Machine Learning: Representations
Lecture 9 Part 1
PCA, More Formally

The Story (So Far)

- We want to create a single new feature, z.
- Our idea: $z=\vec{x} \cdot \vec{u}$; choose \vec{u} to point in the "direction of maximum variance".
- Intuition: the top eigenvector of the covariance matrix points in direction of maximum variance.

More Formally...

- We haven't actually defined "direction of maximum variance"
- Let's derive PCA more formally.

Variance in a Direction

- Let \vec{u} be a unit vector.
$\Rightarrow z^{(i)}=\vec{x}^{(i)} \cdot \vec{u}$ is the new feature for $\vec{x}^{(i)}$.
- The variance of the new features is:

$$
\begin{aligned}
\operatorname{Var}(z) & =\frac{1}{n} \sum_{i=1}^{n}\left(z^{(i)}-\mu_{z}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\vec{x}^{(i)} \cdot \vec{u}-\mu_{z}\right)^{2}
\end{aligned}
$$

Example

Note

- If the data are centered, then $\mu_{z}=0$ and the variance of the new features is:

$$
\begin{aligned}
\operatorname{Var}(z) & =\frac{1}{n} \sum_{i=1}^{n}\left(z^{(i)}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\vec{x}^{(i)} \cdot \vec{u}\right)^{2}
\end{aligned}
$$

Goal

The variance of a data set in the direction of \vec{u} is:

$$
g(\vec{u})=\frac{1}{n} \sum_{i=1}^{n}\left(\vec{x}^{(i)} \cdot \vec{u}\right)^{2}
$$

- Our goal: Find a unit vector \vec{u} which maximizes g.

Claim

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\vec{x}^{(i)} \cdot \vec{u}\right)^{2}=\vec{u}^{T} C \vec{u}
$$

Our Goal (Again)

Find a unit vector \vec{u} which maximizes $\vec{u}^{T} C \vec{u}$.

Claim

To maximize $\vec{u}^{\top} C \vec{u}$ over unit vectors, choose \vec{u} to be the top eigenvector of C.

- Proof:

PCA (for a single new feature)

\triangleright Given: data points $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)} \in \mathbb{R}^{d}$

1. Compute the covariance matrix, C.
2. Compute the top eigenvector \vec{u}, of C.
3. For $i \in\{1, \ldots, n\}$, create new feature:

$$
z^{(i)}=\vec{u} \cdot \vec{x}^{(i)}
$$

DSC
190
Machine Learning: Representations
Lecture 9 Part 2
Dimensionality Reduction with $\mathrm{d} \geq 2$

So far: PCA

- Given: data $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)} \in \mathbb{R}^{d}$

Map: each data point $\vec{x}^{(i)}$ to a single feature, z_{i}.

- Idea: maximize the variance of the new feature

PCA: Let $z_{i}=\vec{x}^{(i)} \cdot \vec{u}$, where \vec{u} is top eigenvector of covariance matrix, C.

Today: More PCA

Given: data $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)} \in \mathbb{R}^{d}$
Map: each data point $\vec{x}^{(i)}$ to k new features, $\vec{z}^{(i)}=\left(z_{1}^{(i)}, \ldots, z_{k}^{(i)}\right)$.

A Single Principal Component

- Recall: the principal component is the top eigenvector \vec{u} of the covariance matrix, C
\Rightarrow It is a unit vector in \mathbb{R}^{d}
- Make a new feature $z \in \mathbb{R}$ for point $\vec{x} \in \mathbb{R}^{d}$ by computing $z=\vec{x} \cdot \vec{u}$
\Rightarrow This is dimensionality reduction from $\mathbb{R}^{d} \rightarrow \mathbb{R}^{1}$

Example

- MNIST: 60,000 images in 784 dimensions
- Principal component: $\vec{u} \in \mathbb{R}^{784}$
- We can project an image in \mathbb{R}^{784} onto \vec{u} to get a single number representing the image

Example

Another Feature?

- Clearly, mapping from $\mathbb{R}^{784} \rightarrow \mathbb{R}^{1}$ loses a lot of information
- What about mapping from $\mathbb{R}^{784} \rightarrow \mathbb{R}^{2} ? \mathbb{R}^{k}$?

A Second Feature

- Our first feature is a mixture of features, with weights given by unit vector $\vec{u}^{(1)}=\left(u_{1}^{(1)}, u_{2}^{(1)}, \ldots, u_{d}^{(1)}\right)^{\top}$.

$$
z_{1}=\vec{u}^{(1)} \cdot \vec{x}=u_{1}^{(1)} x_{1}+\ldots+u_{d}^{(1)} x_{d}
$$

- To maximize variance, choose $\vec{u}^{(1)}$ to be top eigenvector of C.

A Second Feature

- Make same assumption for second feature:

$$
z_{2}=\vec{u}^{(2)} \cdot \vec{x}=u_{1}^{(2)} x_{1}+\ldots+u_{d}^{(2)} x_{d}
$$

- How do we choose $\vec{u}^{(2)}$?
- We should choose $\vec{u}^{(2)}$ to be orthogonal to $\vec{u}^{(1)}$.
> No "redundancy".

A Second Feature

A Second Feature

Intuition

- Claim: if \vec{u} and \vec{v} are eigenvectors of a symmetric matrix with distinct eigenvalues, they are orthogonal.
- We should choose $\vec{u}^{(2)}$ to be an eigenvector of the covariance matrix, C.
- The second eigenvector of C is called the second principal component.

A Second Principal Component

- Given a covariance matrix C.
- The principal component $\vec{u}^{(1)}$ is the top eigenvector of C.
- Points in the direction of maximum variance.
- The second principal component $\vec{u}^{(2)}$ is the second eigenvector of C.
- Out of all vectors orthogonal to the principal component, points in the direction of max variance.

PCA: Two Components

\downarrow Given data $\left\{\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}\right\} \in \mathbb{R}^{d}$.

- Compute covariance matrix C, top two eigenvectors $\vec{u}^{(1)}$ and $\vec{u}^{(2)}$.
- For any vector $\vec{x} \in \mathbb{R}$, its new representation in \mathbb{R}^{2} is $\vec{z}=\left(z_{1}, z_{2}\right)^{\top}$, where:

$$
\begin{aligned}
& z_{1}=\vec{x} \cdot \vec{u}^{(1)} \\
& z_{2}=\vec{x} \cdot \vec{u}^{(2)}
\end{aligned}
$$

Example

Example

Example

Example

Example

PCA: k Components

- Given data $\left\{\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}\right\} \in \mathbb{R}^{d}$, number of components k.
- Compute covariance matrix C, top $k \leq d$ eigenvectors $\vec{u}^{(1)}$, $\vec{u}^{(2)}, \ldots, \vec{u}^{(k)}$.
- For any vector $\vec{x} \in \mathbb{R}$, its new representation in \mathbb{R}^{k} is $\vec{z}=\left(z_{1}, z_{2}, \ldots z_{k}\right)^{\top}$, where:

$$
\begin{gathered}
z_{1}=\vec{x} \cdot \vec{u}^{(1)} \\
z_{2}=\vec{x} \cdot \vec{u}^{(2)} \\
\vdots \\
z_{k}=\vec{x} \cdot \vec{u}^{(k)}
\end{gathered}
$$

Matrix Formulation

- Let X be the data matrix (n rows, d columns)
- Let U be matrix of the k eigenvectors as columns (d rows, k columns)
- The new representation: $Z=X U$

DEC 190 Lecture 9 | Part 3

Reconstructing Points

- PCA helps us reduce dimensionality from $\mathbb{R}^{d} \rightarrow R^{k}$
- Suppose we have the "new" representation in \mathbb{R}^{k}.
- Can we "go back" to \mathbb{R}^{d} ?
- And why would we want to?

Back to \mathbb{R}^{d}

- Suppose new representation of \vec{x} is z.
$\Rightarrow z=\vec{x} \cdot \vec{u}^{(1)}$
- Idea: $\vec{x} \approx z \vec{u}^{(1)}$

Reconstructions

\triangleright Given a "new" representation of $\vec{x}, \vec{z}=\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{R}^{k}$

- And top k eigenvectors, $\vec{u}^{(1)}, \ldots, \vec{u}^{(k)}$
- The reconstruction of \vec{x} is

$$
z_{1} \vec{u}^{(1)}+z_{2} \vec{u}^{(2)}+\ldots+z_{k} \vec{u}^{(k)}=U \vec{z}
$$

Reconstruction Error

- The reconstruction approximates the original point, \vec{x}.
- The reconstruction error for a single point, \vec{x} :

$$
\|\vec{x}-U \vec{z}\|^{2}
$$

- Total reconstruction error:

$$
\sum_{i=1}^{n}\left\|\vec{X}^{(i)}-U \vec{z}^{(i)}\right\|^{2}
$$

Machine Learning: Representations
Lecture 9 Part 4
Interpreting PCA

Three Interpretations

What is PCA doing?

- Three interpretations:

1. Mazimizing variance
2. Finding the best reconstruction
3. Decorrelation

Recall: Matrix Formulation

- Given data matrix X.
- Compute new data matrix $Z=X U$.
- PCA: choose U to be matrix of eigenvectors of C.
- For now: suppose U can be anything - but columns should be orthonormal
- Orthonormal = "not redundant"

View \#1: Maximizing Variance

- This was the view we used to derive PCA
- Define the total variance to be the sum of the variances of each column of Z.
- Claim: Choosing U to be top eigenvectors of C maximizes the total variance among all choices of orthonormal U.

Main Idea

PCA maximizes the total variance of the new data. l.e., chooses the most "interesting" new features which are not redundant.

View \#2: Minimizing Reconstruction Error

- Recall: total reconstruction error

$$
\sum_{i=1}^{n}\left\|\vec{x}^{(i)}-U \vec{z}^{(i)}\right\|^{2}
$$

- Goal: minimize total reconstruction error.
- Claim: Choosing U to be top eigenvectors of C minimizes reconstruction error among all choices of orthonormal U

Main Idea

PCA minimizes the reconstruction error. It is the "best" projection of points onto a linear subspace of dimensionality k. When $k=d$, the reconstruction error is zero.

View \#3: Decorrelation

- PCA has the effect of "decorrelating" the features.

Main Idea

PCA learns a new representation by rotating the data into a basis where the features are uncorrelated (not redundant). That is: the natural basis
vectors are the principal directions (eigenvectors of the covariance matrix). PCA changes the basis to this natural basis.

DSC 190
Machine Learning: Representations
Lecture 9 Part 5
PCA in Practice

PCA in Practice

- PCA is often used in preprocessing before classifier is trained, etc.
- Must choose number of dimensions, k.
- One way: cross-validation.
- Another way: the elbow method.

Total Variance

- The total variance is the sum of the eigenvalues of the covariance matrix.
- Or, alternatively, sum of variances in each orthogonal basis direction.

Caution

- PCA's assumption: variance is interesting
- PCA is totally unsupervised
- The direction most meaningful for classification may not have large variance!

Demos

