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PCA, More Formally
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The Story (So Far)

We want to create a single new feature, z.

Our idea: z = X - U; choose U to point in the
“direction of maximum variance”.

Intuition: the top eigenvector of the covariance

matrix points in direction of maximum variance.
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More Formally...

We haven't actually defined “direction of
maximum variance”

Let's derive PCA more formally.
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Variance in a Direction

Let & be a unit vector.
Z0) = X0 . i is the new feature for X\,

The variance of the new features is:

Var(z) = 13 (20—
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Note

If the data are centered, then p, = 0 and the
variance of the new features is:

Var(z) = % i(z("))2
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Goal

The variance of a data set in the direction of i is:

Our goal: Find a unit vector & which maximizes g.
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Our Goal (Again)

Find a unit vector & which maximizes i’ Ci.

9/52



Claim

To maximize U’ Cii over unit vectors, choose i to
be the top eigenvector of C.

Proof:
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PCA (for a single new feature)
Given: data points ("), ..., X(" e R4
Compute the covariance matrix, C.

Compute the top eigenvector i, of C.

For i €{1,...,n}, create new feature:

A0 = g 30

1/52



2SC /190

Nachine Zearm‘w?_ : Repreaaviterhong

Lecture 9  Part 2

Dimensionality Reduction with d > 2

12/52



So far: PCA
Given: data X", ..., (" e R4

Map: each data point X to a single feature, z,.
Idea: maximize the variance of the new feature

PCA: Let z, = X) - §j, where  is top eigenvector of
covariance matrix, C.
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Today: More PCA

Given: data X", ..., (" e R

Map: each data point X() to k new features,

2(1) (21 ALY k)
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A Single Principal Component

Recall: the principal component is the top
eigenvector U of the covariance matrix, C

It is a unit vector in RY

Make a new feature z € R for point X € R? by
computingz=X- 0

This is dimensionality reduction from R? —» R'
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Example

MNIST: 60,000 images in 784 dimensions

Principal component: i € R’8*

We can project an image in R’® onto i to get a

single number representing the image
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Another Feature?

Clearly, mapping from R’ - R loses a lot of
information

What about mapping from R78* — R2? Rk?
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A Second Feature

Our first feature is a mixture of features, with weights

given by unit vector i = (!, u$"”, ..., u")T.

_ =) .3 (1) - (M
Z,=U X=U X, +..+Ug X,

To maximize variance, choose iV to be top
eigenvector of C.
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A Second Feature

Make same assumption for second feature:

_ 223 (2) (2)
Z,=U X=Up Xy +..+Ug X,

How do we choose i??

We should choose i®® to be orthogonal to (",
No “redundancy”.
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A Second Feature




Intuition

Claim: if U and v are eigenvectors of a symmetric
matrix with distinct eigenvalues, they are
orthogonal.

We should choose ii? to be an eigenvector of
the covariance matrix, C.

The second eigenvector of C is called the second
principal component.
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A Second Principal Component
Given a covariance matrix C.

The principal component &i{") is the top
eigenvector of C.
Points in the direction of maximum variance.

The second principal component &i‘? is the
second eigenvector of C.

Out of all vectors orthogonal to the principal
component, points in the direction of max variance.
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PCA: Two Components
Given data {x("), .., XM} e RY.

Compute covariance matrix C, top two
eigenvectors ii'" and G®.

For any vector X € R, its new representation in

R?is Z = (z,,2,)", where:

I
x4

Z,

I
x4

Z,

25/52



Example
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Example
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Example
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PCA: kR Components

Given data {X",..., X} € R, number of components k.

Compute covariance matrix C, top k < d eigenvectors 4",
() i (R)
a®@, .., a®.

For any vector X € R, its new representation in R is
Z=(z,,2,,..2,)", where:
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Matrix Formulation
Let X be the data matrix (n rows, d columns)

Let U be matrix of the R eigenvectors as columns
(d rows, k columns)

The new representation: Z = XU
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Reconstructing Points

PCA helps us reduce dimensionality from
RY — RR

Suppose we have the “new” representation in R*.
Can we “go back” to R9?

And why would we want to?
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Back to R?
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Reconstructions

Given a “new” representation of X, Z = (z,, ..., z,) € Rf

And top k eigenvectors, ii"), ..., ik

The reconstruction of X is

- -

2,0V + 2,0@ + .+ 2,00 = UZ
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Reconstruction Error

The reconstruction approximates
the original point, X.
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The reconstruction error for a wif®
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Three Interpretations
What is PCA doing?

Three interpretations:
Mazimizing variance
Finding the best reconstruction
Decorrelation
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Recall: Matrix Formulation
Given data matrix X.
Compute new data matrix Z = XU.
PCA: choose U to be matrix of eigenvectors of C.

For now: suppose U can be anything - but
columns should be orthonormal
Orthonormal = “not redundant”
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View #1: Maximizing Variance
This was the view we used to derive PCA

Define the total variance to be the sum of the
variances of each column of Z.

Claim: Choosing U to be top eigenvectors of C
maximizes the total variance among all choices
of orthonormal U.
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Main Idea

PCA maximizes the total variance of the new data.
l.e., chooses the most “interesting” new features
which are not redundant.
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View #2: Minimizing Reconstruction
Error

Recall: total reconstruction error
n
> %0 - uz)?
i=1

Goal: minimize total reconstruction error.

Claim: Choosing U to be top eigenvectors of C minimizes
reconstruction error among all choices of orthonormal U
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PCA minimizes the reconstruction error. It is the
“best” projection of points onto a linear subspace
of dimensionality k. When k = d, the reconstruc-
tion error is zero.
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View #3: Decorrelation

PCA has the effect of “decorrelating” the features.
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PCA learns a new representation by rotating the
data into a basis where the features are uncorre-
lated (not redundant). That is: the natural basis

vectors are the principal directions (eigenvectors
of the covariance matrix). PCA changes the basis
to this natural basis.
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PCA in Practice

PCA is often used in preprocessing before
classifier is trained, etc.

Must choose number of dimensions, R.
One way: cross-validation.

Another way: the elbow method.
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Total Variance

The total variance is the sum of the eigenvalues
of the covariance matrix.

Or, alternatively, sum of variances in each
orthogonal basis direction.
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Caution
PCA’'s assumption: variance is interesting
PCA is totally unsupervised

The direction most meaningful for classification
may not have large variance!
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Demos
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