
Lecture 7 | Part 1

The Spectral Theorem
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Eigenvectors
▶ Let 𝐴 be an 𝑛 × 𝑛 matrix. An eigenvector of 𝐴 with
eigenvalue 𝜆 is a nonzero vector ⃗𝑣 such that
𝐴 ⃗𝑣 = 𝜆 ⃗𝑣.
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Eigenvectors (of Linear
Transformations)

▶ Let ⃗𝑓 be a linear transformation. An eigenvector
of ⃗𝑓 with eigenvalue 𝜆 is a nonzero vector ⃗𝑣 such
that 𝑓( ⃗𝑣) = 𝜆 ⃗𝑣.
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Geometric Interpretation

▶ When ⃗𝑓 is applied to one of its eigenvectors, ⃗𝑓
simply scales it.

▶ That is, it doesn’t rotate it.

4 / 46



Symmetric Matrices
▶ Recall: a matrix 𝐴 is symmetric if 𝐴𝑇 = 𝐴.
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The Spectral Theorem1

▶ Theorem: Let 𝐴 be an 𝑛 × 𝑛 symmetric matrix.
Then there exist 𝑛 eigenvectors of 𝐴 which are all
mutually orthogonal.

1for symmetric matrices
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What?
▶ What does the spectral theorem mean?

▶ What is an eigenvector, really?

▶ Why are they useful?
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Example Linear Transformation

𝐴 = ( 5 5
−10 12)
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Example Linear Transformation

𝐴 = (−2 −1
−5 3 )
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Example Symmetric Linear
Transformation

𝐴 = ( 2 −1
−1 3 )
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Example Symmetric Linear
Transformation

𝐴 = (5 0
0 2)
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Observation #1

▶ Symmetric linear
transformations have
axes of symmetry.
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Observation #2

▶ The axes of symmetry
are orthogonal to one
another.
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Observation #3

▶ The action of ⃗𝑓 along
an axis of symmetry is
simply to scale its
input.
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Observation #4

▶ The size of this
scaling can be
different for each axis.
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Main Idea

The eigenvectors of a symmetric linear transfor-
mation (matrix) are its axes of symmetry. The
eigenvalues describe how much each axis of sym-
metry is scaled.
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Example

>>> A = np.array([[2, -1], [-1, 3]])
>>> np.linalg.eigh(A)
(array([1.38196601, 3.61803399]),
array([[-0.85065081, -0.52573111],

[-0.52573111, 0.85065081]]))
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Off-diagonal elements

𝐴 = ( 5 −0.1
−0.1 2 )
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Off-diagonal elements

𝐴 = ( 5 −0.2
−0.2 2 )
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Off-diagonal elements

𝐴 = ( 5 −0.3
−0.3 2 )
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Off-diagonal elements

𝐴 = ( 5 −0.4
−0.4 2 )
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Off-diagonal elements

𝐴 = ( 5 −0.5
−0.5 2 )
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Off-diagonal elements

𝐴 = ( 5 −0.6
−0.6 2 )
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Off-diagonal elements

𝐴 = ( 5 −0.7
−0.7 2 )
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Off-diagonal elements

𝐴 = ( 5 −0.8
−0.8 2 )
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Off-diagonal elements

𝐴 = ( 5 −0.9
−0.9 2 )

18 / 46



Why does 𝐴𝑇 = 𝐴 result in symmetry?

▶ 𝐴𝑇 = 𝐴 ⟹ ⃗𝑓( ̂𝑒(1)) ⋅ ̂𝑒(2) = ⃗𝑓( ̂𝑒(2)) ⋅ ̂𝑒(1)
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The Spectral Theorem2

▶ Theorem: Let 𝐴 be an 𝑛 × 𝑛
symmetric matrix. Then
there exist 𝑛 eigenvectors
of 𝐴 which are all mutually
orthogonal.

2for symmetric matrices
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What about total symmetry?

▶ Every vector is an
eigenvector.

𝐴 = (3 0
0 3)
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Lecture 7 | Part 2

Why are eigenvectors useful?

22 / 46



OK, but why are eigenvectors3
useful?

▶ Eigenvectors are nice “building blocks” (basis
vectors).

▶ Eigenvectors are maximizers (or minimizers).

▶ Eigenvectors are equilibria.

3of symmetric matrices
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Eigendecomposition
▶ Any vector ⃗𝑥 can be written in terms of the
eigenvectors of a symmetric matrix.

▶ This is called its eigendecomposition.
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Observation #1

▶ ⃗𝑓( ⃗𝑥) is longest along
the “main” axis of
symmetry.
▶ In the direction of
the eigenvector with
largest eigenvalue.
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Main Idea

To maximize ‖ ⃗𝑓( ⃗𝑥)‖ over unit vectors, pick ⃗𝑥 to be
an eigenvector of ⃗𝑓 with the largest eigenvalue (in
abs. value).
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Main Idea

To minimize ‖ ⃗𝑓( ⃗𝑥)‖ over unit vectors, pick ⃗𝑥 to be
an eigenvector of ⃗𝑓 with the smallest eigenvalue
(in abs. value).
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Proof
Show that the maximizer of ‖𝐴 ⃗𝑥‖ s.t., ‖ ⃗𝑥‖ = 1 is the
top eigenvector of 𝐴.
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Corollary
To maximize ⃗𝑥 ⋅ 𝐴 ⃗𝑥 over unit vectors, pick ⃗𝑥 to be top
eigenvector of 𝐴.
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Example

▶ Maximize 4𝑥21 + 2𝑥2 + 3𝑥1𝑥2 subject to 𝑥21 + 𝑥22 = 1

30 / 46



Observation #2

▶ ⃗𝑓( ⃗𝑥) rotates ⃗𝑥 towards
the “top” eigenvector
⃗𝑣.

▶ ⃗𝑣 is an equilibrium.
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The Power Method
▶ Method for computing the top eigenvector/value
of 𝐴.

▶ Initialize ⃗𝑥(0) randomly

▶ Repeat until convergence:
▶ Set ⃗𝑥(𝑖+1) = 𝐴 ⃗𝑥(𝑖)/‖𝐴 ⃗𝑥(𝑖)‖
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Diagonalization
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Spectral Theorem (Again)
▶ Theorem: Let 𝐴 be an 𝑛 × 𝑛 symmetric matrix.
Then there exists an orthogonal matrix 𝑈 and a
diagonal matrix Λ such that 𝐴 = 𝑈𝑇Λ𝑈.

▶ The rows of 𝑈 are the eigenvectors of 𝐴, and the
entries of Λ are its eigenvalues.

▶ 𝑈 is said to diagonalize 𝐴.
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Note about Bases
▶ To write the matrix representation of 𝑓 , you must
first choose a basis.

▶ If it isn’t stated, we’ll assume the standard basis.

▶ But we can also write a matrix representing 𝑓 in
some other basis.

𝑓(�̂�(1)) = 2�̂�(1) + 3�̂�(2) = (2, 3)𝑇U
𝑓(�̂�(2)) = −5�̂�(1) − �̂�(2) = (−5, −1)𝑇U

𝐴U =
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Eigenbasis
▶ A basis of eigenvectors is particularly natural.

▶ Example: ⃗𝑓( ⃗𝑣(1)) = 𝜆1 ⃗𝑣(1), ⃗𝑓( ⃗𝑣(2)) = 𝜆2 ⃗𝑣(2)

▶ Matrix representing ⃗𝑓 in the eigenbasis:
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Two Approaches
▶ Approach 1:

▶ Write matrix for 𝐴 w.r.t. standard basis
▶ ⃗𝑓( ⃗𝑥) = 𝐴 ⃗𝑥

▶ Approach 2:
▶ Change basis to eigenbasis
▶ Apply matrix representing ⃗𝑓 in the eigenbasis (simple)
▶ Change basis back to original basis
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Spectral Theorem (Again)
▶ Theorem: Let 𝐴 be an 𝑛 × 𝑛 symmetric matrix.
Then there exists an orthogonal matrix 𝑈 and a
diagonal matrix Λ such that 𝐴 = 𝑈𝑇Λ𝑈.

▶ Interpretation:
▶ Change basis by multiplying by 𝑈
▶ Λ is the representation of ⃗𝑓 in the eigenbasis
▶ Change basis back by multiplying by 𝑈𝑇
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Geometric Interpretation of �⃗� ⋅ ⃗𝑣
▶ �⃗� ⋅ ⃗𝑣 = ‖�⃗�‖‖ ⃗𝑣‖ cos𝜃.
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Change of Basis

(𝑎1, 𝑎2)

⃗𝑥

�̂�(1)
�̂�(2)

𝑏1

𝑏2

𝑎1

𝑎2

𝜃1
𝜃2

⃗𝑥 = 𝑎1 ̂𝑒(1) + 𝑎2 ̂𝑒(2)
⃗𝑥 = 𝑏1�̂�(1) + 𝑏2�̂�(2)
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Change of Basis
▶ Suppose �̂�(1) and �̂�(2) are our new, orthonormal
basis vectors.

▶ We know ⃗𝑥 = 𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2)

▶ We want to write ⃗𝑥 = 𝑏1�̂�(1) + 𝑏2�̂�(2)

▶ Solution

𝑏1 = ⃗𝑥 ⋅ �̂�(1) 𝑏2 = ⃗𝑥 ⋅ �̂�(2)
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Example

�̂�(1) = (√3/2, 1/2)𝑇

�̂�(2) = (−1/2, √3/2)𝑇
⃗𝑥 = (1/2, 1)𝑇
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Change of Basis Matrix
▶ Changing basis is a linear transformation

𝑓( ⃗𝑥) = ( ⃗𝑥 ⋅ �̂�(1))�̂�(1) + ( ⃗𝑥 ⋅ �̂�(2))�̂�(2) = ( ⃗𝑥 ⋅ �̂�
(1)

⃗𝑥 ⋅ �̂�(2))
U

▶ We can represent it with a matrix

(
↑ ↑

𝑓( ̂𝑒(1)) 𝑓( ̂𝑒(2))
↓ ↓

)
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Example

�̂�(1) = (√3/2, 1/2)𝑇

�̂�(2) = (−1/2, √3/2)𝑇
𝑓( ̂𝑒(1)) =
𝑓( ̂𝑒(2)) =

𝐴 =
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Change of Basis Matrix
▶ Multiplying by this matrix gives the coordinate
vector w.r.t. the new basis.

▶ Example:

�̂�(1) = (√3/2, 1/2)𝑇

�̂�(2) = (−1/2, √3/2)𝑇

𝐴 = (
√3/2 1/2
−1/2 √3/2)

⃗𝑥 = (1/2, 1)𝑇
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Change to Eigenbasis
▶ It can be shown that the matrix which changes
basis to the eigenbasis of 𝐴 is the orthogonal
matrix 𝑈, whose rows are the eigenvectors of 𝐴.
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