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PCA, More Formally
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The Story (So Far)
▶ We want to create a single new feature, 𝑧.

▶ Our idea: 𝑧 = ⃗𝑥 ⋅ �⃗�; choose �⃗� to point in the
“direction of maximum variance”.

▶ Intuition: the top eigenvector of the covariance
matrix points in direction of maximum variance.
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More Formally...
▶ We haven’t actually defined “direction of
maximum variance”

▶ Let’s derive PCA more formally.
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Variance in a Direction
▶ Let �⃗� be a unit vector.

▶ 𝑧(𝑖) = ⃗𝑥(𝑖) ⋅ �⃗� is the new feature for ⃗𝑥(𝑖).

▶ The variance of the new features is:

Var(𝑧) = 1𝑛
𝑛
∑
𝑖=1
(𝑧(𝑖) − 𝜇𝑧)2

= 1𝑛
𝑛
∑
𝑖=1
( ⃗𝑥(𝑖) ⋅ �⃗� − 𝜇𝑧)

2
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Example
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Note
▶ If the data are centered, then 𝜇𝑧 = 0 and the
variance of the new features is:

Var(𝑧) = 1𝑛
𝑛
∑
𝑖=1
(𝑧(𝑖))2

= 1𝑛
𝑛
∑
𝑖=1
( ⃗𝑥(𝑖) ⋅ �⃗�)2
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Goal
▶ The variance of a data set in the direction of �⃗� is:

𝑔(�⃗�) = 1𝑛
𝑛
∑
𝑖=1
( ⃗𝑥(𝑖) ⋅ �⃗�)2

▶ Our goal: Find a unit vector �⃗� which maximizes 𝑔.
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Claim

1
𝑛

𝑛
∑
𝑖=1
( ⃗𝑥(𝑖) ⋅ �⃗�)2 = �⃗�𝑇𝐶�⃗�
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Our Goal (Again)
▶ Find a unit vector �⃗� which maximizes �⃗�𝑇𝐶�⃗�.
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Claim
▶ To maximize �⃗�𝑇𝐶�⃗� over unit vectors, choose �⃗� to
be the top eigenvector of 𝐶.

▶ Proof:
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PCA (for a single new feature)

▶ Given: data points ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑

1. Compute the covariance matrix, 𝐶.

2. Compute the top eigenvector �⃗�, of 𝐶.

3. For 𝑖 ∈ {1, … , 𝑛}, create new feature:

𝑧(𝑖) = �⃗� ⋅ ⃗𝑥(𝑖)
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Lecture 9 | Part 2

Dimensionality Reduction with d ≥ 2
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So far: PCA
▶ Given: data ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑

▶ Map: each data point ⃗𝑥(𝑖) to a single feature, 𝑧𝑖.
▶ Idea: maximize the variance of the new feature

▶ PCA: Let 𝑧𝑖 = ⃗𝑥(𝑖) ⋅ �⃗�, where �⃗� is top eigenvector of
covariance matrix, 𝐶.
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Today: More PCA

▶ Given: data ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑

▶ Map: each data point ⃗𝑥(𝑖) to 𝑘 new features,
⃗𝑧(𝑖) = (𝑧(𝑖)1 , … , 𝑧

(𝑖)
𝑘 ).
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A Single Principal Component
▶ Recall: the principal component is the top
eigenvector �⃗� of the covariance matrix, 𝐶

▶ It is a unit vector in ℝ𝑑

▶ Make a new feature 𝑧 ∈ ℝ for point ⃗𝑥 ∈ ℝ𝑑 by
computing 𝑧 = ⃗𝑥 ⋅ �⃗�

▶ This is dimensionality reduction from ℝ𝑑 → ℝ1
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Example
▶ MNIST: 60,000 images in 784 dimensions

▶ Principal component: �⃗� ∈ ℝ784

▶ We can project an image in ℝ784 onto �⃗� to get a
single number representing the image
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Example

1000 500 0 500 1000
0.05

0.00

0.05
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Another Feature?
▶ Clearly, mapping from ℝ784 → ℝ1 loses a lot of
information

▶ What about mapping from ℝ784 → ℝ2? ℝ𝑘?
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A Second Feature
▶ Our first feature is a mixture of features, with weights
given by unit vector �⃗�(1) = (𝑢(1)1 , 𝑢

(1)
2 , … , 𝑢

(1)
𝑑 )𝑇 .

𝑧1 = �⃗�(1) ⋅ ⃗𝑥 = 𝑢(1)1 𝑥1 + … + 𝑢
(1)
𝑑 𝑥𝑑

▶ To maximize variance, choose �⃗�(1) to be top
eigenvector of 𝐶.
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A Second Feature
▶ Make same assumption for second feature:

𝑧2 = �⃗�(2) ⋅ ⃗𝑥 = 𝑢(2)1 𝑥1 + … + 𝑢
(2)
𝑑 𝑥𝑑

▶ How do we choose �⃗�(2)?

▶ We should choose �⃗�(2) to be orthogonal to �⃗�(1).
▶ No “redundancy”.
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A Second Feature
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A Second Feature
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Intuition
▶ Claim: if �⃗� and ⃗𝑣 are eigenvectors of a symmetric
matrix with distinct eigenvalues, they are
orthogonal.

▶ We should choose �⃗�(2) to be an eigenvector of
the covariance matrix, 𝐶.

▶ The second eigenvector of 𝐶 is called the second
principal component.
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A Second Principal Component
▶ Given a covariance matrix 𝐶.

▶ The principal component �⃗�(1) is the top
eigenvector of 𝐶.
▶ Points in the direction of maximum variance.

▶ The second principal component �⃗�(2) is the
second eigenvector of 𝐶.
▶ Out of all vectors orthogonal to the principal
component, points in the direction of max variance.
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PCA: Two Components
▶ Given data { ⃗𝑥(1), ..., ⃗𝑥(𝑛)} ∈ ℝ𝑑 .

▶ Compute covariance matrix 𝐶, top two
eigenvectors �⃗�(1) and �⃗�(2).

▶ For any vector ⃗𝑥 ∈ ℝ, its new representation in
ℝ2 is ⃗𝑧 = (𝑧1, 𝑧2)𝑇 , where:

𝑧1 = ⃗𝑥 ⋅ �⃗�(1)
𝑧2 = ⃗𝑥 ⋅ �⃗�(2)
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Example
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Example
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Example
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Example
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Example
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PCA: 𝑘 Components
▶ Given data { ⃗𝑥(1), ..., ⃗𝑥(𝑛)} ∈ ℝ𝑑 , number of components 𝑘.

▶ Compute covariance matrix 𝐶, top 𝑘 ≤ 𝑑 eigenvectors �⃗�(1),
�⃗�(2), …, �⃗�(𝑘).

▶ For any vector ⃗𝑥 ∈ ℝ, its new representation in ℝ𝑘 is
⃗𝑧 = (𝑧1, 𝑧2, … 𝑧𝑘)𝑇 , where:

𝑧1 = ⃗𝑥 ⋅ �⃗�(1)

𝑧2 = ⃗𝑥 ⋅ �⃗�(2)
⋮

𝑧𝑘 = ⃗𝑥 ⋅ �⃗�(𝑘)
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Matrix Formulation
▶ Let 𝑋 be the data matrix (𝑛 rows, 𝑑 columns)

▶ Let 𝑈 be matrix of the 𝑘 eigenvectors as columns
(𝑑 rows, 𝑘 columns)

▶ The new representation: 𝑍 = 𝑋𝑈
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Reconstructions
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Reconstructing Points
▶ PCA helps us reduce dimensionality from
ℝ𝑑 → 𝑅𝑘

▶ Suppose we have the “new” representation in ℝ𝑘.

▶ Can we “go back” to ℝ𝑑?

▶ And why would we want to?
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Back to ℝ𝑑

▶ Suppose new
representation of ⃗𝑥 is 𝑧.

▶ 𝑧 = ⃗𝑥 ⋅ �⃗�(1)

▶ Idea: ⃗𝑥 ≈ 𝑧�⃗�(1)
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Reconstructions
▶ Given a “new” representation of ⃗𝑥, ⃗𝑧 = (𝑧1, … , 𝑧𝑘) ∈ ℝ𝑘

▶ And top 𝑘 eigenvectors, �⃗�(1), … , �⃗�(𝑘)

▶ The reconstruction of ⃗𝑥 is

𝑧1�⃗�(1) + 𝑧2�⃗�(2) + … + 𝑧𝑘�⃗�(𝑘) = 𝑈 ⃗𝑧
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Reconstruction Error
▶ The reconstruction approximates
the original point, ⃗𝑥.

▶ The reconstruction error for a
single point, ⃗𝑥:

‖ ⃗𝑥 − 𝑈 ⃗𝑧‖2

▶ Total reconstruction error:

𝑛
∑
𝑖=1
‖ ⃗𝑥(𝑖) − 𝑈 ⃗𝑧(𝑖)‖2
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Interpreting PCA
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Three Interpretations
▶ What is PCA doing?

▶ Three interpretations:
1. Mazimizing variance
2. Finding the best reconstruction
3. Decorrelation
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Recall: Matrix Formulation
▶ Given data matrix 𝑋 .

▶ Compute new data matrix 𝑍 = 𝑋𝑈.

▶ PCA: choose 𝑈 to be matrix of eigenvectors of 𝐶.

▶ For now: suppose 𝑈 can be anything – but
columns should be orthonormal
▶ Orthonormal = “not redundant”
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View #1: Maximizing Variance
▶ This was the view we used to derive PCA

▶ Define the total variance to be the sum of the
variances of each column of 𝑍.

▶ Claim: Choosing 𝑈 to be top eigenvectors of 𝐶
maximizes the total variance among all choices
of orthonormal 𝑈.
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Main Idea
PCA maximizes the total variance of the new data.
I.e., chooses the most “interesting” new features
which are not redundant.
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View #2: Minimizing Reconstruction
Error

▶ Recall: total reconstruction error

𝑛
∑
𝑖=1
‖ ⃗𝑥(𝑖) − 𝑈 ⃗𝑧(𝑖)‖2

▶ Goal: minimize total reconstruction error.

▶ Claim: Choosing 𝑈 to be top eigenvectors of 𝐶 minimizes
reconstruction error among all choices of orthonormal 𝑈
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Main Idea
PCA minimizes the reconstruction error. It is the
“best” projection of points onto a linear subspace
of dimensionality 𝑘. When 𝑘 = 𝑑, the reconstruc-
tion error is zero.
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View #3: Decorrelation
▶ PCA has the effect of “decorrelating” the features.
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Main Idea
PCA learns a new representation by rotating the
data into a basis where the features are uncorre-
lated (not redundant). That is: the natural basis

vectors are the principal directions (eigenvectors
of the covariance matrix). PCA changes the basis
to this natural basis.
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PCA in Practice
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PCA in Practice
▶ PCA is often used in preprocessing before
classifier is trained, etc.

▶ Must choose number of dimensions, 𝑘.

▶ One way: cross-validation.

▶ Another way: the elbow method.
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Total Variance
▶ The total variance is the sum of the eigenvalues
of the covariance matrix.

▶ Or, alternatively, sum of variances in each
orthogonal basis direction.

49 / 52



50 / 52



Caution
▶ PCA’s assumption: variance is interesting

▶ PCA is totally unsupervised

▶ The direction most meaningful for classification
may not have large variance!
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Demos
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