)}+b_{2} \hat{u}^{(2)}
\end{aligned}
$$

## Change of Basis

$\Rightarrow$ Suppose $\hat{u}^{(1)}$ and $\hat{u}^{(2)}$ are our new, orthonormal basis vectors.

We know $\vec{x}=x_{1} \hat{e}^{(1)}+x_{2} \hat{e}^{(2)}$

- We want to write $\vec{x}=b_{1} \hat{u}^{(1)}+b_{2} \hat{u}^{(2)}$
- Solution

$$
b_{1}=\vec{x} \cdot \hat{u}^{(1)} \quad b_{2}=\vec{x} \cdot \hat{u}^{(2)}
$$

## Example

$$
\begin{aligned}
\hat{u}^{(1)} & =(\sqrt{3} / 2,1 / 2)^{\top} \\
\hat{u}^{(2)} & =(-1 / 2, \sqrt{3} / 2)^{\top} \\
\vec{x} & =(1 / 2,1)^{\top}
\end{aligned}
$$

## Change of Basis Matrix

- Changing basis is a linear transformation

$$
f(\vec{x})=\left(\vec{x} \cdot \hat{u}^{(1)}\right) \hat{u}^{(1)}+\left(\vec{x} \cdot \hat{u}^{(2)}\right) \hat{u}^{(2)}=\binom{\vec{x} \cdot \hat{u}^{(1)}}{\vec{x} \cdot \hat{u}^{(2)}}
$$

- We can represent it with a matrix

$$
\left(\begin{array}{cc}
\uparrow & \uparrow \\
f\left(\hat{e}^{(1)}\right) & f\left(\hat{e}^{(2)}\right) \\
\downarrow & \downarrow
\end{array}\right)
$$

## Example

$$
\begin{aligned}
\hat{u}^{(1)} & =(\sqrt{3} / 2,1 / 2)^{T} \\
\hat{u}^{(2)} & =(-1 / 2, \sqrt{3} / 2)^{T} \\
f\left(\hat{e}^{(1)}\right) & = \\
f\left(\hat{e}^{(2)}\right) & = \\
A & =
\end{aligned}
$$

## Change of Basis Matrix

- Multiplying by this matrix gives the coordinate vector w.r.t. the new basis.
- Example:

$$
\begin{aligned}
\hat{u}^{(1)} & =(\sqrt{3} / 2,1 / 2)^{T} \\
\hat{u}^{(2)} & =(-1 / 2, \sqrt{3} / 2)^{T} \\
A & =\left(\begin{array}{ll}
\sqrt{3} / 2 & 1 / 2 \\
-1 / 2 & \sqrt{3} / 2
\end{array}\right) \\
\vec{x} & =(1 / 2,1)^{T}
\end{aligned}
$$

## Change to Eigenbasis

- It can be shown that the matrix which changes basis to the eigenbasis of $A$ is the orthogonal matrix $U$, whose rows are the eigenvectors of $A$.


[^0]:    ${ }^{1}$ for symmetric matrices

[^1]:    ${ }^{2}$ for symmetric matrices

[^2]:    ${ }^{3}$ of symmetric matrices

