
Lecture 8 | Part 1

Dimensionality Reduction

1 / 58

High Dimensional Data
▶ Data is often high dimensional (many features)

▶ Example: Netflix user
▶ Number of movies watched
▶ Number of movies saved
▶ Total time watched
▶ Number of logins
▶ Days since signup
▶ Average rating for comedy
▶ Average rating for drama
▶ ⋮

2 / 58

High Dimensional Data
▶ More features can give us more information

▶ But it can also cause problems

▶ Today: how do we reduce dimensionality without
losing too much information?

3 / 58

More Features, More Problems
▶ Difficulties with high dimensional data:

1. Requires more compute time / space
2. Hard to visualize / explore
3. The “curse of dimensionality”: it’s harder to learn

4 / 58

Experiment

2 1 0 1 2 3

2

1

0

1

2

3 -1
1

▶ On this data, low 80%
train/test accuracy

▶ Add 400 features of pure
noise, re-train

▶ Now: 100% train accuracy,
58% test accuracy

▶ Overfitting!

5 / 58

Task: Dimensionality Reduction
▶ We’d often like to reduce the dimensionality to
improve performance, or to visualize.

▶ We will typically lose information

▶ Want to minimize the loss of useful information

6 / 58

Redundancy
▶ Two (or more) features may share the same
information.

▶ Intuition: we may not need all of them.

7 / 58

Today
▶ Today we’ll think about reducing dimensionality
from ℝ𝑑 to ℝ1

▶ Next time we’ll go from ℝ𝑑 to ℝ𝑑′, with 𝑑′ ≤ 𝑑

8 / 58

Today’s Example
▶ Let’s say we represent a phone with two features:

▶ 𝑥1: screen width▶ 𝑥2: phone weight

▶ Both measure a phone’s “size”.

▶ Instead of representing a phone with both 𝑥1 and
𝑥2, can we just use a single number, 𝑧?▶ Reduce dimensionality from 2 to 1.

9 / 58

First Approach: Remove Features
▶ Screen width and weight share information.

▶ Idea: keep one feature, remove the other.

▶ That is, set new feature 𝑧 = 𝑥1 (or 𝑧 = 𝑥2).

10 / 58

Removing Features

▶ Say we set 𝑧(𝑖) = ⃗𝑥(𝑖)1 for
each phone, 𝑖.

▶ Observe: 𝑧(4) > 𝑧(5).

▶ Is phone 4 really “larger”
than phone 5?

11 / 58

Removing Features

▶ Say we set 𝑧(𝑖) = ⃗𝑥(𝑖)2 for
each phone, 𝑖.

▶ Observe: 𝑧(3) > 𝑧(4).

▶ Is phone 3 really “larger”
than phone 4?

11 / 58

Better Approach: Mixtures of
Features

▶ Idea: 𝑧 should be a combination of 𝑥1 and 𝑥2.

▶ One approach: linear combination.

𝑧 = 𝑢1𝑥1 + 𝑢2𝑥2
= 𝑢⃗ ⋅ ⃗𝑥

▶ 𝑢1, … , 𝑢2 are the mixture coefficients; we can
choose them.

12 / 58

Normalization
▶ Mixture coefficients generalize proportions.

▶ We could assume, e.g., |𝑢1| + |𝑢2| = 1.

▶ But it makes the math easier if we assume
𝑢21 + 𝑢22 = 1.

▶ Equivalently, if 𝑢⃗ = (𝑢1, 𝑢2)𝑇 , assume ‖𝑢⃗‖ = 1

13 / 58

Geometric Interpretation

▶ 𝑧 measures how much of ⃗𝑥
is in the direction of 𝑢⃗

▶ If 𝑢⃗ = (1, 0)𝑇 , then 𝑧 = 𝑥1

▶ If 𝑢⃗ = (0, 1)𝑇 , then 𝑧 = 𝑥2

14 / 58

Choosing 𝑢⃗
▶ Suppose we have only two features:

▶ 𝑥1: screen size▶ 𝑥2: phone thickness

▶ We’ll create single new feature, 𝑧, from 𝑥1 and 𝑥2.
▶ Assume 𝑧 = 𝑢1𝑥1 + 𝑢2𝑥2 = ⃗𝑥 ⋅ 𝑢⃗
▶ Interpretation: 𝑧 is a measure of a phone’s size

▶ How should we choose 𝑢⃗ = (𝑢1, 𝑢2)𝑇?

15 / 58

Example

▶ 𝑢⃗ defines a direction

▶ ⃗𝑧(𝑖) = ⃗𝑥(𝑖) ⋅ 𝑢⃗ measures
position of ⃗𝑥 along this
direction

16 / 58

Example

▶ Phone “size” varies most
along a diagonal direction.

▶ Along direction of “max
variance”, phones are
well-separated.

▶ Idea: 𝑢⃗ should point in
direction of “max
variance”.

16 / 58

Our Algorithm (Informally)

▶ Given: data points ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑

▶ Pick 𝑢⃗ to be the direction of “max variance”

▶ Create a new feature, 𝑧, for each point:

𝑧(𝑖) = ⃗𝑥(𝑖) ⋅ 𝑢⃗

17 / 58

PCA
▶ This algorithm is called Principal Component
Analysis, or PCA.

▶ The direction of maximum variance is called the
principal component.

18 / 58

Exercise
Suppose the direction of maximum variance in a
data set is

𝑢⃗ = (1/√2, −1/√2)𝑇

Let
▶ ⃗𝑥(1) = (3, −2)𝑇
▶ ⃗𝑥(2) = (1, 4)𝑇

What are 𝑧(1) and 𝑧(2)?

19 / 58

Problem
▶ How do we compute the “direction of maximum
variance”?

20 / 58

Lecture 8 | Part 2

Covariance Matrices

21 / 58

Variance
▶ We know how to compute the variance of a set of
numbers 𝑋 = {𝑥(1), … , 𝑥(𝑛)}:

Var(𝑋) = 1𝑛
𝑛
∑
𝑖=1
(𝑥(𝑖) − 𝜇)2

▶ The variance measures the “spread” of the data

22 / 58

Generalizing Variance
▶ If we have two features, 𝑥1 and 𝑥2, we can
compute the variance of each as usual:

Var(𝑥1) =
1
𝑛

𝑛
∑
𝑖=1
(⃗𝑥(𝑖)1 − 𝜇1)2

Var(𝑥2) =
1
𝑛

𝑛
∑
𝑖=1
(⃗𝑥(𝑖)2 − 𝜇2)2

▶ Can also measure how 𝑥1 and 𝑥2 vary together.
23 / 58

Measuring Similar Information
▶ Features which share information if they vary
together.
▶ A.k.a., they “co-vary”

▶ Positive association: when one is above average,
so is the other

▶ Negative association: when one is above
average, the other is below average

24 / 58

Examples
▶ Positive: temperature and ice cream cones sold.

▶ Positive: temperature and shark attacks.

▶ Negative: temperature and coats sold.

25 / 58

Centering
▶ First, it will be useful to center the data.

26 / 58

Centering
▶ Compute the mean of each feature:

𝜇𝑗 =
1
𝑛

𝑛
∑
1

⃗𝑥(𝑖)𝑗

▶ Define new centered data:

⃗𝑧(𝑖) = (

⃗𝑥(𝑖)1 − 𝜇1
⃗𝑥(𝑖)2 − 𝜇2

⋮
⃗𝑥(𝑖)𝑑 − 𝜇𝑑

)

27 / 58

Centering (Equivalently)
▶ Compute the mean of all data points:

𝜇 = 1𝑛
𝑛
∑
1

⃗𝑥(𝑖)

▶ Define new centered data:

⃗𝑧(𝑖) = ⃗𝑥(𝑖) − 𝜇

28 / 58

Exercise
Center the data set:

⃗𝑥(1) = (1, 2, 3)𝑇

⃗𝑥(2) = (−1, −1, 0)𝑇

⃗𝑥(3) = (0, 2, 3)𝑇

29 / 58

Quantifying Co-Variance
▶ One approach is as follows1.

Cov(𝑥𝑖, 𝑥𝑗) =
1
𝑛

𝑛
∑
𝑘=1

⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗

▶ For each data point, multiply the value of feature 𝑖
and feature 𝑗, then average these products.

▶ This is the covariance of features 𝑖 and 𝑗.

1Assuming centered data
30 / 58

Quantifying Covariance

▶ Assume the data are
centered.

Covariance = 17
7
∑
𝑖=1

⃗𝑥(𝑖)1 × ⃗𝑥(𝑖)2

31 / 58

Quantifying Covariance

▶ Assume the data are
centered.

Covariance = 17
7
∑
𝑖=1

⃗𝑥(𝑖)1 × ⃗𝑥(𝑖)2

31 / 58

Quantifying Covariance

▶ Assume the data are
centered.

Covariance = 17
7
∑
𝑖=1

⃗𝑥(𝑖)1 × ⃗𝑥(𝑖)2

31 / 58

Quantifying Covariance
▶ The covariance quantifies extent to which two
variables vary together.

▶ Assume we have centered the data.

▶ The sample covariance of feature 𝑖 and 𝑗 is:

𝜎𝑖𝑗 =
1
𝑛

𝑛
∑
𝑘=1

⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗

32 / 58

Exercise
True or False: 𝜎𝑖𝑗 = 𝜎𝑗𝑖?

𝜎𝑖𝑗 =
1
𝑛

𝑛
∑
𝑘=1

⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗

33 / 58

Covariance Matrices
▶ Given data ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑 .

▶ The sample covariance matrix 𝐶 is the 𝑑 × 𝑑
matrix whose 𝑖𝑗 entry is defined to be 𝜎𝑖𝑗.

𝜎𝑖𝑗 =
1
𝑛

𝑛
∑
𝑘=1

⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗

34 / 58

Observations
▶ Diagonal entries of 𝐶 are the variances.

▶ The matrix is symmetric!

35 / 58

Note
▶ Sometimes you’ll see the sample covariance defined as:

𝜎𝑖𝑗 =
1

𝑛 − 1
𝑛
∑
𝑘=1

⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗

Note the 1/(𝑛 − 1)
▶ This is an unbiased estimator of the population covariance.
▶ Our definition is the maximum likelihood estimator.
▶ In practice, it doesn’t matter: 1/(𝑛 − 1) ≈ 1/𝑛.
▶ For consistency, in this class use 1/𝑛.

36 / 58

Computing Covariance
▶ There is a “trick” for computing sample
covariance matrices.

▶ Step 1: make 𝑛 × 𝑑 data matrix, 𝑋

▶ Step 2: make 𝑍 by centering columns of 𝑋

▶ Step 3: 𝐶 = 1
𝑛𝑍

𝑇𝑍

37 / 58

Computing Covariance (in code)2

>>> mu = X.mean(axis=0)
>>> Z = X - mu
>>> C = 1 / len(X) * Z.T @ Z

2Or use np.cov
38 / 58

Lecture 8 | Part 3

Visualizing Covariance Matrices

39 / 58

Visualizing Covariance Matrices
▶ Covariance matrices are symmetric.

▶ They have axes of symmetry (eigenvectors and
eigenvalues).

▶ What are they?

40 / 58

Visualizing Covariance Matrices

𝐶 ≈ ()

41 / 58

Visualizing Covariance Matrices

Eigenvectors:

𝑢⃗(1) ≈
𝑢⃗(2) ≈

41 / 58

Visualizing Covariance Matrices

𝐶 ≈ ()

42 / 58

Visualizing Covariance Matrices

Eigenvectors:

𝑢⃗(1) ≈
𝑢⃗(2) ≈

42 / 58

Visualizing Covariance Matrices

𝐶 ≈ ()

43 / 58

Visualizing Covariance Matrices

Eigenvectors:

𝑢⃗(1) ≈
𝑢⃗(2) ≈

43 / 58

Intuitions
▶ The eigenvectors of the covariance matrix
describe the data’s “principal directions”
▶ 𝐶 tells us something about data’s shape.

▶ The top eigenvector points in the direction of
“maximum variance”.

▶ The top eigenvalue is proportional to the
variance in this direction.

44 / 58

Caution
▶ The data doesn’t always look like this.
▶ We can always compute covariance matrices.
▶ They just may not describe the data’s shape very well.

45 / 58

Caution
▶ The data doesn’t always look like this.
▶ We can always compute covariance matrices.
▶ They just may not describe the data’s shape very well.

45 / 58

Caution
▶ The data doesn’t always look like this.
▶ We can always compute covariance matrices.
▶ They just may not describe the data’s shape very well.

45 / 58

Caution
▶ The data doesn’t always look like this.
▶ We can always compute covariance matrices.
▶ They just may not describe the data’s shape very well.

45 / 58

Lecture 8 | Part 4

PCA, More Formally

46 / 58

The Story (So Far)
▶ We want to create a single new feature, 𝑧.

▶ Our idea: 𝑧 = ⃗𝑥 ⋅ 𝑢⃗; choose 𝑢⃗ to point in the
“direction of maximum variance”.

▶ Intuition: the top eigenvector of the covariance
matrix points in direction of maximum variance.

47 / 58

More Formally...
▶ We haven’t actually defined “direction of
maximum variance”

▶ Let’s derive PCA more formally.

48 / 58

Variance in a Direction
▶ Let 𝑢⃗ be a unit vector.

▶ 𝑧(𝑖) = ⃗𝑥(𝑖) ⋅ 𝑢⃗ is the new feature for ⃗𝑥(𝑖).

▶ The variance of the new features is:

Var(𝑧) = 1𝑛
𝑛
∑
𝑖=1
(𝑧(𝑖) − 𝜇𝑧)2

= 1𝑛
𝑛
∑
𝑖=1
(⃗𝑥(𝑖) ⋅ 𝑢⃗ − 𝜇𝑧)

2

49 / 58

Example

50 / 58

Note
▶ If the data are centered, then 𝜇𝑧 = 0 and the
variance of the new features is:

Var(𝑧) = 1𝑛
𝑛
∑
𝑖=1
(𝑧(𝑖))2

= 1𝑛
𝑛
∑
𝑖=1
(⃗𝑥(𝑖) ⋅ 𝑢⃗)2

51 / 58

Goal
▶ The variance of a data set in the direction of 𝑢⃗ is:

𝑔(𝑢⃗) = 1𝑛
𝑛
∑
𝑖=1
(⃗𝑥(𝑖) ⋅ 𝑢⃗)2

▶ Our goal: Find a unit vector 𝑢⃗ which maximizes 𝑔.

52 / 58

Claim

1
𝑛

𝑛
∑
𝑖=1
(⃗𝑥(𝑖) ⋅ 𝑢⃗)2 = 𝑢⃗𝑇𝐶𝑢⃗

53 / 58

Our Goal (Again)
▶ Find a unit vector 𝑢⃗ which maximizes 𝑢⃗𝑇𝐶𝑢⃗.

54 / 58

Claim
▶ To maximize 𝑢⃗𝑇𝐶𝑢⃗ over unit vectors, choose 𝑢⃗ to
be the top eigenvector of 𝐶.

▶ Proof:

55 / 58

PCA (for a single new feature)

▶ Given: data points ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑

1. Compute the covariance matrix, 𝐶.

2. Compute the top eigenvector 𝑢⃗, of 𝐶.

3. For 𝑖 ∈ {1, … , 𝑛}, create new feature:

𝑧(𝑖) = 𝑢⃗ ⋅ ⃗𝑥(𝑖)

56 / 58

A Parting Example
▶ MNIST: 60,000 images in 784 dimensions

▶ Principal component: 𝑢⃗ ∈ ℝ784

▶ We can project an image in ℝ784 onto 𝑢⃗ to get a
single number representing the image

57 / 58

Example

1000 500 0 500 1000
0.05

0.00

0.05

58 / 58

