DSC
190
Machine Learning: Representations
Lecture 8 Part 1 Dimensionality Reduction

High Dimensional Data

- Data is often high dimensional (many features)
- Example: Netflix user
- Number of movies watched
- Number of movies saved
- Total time watched
- Number of logins
- Days since signup
- Average rating for comedy
- Average rating for drama
\rightarrow :

High Dimensional Data

- More features can give us more information
- But it can also cause problems
- Today: how do we reduce dimensionality without losing too much information?

More Features, More Problems

- Difficulties with high dimensional data:

1. Requires more compute time / space
2. Hard to visualize / explore
3. The "curse of dimensionality": it's harder to learn

Experiment

- On this data, low 80\% train/test accuracy
- Add 400 features of pure noise, re-train
- Now: 100\% train accuracy, 58\% test accuracy
- Overfitting!

Task: Dimensionality Reduction

- We'd often like to reduce the dimensionality to improve performance, or to visualize.
- We will typically lose information
- Want to minimize the loss of useful information

Redundancy

- Two (or more) features may share the same information.
- Intuition: we may not need all of them.

Today

- Today we'll think about reducing dimensionality from \mathbb{R}^{d} to \mathbb{R}^{1}
- Next time we'll go from \mathbb{R}^{d} to $\mathbb{R}^{d^{\prime}}$, with $d^{\prime} \leq d$

Today's Example

- Let's say we represent a phone with two features:
x_{1} : screen width
x_{2} : phone weight
- Both measure a phone’s "size".
- Instead of representing a phone with both x_{1} and x_{2}, can we just use a single number, z ?
- Reduce dimensionality from 2 to 1 .

First Approach: Remove Features

- Screen width and weight share information.
- Idea: keep one feature, remove the other.
- That is, set new feature $z=x_{1}\left(\right.$ or $\left.z=x_{2}\right)$.

Removing Features

- Say we set $z^{(i)}=\vec{x}_{1}^{(i)}$ for each phone, i.
- Observe: $z^{(4)}>z^{(5)}$.
- Is phone 4 really "larger" than phone 5?

Removing Features

- Say we set $z^{(i)}=\vec{x}_{2}^{(i)}$ for each phone, i.
- Observe: $z^{(3)}>z^{(4)}$.
- Is phone 3 really "larger" than phone 4?

Better Approach: Mixtures of Features

- Idea: z should be a combination of x_{1} and x_{2}.
- One approach: linear combination.

$$
\begin{aligned}
z & =u_{1} x_{1}+u_{2} x_{2} \\
& =\vec{u} \cdot \vec{x}
\end{aligned}
$$

u_{1}, \ldots, u_{2} are the mixture coefficients; we can choose them.

Normalization

- Mixture coefficients generalize proportions.
- We could assume, e.g., $\left|u_{1}\right|+\left|u_{2}\right|=1$.
- But it makes the math easier if we assume $u_{1}^{2}+u_{2}^{2}=1$.
- Equivalently, if $\vec{u}=\left(u_{1}, u_{2}\right)^{T}$, assume $\|\vec{u}\|=1$

Geometric Interpretation

- z measures how much of \vec{x} is in the direction of \vec{u}

If $\vec{u}=(1,0)^{\top}$, then $z=x_{1}$

- If $\vec{u}=(0,1)^{T}$, then $z=x_{2}$

Choosing \vec{u}

- Suppose we have only two features:
$\Rightarrow x_{1}$: screen size
$\Rightarrow x_{2}$: phone thickness
- We'll create single new feature, z, from x_{1} and x_{2}.
- Assume $z=u_{1} x_{1}+u_{2} x_{2}=\vec{x} \cdot \vec{u}$
- Interpretation: z is a measure of a phone's size
\Rightarrow How should we choose $\vec{u}=\left(u_{1}, u_{2}\right)^{T}$?

Example

- \vec{u} defines a direction
- $\vec{z}^{(i)}=\vec{x}^{(i)} \cdot \vec{u}$ measures position of \vec{x} along this direction

Example

- Phone "size" varies most along a diagonal direction.
- Along direction of "max variance", phones are well-separated.
- Idea: \vec{u} should point in direction of "max variance".

Our Algorithm (Informally)

- Given: data points $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)} \in \mathbb{R}^{d}$
- Pick \vec{u} to be the direction of "max variance"
- Create a new feature, z, for each point:

$$
z^{(i)}=\vec{x}^{(i)} \cdot \vec{u}
$$

PCA

- This algorithm is called Principal Component Analysis, or PCA.
- The direction of maximum variance is called the principal component.

Exercise

Suppose the direction of maximum variance in a data set is

$$
\vec{u}=(1 / \sqrt{2},-1 / \sqrt{2})^{T}
$$

Let

$$
\begin{aligned}
& \vec{x}^{(1)}=(3,-2)^{T} \\
& \vec{x}^{(2)}=(1,4)^{T}
\end{aligned}
$$

What are $z^{(1)}$ and $z^{(2)}$?

Problem

- How do we compute the "direction of maximum variance"?

DEC 190 Lecture $8 \mid$ Part 2

Variance

- We know how to compute the variance of a set of numbers $X=\left\{x^{(1)}, \ldots, x^{(n)}\right\}$:

$$
\operatorname{Var}(X)=\frac{1}{n} \sum_{i=1}^{n}\left(x^{(i)}-\mu\right)^{2}
$$

- The variance measures the "spread" of the data

Generalizing Variance

- If we have two features, x_{1} and x_{2}, we can compute the variance of each as usual:

$$
\begin{aligned}
& \operatorname{Var}\left(x_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(\vec{x}_{1}^{(i)}-\mu_{1}\right)^{2} \\
& \operatorname{Var}\left(x_{2}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(\vec{x}_{2}^{(i)}-\mu_{2}\right)^{2}
\end{aligned}
$$

- Can also measure how x_{1} and x_{2} vary together.

Measuring Similar Information

- Features which share information if they vary together.
A.k.a., they "co-vary"
- Positive association: when one is above average, so is the other
- Negative association: when one is above average, the other is below average

Examples

- Positive: temperature and ice cream cones sold.
- Positive: temperature and shark attacks.
- Negative: temperature and coats sold.

Centering

- First, it will be useful to center the data.

Centering

Compute the mean of each feature:

$$
\mu_{j}=\frac{1}{n} \sum_{1}^{n} \vec{x}_{j}^{(i)}
$$

- Define new centered data:

$$
\vec{z}^{(i)}=\left(\begin{array}{c}
\vec{x}_{1}^{(i)}-\mu_{1} \\
\vec{x}_{2}^{(i)}-\mu_{2} \\
\vdots \\
\vec{x}_{d}^{(i)}-\mu_{d}
\end{array}\right)
$$

Centering (Equivalently)

- Compute the mean of all data points:

$$
\mu=\frac{1}{n} \sum_{1}^{n} \vec{x}^{(i)}
$$

- Define new centered data:

$$
\vec{z}^{(i)}=\vec{x}^{(i)}-\mu
$$

Exercise

Center the data set:

$$
\begin{aligned}
\vec{x}^{(1)} & =(1,2,3)^{T} \\
\vec{x}^{(2)} & =(-1,-1,0)^{T} \\
\vec{x}^{(3)} & =(0,2,3)^{T}
\end{aligned}
$$

Quantifying Co-Variance

- One approach is as follows ${ }^{1}$.

$$
\operatorname{Cov}\left(x_{i}, x_{j}\right)=\frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}
$$

- For each data point, multiply the value of feature i and feature j, then average these products.
\downarrow This is the covariance of features i and j.

[^0]
Quantifying Covariance

- Assume the data are centered.
Covariance $=\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$

Quantifying Covariance

- Assume the data are centered.
Covariance $=\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$

Quantifying Covariance

Assume the data are centered.
Covariance $=\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$

Quantifying Covariance

- The covariance quantifies extent to which two variables vary together.
- Assume we have centered the data.
- The sample covariance of feature i and j is:

$$
\sigma_{i j}=\frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}
$$

Exercise

True or False: $\sigma_{i j}=\sigma_{j i}$?

$$
\sigma_{i j}=\frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}
$$

Covariance Matrices

\Rightarrow Given data $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)} \in \mathbb{R}^{d}$.
\Rightarrow The sample covariance matrix C is the $d \times d$ matrix whose $i j$ entry is defined to be $\sigma_{i j}$.

$$
\sigma_{i j}=\frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}
$$

Observations

- Diagonal entries of C are the variances.

The matrix is symmetric!

Note

- Sometimes you'll see the sample covariance defined as:

$$
\sigma_{i j}=\frac{1}{n-1} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}
$$

Note the $1 /(n-1)$

- This is an unbiased estimator of the population covariance.
- Our definition is the maximum likelihood estimator.
- In practice, it doesn't matter: $1 /(n-1) \approx 1 / n$.
- For consistency, in this class use $1 / n$.

Computing Covariance

- There is a "trick" for computing sample covariance matrices.
- Step 1: make $n \times d$ data matrix, X
- Step 2: make Z by centering columns of X
- Step 3: $C=\frac{1}{n} Z^{\top} Z$

Computing Covariance (in code) ${ }^{2}$

>>> mu = X.mean(axis=0)
>>> $Z=X$ - mu
>> C = 1 / len(X) * Z.T a Z

DSC
190
Machine Learning: Representations
Lecture 8 Part 3
Visualizing Covariance Matrices

Visualizing Covariance Matrices

- Covariance matrices are symmetric.
- They have axes of symmetry (eigenvectors and eigenvalues).
- What are they?

Visualizing Covariance Matrices

$$
C \approx(\quad)
$$

Visualizing Covariance Matrices

Eigenvectors:
$\vec{u}^{(1)} \approx$
$\vec{u}^{(2)} \approx$

Visualizing Covariance Matrices

$C \approx$
)

Visualizing Covariance Matrices

Eigenvectors:
$\vec{u}^{(1)} \approx$
$\vec{u}^{(2)} \approx$

Visualizing Covariance Matrices

$C \approx$
)

Visualizing Covariance Matrices

Eigenvectors:
$\vec{u}^{(1)} \approx$
$\vec{u}^{(2)} \approx$

Intuitions

- The eigenvectors of the covariance matrix describe the data's "principal directions" - C tells us something about data's shape.
- The top eigenvector points in the direction of "maximum variance".
- The top eigenvalue is proportional to the variance in this direction.

Caution

- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.

Caution

- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.

Caution

- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.

Caution

- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.

Machine Learning: Representations
Lecture 8 Part 4
PCA, More Formally

The Story (So Far)

- We want to create a single new feature, z.
- Our idea: $z=\vec{x} \cdot \vec{u}$; choose \vec{u} to point in the "direction of maximum variance".
- Intuition: the top eigenvector of the covariance matrix points in direction of maximum variance.

More Formally...

- We haven't actually defined "direction of maximum variance"
- Let's derive PCA more formally.

Variance in a Direction

- Let \vec{u} be a unit vector.
$\Rightarrow z^{(i)}=\vec{x}^{(i)} \cdot \vec{u}$ is the new feature for $\vec{x}^{(i)}$.
- The variance of the new features is:

$$
\begin{aligned}
\operatorname{Var}(z) & =\frac{1}{n} \sum_{i=1}^{n}\left(z^{(i)}-\mu_{z}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\vec{x}^{(i)} \cdot \vec{u}-\mu_{z}\right)^{2}
\end{aligned}
$$

Example

Note

- If the data are centered, then $\mu_{z}=0$ and the variance of the new features is:

$$
\begin{aligned}
\operatorname{Var}(z) & =\frac{1}{n} \sum_{i=1}^{n}\left(z^{(i)}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\vec{x}^{(i)} \cdot \vec{u}\right)^{2}
\end{aligned}
$$

Goal

The variance of a data set in the direction of \vec{u} is:

$$
g(\vec{u})=\frac{1}{n} \sum_{i=1}^{n}\left(\vec{x}^{(i)} \cdot \vec{u}\right)^{2}
$$

- Our goal: Find a unit vector \vec{u} which maximizes g.

Claim

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\vec{x}^{(i)} \cdot \vec{u}\right)^{2}=\vec{u}^{T} C \vec{u}
$$

Our Goal (Again)

Find a unit vector \vec{u} which maximizes $\vec{u}^{T} C \vec{u}$.

Claim

To maximize $\vec{u}^{\top} C \vec{u}$ over unit vectors, choose \vec{u} to be the top eigenvector of C.

- Proof:

PCA (for a single new feature)

\triangleright Given: data points $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)} \in \mathbb{R}^{d}$

1. Compute the covariance matrix, C.
2. Compute the top eigenvector \vec{u}, of C.
3. For $i \in\{1, \ldots, n\}$, create new feature:

$$
z^{(i)}=\vec{u} \cdot \vec{x}^{(i)}
$$

A Parting Example

- MNIST: 60,000 images in 784 dimensions
- Principal component: $\vec{u} \in \mathbb{R}^{784}$
- We can project an image in \mathbb{R}^{784} onto \vec{u} to get a single number representing the image

Example

[^0]: ${ }^{1}$ Assuming centered data

