DSC 190 Machine Learning: Representations

Lecture 10 | Part 1

Nonlinear Dimensionality Reduction

Scenario

- You want to train a classifier on this data.
- It would be easier if we could "unroll" the spiral.
- Data seems to be one-dimensional, even though in two dimensions.
- Dimensionality reduction?

PCA?

- Does PCA work here?
- Try projecting onto one principal component.

No

PCA?

- PCA simply "rotates" the data.
- ▶ No amount of rotation will "unroll" the spiral.
- We need a fundamentally different approach that works for non-linear patterns.

Today

Non-linear dimensionality reduction via spectral embeddings.

- Each point is an (x, y) coordinate in two dimensional space
- But the structure is one-dimensional
- Could (roughly) locate point using one number: distance from end.

1

- Informally: data expressed with d dimensions, but its really confined to k-dimensional region
- This region is called a manifold
- d is the ambient dimension
- k is the intrinsic dimension

- Ambient dimension: 2
- Intrinsic dimension: 1

Ambient dimension: 3

Intrinsic dimension: 2

- Ambient dimension:
- Intrinsic dimension:

Manifold Learning

- **Given**: data in high dimensions
- **Recover**: the low-dimensional manifold

Types of Manifolds

- Manifolds can be linear
 - E.g., linear subpaces hyperplanes
 - Learned by PCA
- Can also be non-linear (locally linear)
 - Example: the spiral data
 - Learned by Laplacian eigenmaps, among others

Euclidean vs. Geodesic Distances

- **Euclidean distance**: the "straight-line" distance
- Geodesic distance: the distance along the manifold

Euclidean vs. Geodesic Distances

- **Euclidean distance**: the "straight-line" distance
- Geodesic distance: the distance along the manifold

Euclidean vs. Geodesic Distances

- ► If data is close to a linear manifold, geodesic ≈ Euclidean
- Otherwise, can be very different

Non-Linear Dimensionality Reduction

Goal: Map points in \mathbb{R}^d to \mathbb{R}^k

Such that: if x and y are close in geodesic distance in R^d, they are close in Euclidean distance in R^k

Embeddings

DSC 190 Machine Learning: Representations

Lecture 10 | Part 2

Embedding Similarities

Similar Netflix Users

Suppose you are a data scientist at Netflix

- You're given an n × n similarity matrix W of users
 entry (i, j) tells you how similar user i and user j are
 1 means "very similar", 0 means "not at all"
- Goal: visualize to find patterns

Idea

We like scatter plots. Can we make one?

Users are **not** vectors / points!

They are nodes in a similarity graph

Similarity Graphs

Similarity matrices can be thought of as weighted graphs, and vice versa.

Goal

Embed nodes of a similarity graph as points.
 Similar nodes should map to nearby points.

Today

We will design a graph embedding approach: Spectral embeddings via Laplacian eigenmaps

More Formally

- Given:
 - A similarity graph with n nodes
 - a number of dimensions, k
- Compute: an embedding of the n points into R^k so that similar objects are placed nearby

To Start

Given:

A similarity graph with *n* nodes

Compute: an embedding of the n points into R¹ so that similar objects are placed nearby

Vectors as Embeddings into \mathbb{R}^1

- Suppose we have n nodes (objects) to embed
- Assume they are numbered 1, 2, ..., n

► Let
$$f_1, f_2, ..., f_n \in \mathbb{R}$$
 be the embeddings

- We can pack them all into a vector: \vec{f} .
- Goal: find a good set of embeddings, \vec{f} .

$$\vec{f} = (1, 3, 2, -4)^T$$

An Optimization Problem

We'll turn it into an optimization problem:

- Step 1: Design a cost function quantifying how good a particular embedding \vec{f} is
- **Step 2**: Minimize the cost

Which is the best embedding?

Cost Function for Embeddings

Idea: cost is low if similar points are close

Here is one approach:

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

• where w_{ij} is the weight between *i* and *j*.

Interpreting the Cost

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

- If w_{ij} ≈ 0, that pair can be placed very far apart without increasing cost
- If w_{ij} ≈ 1, the pair should be placed close together in order to have small cost.

Exercise

Do you see a problem with the cost function?

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

Hint: what embedding \vec{f} minimizes it?

Problem

• The cost is **always** minimized by taking $\vec{f} = 0$.

This is a "trivial" solution. Not useful.

► Fix: require || f || = 1

Really, any number would work. 1 is convenient.

Exercise

Do you see **another** problem with the cost function, even if we require \vec{f} to be a unit vector?

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

Hint: what other choice of \vec{f} will **always** make this zero?

Problem

- The cost is **always** minimized by taking $\vec{f} = \frac{1}{\sqrt{n}} (1, 1, ..., 1)^T$.
- ► This is a "trivial" solution. Again, not useful.
- Fix: require \vec{f} to be orthogonal to $(1, 1, ..., 1)^T$.
 - Written: $\vec{f} \perp (1, 1, ..., 1)^T$
 - Ensures that solution is not close to trivial solution
 - Might seem strange, but it will work!

The New Optimization Problem

▶ **Given**: an *n* × *n* similarity matrix W

Compute: embedding vector \vec{f} minimizing

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

subject to
$$\|\vec{f}\| = 1$$
 and $\vec{f} \perp (1, 1, ..., 1)^T$

How?

- This looks difficult.
- Let's write it in matrix form.
- We'll see that it is actually (hopefully) familiar.

DSC 190 Machine Learning: Representations

Lecture 10 | Part 3

The Graph Laplacian

The Problem

Compute: embedding vector \vec{f} minimizing

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, ..., 1)^T$

Now: write the cost function as a matrix expression.

The Degree Matrix

- Recall: in an unweighted graph, the degree of node *i* equals number of neighbors.
- Equivalently (where A is the adjacency matrix):

degree(i) =
$$\sum_{j=1}^{n} A_{ij}$$

The Degree Matrix

In a weighted graph, define degree of node i similarly:

degree(*i*) =
$$\sum_{j=1}^{n} w_{ij}$$

That is, it is the total weight of all neighbors.

The Degree Matrix

The degree matrix D of a weighted graph is the diagonal matrix where entry (i, i) is given by:

$$d_{ii} = \text{degree}(i)$$

= $\sum_{j=1}^{n} w_{ij}$

The Graph Laplacian

▶ Define L = D - W

- D is the degree matrix
- W is the similarity matrix (weighted adjacency)
- L is called the Graph Laplacian matrix.
- It is a very useful object

Very Important Fact

Claim:

$$\text{Cost}(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2 = \frac{1}{2} \vec{f}^T L \vec{f}$$

Proof: expand both sides

Proof

DSC 190 Machine Learning: Representations

Lecture 10 | Part 4

Solving the Optimization Problem

A New Formulation

- **Given**: an *n* × *n* similarity matrix *W*
- **Compute**: embedding vector \vec{f} minimizing

$$Cost(\vec{f}) = \frac{1}{2}\vec{f}^T L\vec{f}$$

subject to
$$\|\vec{f}\| = 1$$
 and $\vec{f} \perp (1, 1, ..., 1)^T$

This might sound familiar...

Recall: PCA

- **Given**: a *d* × *d* covariance matrix *C*
- Find: vector u maximizing the variance in the direction of u:

ū⁺Cū

subject to $\|\vec{u}\| = 1$.

Solution: take \vec{u} = top eigenvector of C

A New Formulation

Forget about orthogonality constraint for now.

Compute: embedding vector \vec{f} minimizing

$$\operatorname{Cost}(\vec{f}) = \frac{1}{2}\vec{f}^{\mathsf{T}}L\vec{f}$$

subject to $\|\vec{f}\| = 1$.

Solution: the *bottom* eigenvector of *L*.
 That is, eigenvector with smallest eigenvalue.

Claim

• The bottom eigenvector is
$$\vec{f} = \frac{1}{\sqrt{n}} (1, 1, ..., 1)^T$$

It has associated eigenvalue of 0.

Finat is,
$$L\vec{f} = 0\vec{f} = \vec{0}$$

Spectral¹ Theorem

Theorem If A is a symmetric matrix, eigenvectors of A with distinct eigenvalues are orthogonal to one another.

¹"Spectral" not in the sense of specters (ghosts), but because the eigenvalues of a transformation form the "spectrum"

The Fix

Remember: we wanted \vec{f} to be orthogonal to $\frac{1}{\sqrt{n}}(1, 1, ..., 1)^T$.

▶ i.e., should be orthogonal to bottom eigenvector of *L*.

Fix: take \vec{f} to the be eigenvector of *L* with with smallest eigenvalue $\neq 0$.

• Will be
$$\perp \frac{1}{\sqrt{n}} (1, 1, ..., 1)^T$$
 by the **spectral theorem**.

Spectral Embeddings: Problem

- Given: similarity graph with n nodes
- Compute: an embedding of the n points into R¹ so that similar objects are placed nearby
- Formally: find embedding vector \vec{f} minimizing

$$\text{Cost}(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2 = \frac{1}{2} \vec{f}^T L \vec{f}$$

subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, ..., 1)^T$

Spectral Embeddings: Solution

- ► Form the **graph Laplacian** matrix, *L* = *D W*
- Choose f be an eigenvector of L with smallest eigenvalue > 0
- This is the embedding!

f = vecs[:,1]

Embedding into \mathbb{R}^k

- This embeds nodes into \mathbb{R}^1 .
- What about embedding into \mathbb{R}^k ?
- Natural extension: find bottom k eigenvectors with eigenvalues > 0

New Coordinates

- ▶ With *k* eigenvectors $\vec{f}^{(1)}$, $\vec{f}^{(2)}$, ..., $\vec{f}^{(k)}$, each node is mapped to a point in \mathbb{R}^k .
- ► Consider node *i*.

▶ :

- First new coordinate is $\vec{f}_i^{(1)}$.
- Second new coordinate is $\vec{f}_i^{(2)}$.
- Third new coordinate is $\vec{f}_i^{(3)}$.

vals, vecs = np.linalg.eigh(L)

take two eigenvectors
to map to R²
f = vecs[:,1:3]

Laplacian Eigenmaps

This approach is part of the method of "Laplacian eigenmaps"

Introduced by Mikhail Belkin² and Partha Niyogi

It is a type of spectral embedding

²Now at HDSI

A Practical Issue

The Laplacian is often normalized:

$$L_{\rm norm} = D^{-1/2} L D^{-1/2}$$

where $D^{-1/2}$ is the diagonal matrix whose *i*th diagonal entry is $1/\sqrt{d_{ii}}$.

• Proceed by finding the eigenvectors of L_{norm} .

In Summary

- We can **embed** a similarity graph's nodes into R^k using the eigenvectors of the graph Laplacian
- Yet another instance where eigenvectors are solution to optimization problem
- Next time: using this for dimensionality reduction