
Lecture 10 | Part 1

Nonlinear Dimensionality Reduction

1 / 65

Scenario
▶ You want to train a
classifier on this data.

▶ It would be easier if we
could “unroll” the spiral.

▶ Data seems to be
one-dimensional, even
though in two dimensions.

▶ Dimensionality reduction?

2 / 65

PCA?
▶ Does PCA work here?

▶ Try projecting onto one principal component.

3 / 65

No

4 / 65

PCA?
▶ PCA simply “rotates” the data.

▶ No amount of rotation will “unroll” the spiral.

▶ We need a fundamentally different approach
that works for non-linear patterns.

5 / 65

Today
▶ Non-linear dimensionality reduction via
spectral embeddings.

6 / 65

Rethinking Dimensionality

▶ Each point is an (𝑥, 𝑦)
coordinate in two
dimensional space

▶ But the structure is
one-dimensional

▶ Could (roughly) locate
point using one number:
distance from end.

7 / 65

Rethinking Dimensionality

8 / 65

Rethinking Dimensionality

9 / 65

Rethinking Dimensionality
▶ Informally: data expressed with 𝑑 dimensions,
but its really confined to 𝑘-dimensional region

▶ This region is called a manifold

▶ 𝑑 is the ambient dimension

▶ 𝑘 is the intrinsic dimension

10 / 65

Example

▶ Ambient dimension: 2

▶ Intrinsic dimension: 1

11 / 65

Example

▶ Ambient dimension: 3

▶ Intrinsic dimension: 2

12 / 65

Example

▶ Ambient dimension:

▶ Intrinsic dimension:

13 / 65

Manifold Learning
▶ Given: data in high dimensions

▶ Recover: the low-dimensional manifold

14 / 65

Types of Manifolds
▶ Manifolds can be linear

▶ E.g., linear subpaces – hyperplanes
▶ Learned by PCA

▶ Can also be non-linear (locally linear)
▶ Example: the spiral data
▶ Learned by Laplacian eigenmaps, among others

15 / 65

Euclidean vs. Geodesic Distances
▶ Euclidean distance: the “straight-line” distance
▶ Geodesic distance: the distance along the manifold

16 / 65

Euclidean vs. Geodesic Distances
▶ Euclidean distance: the “straight-line” distance
▶ Geodesic distance: the distance along the manifold

16 / 65

Euclidean vs. Geodesic Distances
▶ If data is close to a linear manifold, geodesic ≈
Euclidean

▶ Otherwise, can be very different

17 / 65

Non-Linear Dimensionality
Reduction

▶ Goal: Map points in ℝ𝑑 to ℝ𝑘

▶ Such that: if ⃗𝑥 and ⃗𝑦 are close in geodesic
distance in ℝ𝑑 , they are close in Euclidean
distance in ℝ𝑘

18 / 65

Embeddings

19 / 65

Lecture 10 | Part 2

Embedding Similarities

20 / 65

Similar Netflix Users
▶ Suppose you are a data scientist at Netflix

▶ You’re given an 𝑛 × 𝑛 similarity matrix 𝑊 of users
▶ entry (𝑖, 𝑗) tells you how similar user 𝑖 and user 𝑗 are
▶ 1 means “very similar”, 0 means “not at all”

▶ Goal: visualize to find patterns

21 / 65

Idea
▶ We like scatter plots. Can we make one?

▶ Users are not vectors / points!

▶ They are nodes in a similarity graph

22 / 65

Similarity Graphs
▶ Similarity matrices can be thought of as weighted graphs,
and vice versa.

23 / 65

Goal
▶ Embed nodes of a similarity graph as points.
▶ Similar nodes should map to nearby points.

24 / 65

Today
▶ We will design a graph embedding approach:

▶ Spectral embeddings via Laplacian eigenmaps

25 / 65

More Formally
▶ Given:

▶ A similarity graph with 𝑛 nodes
▶ a number of dimensions, 𝑘

▶ Compute: an embedding of the 𝑛 points into ℝ𝑘
so that similar objects are placed nearby

26 / 65

To Start
▶ Given:

▶ A similarity graph with 𝑛 nodes

▶ Compute: an embedding of the 𝑛 points into ℝ1
so that similar objects are placed nearby

27 / 65

Vectors as Embeddings into ℝ1

▶ Suppose we have 𝑛 nodes (objects) to embed

▶ Assume they are numbered 1, 2, ..., 𝑛

▶ Let 𝑓1, 𝑓2, … , 𝑓𝑛 ∈ ℝ be the embeddings

▶ We can pack them all into a vector: ⃗𝑓 .

▶ Goal: find a good set of embeddings, ⃗𝑓 .
28 / 65

Example
⃗𝑓 = (1, 3, 2, −4)𝑇

29 / 65

An Optimization Problem
▶ We’ll turn it into an optimization problem:

▶ Step 1: Design a cost function quantifying how
good a particular embedding ⃗𝑓 is

▶ Step 2: Minimize the cost

30 / 65

Example
▶ Which is the best embedding?

31 / 65

Cost Function for Embeddings
▶ Idea: cost is low if similar points are close

▶ Here is one approach:

Cost(⃗𝑓) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

▶ where 𝑤𝑖𝑗 is the weight between 𝑖 and 𝑗.

32 / 65

Interpreting the Cost

Cost(⃗𝑓) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

▶ If 𝑤𝑖𝑗 ≈ 0, that pair can be placed very far apart
without increasing cost

▶ If 𝑤𝑖𝑗 ≈ 1, the pair should be placed close
together in order to have small cost.

33 / 65

Exercise
Do you see a problem with the cost function?

Cost(⃗𝑓) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

Hint: what embedding ⃗𝑓 minimizes it?

34 / 65

Problem
▶ The cost is always minimized by taking ⃗𝑓 = 0.

▶ This is a “trivial” solution. Not useful.

▶ Fix: require ‖ ⃗𝑓‖ = 1
▶ Really, any number would work. 1 is convenient.

35 / 65

Exercise
Do you see another problemwith the cost function,
even if we require ⃗𝑓 to be a unit vector?

Cost(⃗𝑓) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

Hint: what other choice of ⃗𝑓 will always make this
zero?

36 / 65

Problem
▶ The cost is always minimized by taking

⃗𝑓 = 1
√𝑛 (1, 1, … , 1)

𝑇 .

▶ This is a “trivial” solution. Again, not useful.

▶ Fix: require ⃗𝑓 to be orthogonal to (1, 1, … , 1)𝑇 .
▶ Written: ⃗𝑓 ⟂ (1, 1, … , 1)𝑇
▶ Ensures that solution is not close to trivial solution
▶ Might seem strange, but it will work!

37 / 65

The New Optimization Problem
▶ Given: an 𝑛 × 𝑛 similarity matrix 𝑊

▶ Compute: embedding vector ⃗𝑓 minimizing

Cost(⃗𝑓) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇

38 / 65

How?
▶ This looks difficult.

▶ Let’s write it in matrix form.

▶ We’ll see that it is actually (hopefully) familiar.

39 / 65

Lecture 10 | Part 3

The Graph Laplacian

40 / 65

The Problem
▶ Compute: embedding vector ⃗𝑓 minimizing

Cost(⃗𝑓) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇

▶ Now: write the cost function as a matrix
expression.

41 / 65

The Degree Matrix
▶ Recall: in an unweighted graph, the degree of
node 𝑖 equals number of neighbors.

▶ Equivalently (where 𝐴 is the adjacency matrix):

degree(𝑖) =
𝑛
∑
𝑗=1
𝐴𝑖𝑗

▶ Since 𝐴𝑖𝑗 = 1 only if 𝑗 is a neighbor of 𝑖
42 / 65

The Degree Matrix
▶ In a weighted graph, define degree of node 𝑖
similarly:

degree(𝑖) =
𝑛
∑
𝑗=1
𝑤𝑖𝑗

▶ That is, it is the total weight of all neighbors.

43 / 65

The Degree Matrix
▶ The degree matrix 𝐷 of a weighted graph is the
diagonal matrix where entry (𝑖, 𝑖) is given by:

𝑑𝑖𝑖 = degree(𝑖)

=
𝑛
∑
𝑗=1
𝑤𝑖𝑗

44 / 65

The Graph Laplacian
▶ Define 𝐿 = 𝐷 − 𝑊

▶ 𝐷 is the degree matrix
▶ 𝑊 is the similarity matrix (weighted adjacency)

▶ 𝐿 is called the Graph Laplacian matrix.

▶ It is a very useful object

45 / 65

Very Important Fact
▶ Claim:

Cost(⃗𝑓) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2 =

1
2
⃗𝑓𝑇𝐿 ⃗𝑓

▶ Proof: expand both sides

46 / 65

Proof

47 / 65

Lecture 10 | Part 4

Solving the Optimization Problem

48 / 65

A New Formulation
▶ Given: an 𝑛 × 𝑛 similarity matrix 𝑊

▶ Compute: embedding vector ⃗𝑓 minimizing

Cost(⃗𝑓) = 12
⃗𝑓𝑇𝐿 ⃗𝑓

subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇

▶ This might sound familiar...
49 / 65

Recall: PCA
▶ Given: a 𝑑 × 𝑑 covariance matrix 𝐶

▶ Find: vector �⃗� maximizing the variance in the
direction of �⃗�:

�⃗�𝑇𝐶�⃗�
subject to ‖�⃗�‖ = 1.

▶ Solution: take �⃗� = top eigenvector of 𝐶

50 / 65

A New Formulation
▶ Forget about orthogonality constraint for now.

▶ Compute: embedding vector ⃗𝑓 minimizing

Cost(⃗𝑓) = 12
⃗𝑓𝑇𝐿 ⃗𝑓

subject to ‖ ⃗𝑓‖ = 1.

▶ Solution: the bottom eigenvector of 𝐿.
▶ That is, eigenvector with smallest eigenvalue.

51 / 65

Claim
▶ The bottom eigenvector is ⃗𝑓 = 1

√𝑛 (1, 1, … , 1)
𝑇

▶ It has associated eigenvalue of 0.

▶ That is, 𝐿 ⃗𝑓 = 0 ⃗𝑓 = 0⃗

52 / 65

Spectral1 Theorem

Theorem
If 𝐴 is a symmetric matrix, eigenvectors of 𝐴 with
distinct eigenvalues are orthogonal to one another.

1“Spectral” not in the sense of specters (ghosts), but because the
eigenvalues of a transformation form the “spectrum”

53 / 65

The Fix
▶ Remember: we wanted ⃗𝑓 to be orthogonal to

1
√𝑛 (1, 1, … , 1)

𝑇 .
▶ i.e., should be orthogonal to bottom eigenvector of 𝐿.

▶ Fix: take ⃗𝑓 to the be eigenvector of 𝐿 with with
smallest eigenvalue ≠ 0.

▶ Will be ⟂ 1
√𝑛 (1, 1, … , 1)

𝑇 by the spectral theorem.

54 / 65

Spectral Embeddings: Problem
▶ Given: similarity graph with 𝑛 nodes

▶ Compute: an embedding of the 𝑛 points into ℝ1
so that similar objects are placed nearby

▶ Formally: find embedding vector ⃗𝑓 minimizing

Cost(⃗𝑓) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2 =

1
2
⃗𝑓𝑇𝐿 ⃗𝑓

subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇
55 / 65

Spectral Embeddings: Solution
▶ Form the graph Laplacian matrix, 𝐿 = 𝐷 − 𝑊

▶ Choose ⃗𝑓 be an eigenvector of 𝐿 with smallest
eigenvalue > 0

▶ This is the embedding!

56 / 65

Example

W = np.array([
[1, 0.1, 0.2],
[0.1, 1, 0.7],
[0.2, 0.7, 1]

])

D = np.diag(W.sum(axis=1))
L = D - W

vals, vecs = np.linalg.eigh(L)

f = vecs[:,1]

57 / 65

Example

0.4 0.2 0.0 0.2 0.4 0.6 0.8

0.04

0.02

0.00

0.02

0.04

12 3

58 / 65

Embedding into ℝ𝑘

▶ This embeds nodes into ℝ1.

▶ What about embedding into ℝ𝑘?

▶ Natural extension: find bottom 𝑘 eigenvectors
with eigenvalues > 0

59 / 65

New Coordinates
▶ With 𝑘 eigenvectors ⃗𝑓 (1), ⃗𝑓 (2), … , ⃗𝑓 (𝑘), each node is
mapped to a point in ℝ𝑘.

▶ Consider node 𝑖.
▶ First new coordinate is ⃗𝑓 (1)𝑖 .
▶ Second new coordinate is ⃗𝑓 (2)𝑖 .
▶ Third new coordinate is ⃗𝑓 (3)𝑖 .
▶ ⋮

60 / 65

Example

W = np.array([
[1, 0.1, 0.2],
[0.1, 1, 0.7],
[0.2, 0.7, 1]

])

D = np.diag(W.sum(axis=1))
L = D - W

vals, vecs = np.linalg.eigh(L)

take two eigenvectors
to map to R^2
f = vecs[:,1:3]

61 / 65

Example

0.4 0.2 0.0 0.2 0.4 0.6 0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1

2

3

62 / 65

Laplacian Eigenmaps
▶ This approach is part of the method of
“Laplacian eigenmaps”

▶ Introduced by Mikhail Belkin2 and Partha Niyogi

▶ It is a type of spectral embedding

2Now at HDSI
63 / 65

A Practical Issue
▶ The Laplacian is often normalized:

𝐿norm = 𝐷−1/2𝐿𝐷−1/2

where 𝐷−1/2 is the diagonal matrix whose 𝑖th
diagonal entry is 1/√𝑑𝑖𝑖.

▶ Proceed by finding the eigenvectors of 𝐿norm.

64 / 65

In Summary

▶ We can embed a similarity graph’s nodes into ℝ𝑘
using the eigenvectors of the graph Laplacian

▶ Yet another instance where eigenvectors are
solution to optimization problem

▶ Next time: using this for dimensionality
reduction

65 / 65

