
Lecture 10 | Part 1

Nonlinear Dimensionality Reduction
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Scenario
▶ You want to train a
classifier on this data.

▶ It would be easier if we
could “unroll” the spiral.

▶ Data seems to be
one-dimensional, even
though in two dimensions.

▶ Dimensionality reduction?
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PCA?
▶ Does PCA work here?

▶ Try projecting onto one principal component.
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No
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PCA?
▶ PCA simply “rotates” the data.

▶ No amount of rotation will “unroll” the spiral.

▶ We need a fundamentally different approach
that works for non-linear patterns.
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Today
▶ Non-linear dimensionality reduction via
spectral embeddings.
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Rethinking Dimensionality

▶ Each point is an (𝑥, 𝑦)
coordinate in two
dimensional space

▶ But the structure is
one-dimensional

▶ Could (roughly) locate
point using one number:
distance from end.
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Rethinking Dimensionality
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Rethinking Dimensionality
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Rethinking Dimensionality
▶ Informally: data expressed with 𝑑 dimensions,
but its really confined to 𝑘-dimensional region

▶ This region is called a manifold

▶ 𝑑 is the ambient dimension

▶ 𝑘 is the intrinsic dimension
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Example

▶ Ambient dimension: 2

▶ Intrinsic dimension: 1
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Example

▶ Ambient dimension: 3

▶ Intrinsic dimension: 2
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Example

▶ Ambient dimension:

▶ Intrinsic dimension:
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Manifold Learning
▶ Given: data in high dimensions

▶ Recover: the low-dimensional manifold
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Types of Manifolds
▶ Manifolds can be linear

▶ E.g., linear subpaces – hyperplanes
▶ Learned by PCA

▶ Can also be non-linear (locally linear)
▶ Example: the spiral data
▶ Learned by Laplacian eigenmaps, among others
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Euclidean vs. Geodesic Distances
▶ Euclidean distance: the “straight-line” distance
▶ Geodesic distance: the distance along the manifold
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Euclidean vs. Geodesic Distances
▶ If data is close to a linear manifold, geodesic ≈
Euclidean

▶ Otherwise, can be very different
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Non-Linear Dimensionality
Reduction

▶ Goal: Map points in ℝ𝑑 to ℝ𝑘

▶ Such that: if ⃗𝑥 and ⃗𝑦 are close in geodesic
distance in ℝ𝑑 , they are close in Euclidean
distance in ℝ𝑘
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Embeddings
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Lecture 10 | Part 2

Embedding Similarities
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Similar Netflix Users
▶ Suppose you are a data scientist at Netflix

▶ You’re given an 𝑛 × 𝑛 similarity matrix 𝑊 of users
▶ entry (𝑖, 𝑗) tells you how similar user 𝑖 and user 𝑗 are
▶ 1 means “very similar”, 0 means “not at all”

▶ Goal: visualize to find patterns
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Idea
▶ We like scatter plots. Can we make one?

▶ Users are not vectors / points!

▶ They are nodes in a similarity graph
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Similarity Graphs
▶ Similarity matrices can be thought of as weighted graphs,
and vice versa.
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Goal
▶ Embed nodes of a similarity graph as points.
▶ Similar nodes should map to nearby points.
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Today
▶ We will design a graph embedding approach:

▶ Spectral embeddings via Laplacian eigenmaps
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More Formally
▶ Given:

▶ A similarity graph with 𝑛 nodes
▶ a number of dimensions, 𝑘

▶ Compute: an embedding of the 𝑛 points into ℝ𝑘
so that similar objects are placed nearby
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To Start
▶ Given:

▶ A similarity graph with 𝑛 nodes

▶ Compute: an embedding of the 𝑛 points into ℝ1
so that similar objects are placed nearby
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Vectors as Embeddings into ℝ1

▶ Suppose we have 𝑛 nodes (objects) to embed

▶ Assume they are numbered 1, 2, ..., 𝑛

▶ Let 𝑓1, 𝑓2, … , 𝑓𝑛 ∈ ℝ be the embeddings

▶ We can pack them all into a vector: ⃗𝑓 .

▶ Goal: find a good set of embeddings, ⃗𝑓 .
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Example
⃗𝑓 = (1, 3, 2, −4)𝑇
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An Optimization Problem
▶ We’ll turn it into an optimization problem:

▶ Step 1: Design a cost function quantifying how
good a particular embedding ⃗𝑓 is

▶ Step 2: Minimize the cost
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Example
▶ Which is the best embedding?
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Cost Function for Embeddings
▶ Idea: cost is low if similar points are close

▶ Here is one approach:

Cost( ⃗𝑓) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

▶ where 𝑤𝑖𝑗 is the weight between 𝑖 and 𝑗.
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Interpreting the Cost

Cost( ⃗𝑓) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

▶ If 𝑤𝑖𝑗 ≈ 0, that pair can be placed very far apart
without increasing cost

▶ If 𝑤𝑖𝑗 ≈ 1, the pair should be placed close
together in order to have small cost.
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Exercise
Do you see a problem with the cost function?

Cost( ⃗𝑓) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

Hint: what embedding ⃗𝑓 minimizes it?
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Problem
▶ The cost is always minimized by taking ⃗𝑓 = 0.

▶ This is a “trivial” solution. Not useful.

▶ Fix: require ‖ ⃗𝑓‖ = 1
▶ Really, any number would work. 1 is convenient.
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Exercise
Do you see another problemwith the cost function,
even if we require ⃗𝑓 to be a unit vector?

Cost( ⃗𝑓) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

Hint: what other choice of ⃗𝑓 will always make this
zero?
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Problem
▶ The cost is always minimized by taking

⃗𝑓 = 1
√𝑛 (1, 1, … , 1)

𝑇 .

▶ This is a “trivial” solution. Again, not useful.

▶ Fix: require ⃗𝑓 to be orthogonal to (1, 1, … , 1)𝑇 .
▶ Written: ⃗𝑓 ⟂ (1, 1, … , 1)𝑇
▶ Ensures that solution is not close to trivial solution
▶ Might seem strange, but it will work!
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The New Optimization Problem
▶ Given: an 𝑛 × 𝑛 similarity matrix 𝑊

▶ Compute: embedding vector ⃗𝑓 minimizing

Cost( ⃗𝑓) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇
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How?
▶ This looks difficult.

▶ Let’s write it in matrix form.

▶ We’ll see that it is actually (hopefully) familiar.
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Lecture 10 | Part 3

The Graph Laplacian
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The Problem
▶ Compute: embedding vector ⃗𝑓 minimizing

Cost( ⃗𝑓) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇

▶ Now: write the cost function as a matrix
expression.
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The Degree Matrix
▶ Recall: in an unweighted graph, the degree of
node 𝑖 equals number of neighbors.

▶ Equivalently (where 𝐴 is the adjacency matrix):

degree(𝑖) =
𝑛
∑
𝑗=1
𝐴𝑖𝑗

▶ Since 𝐴𝑖𝑗 = 1 only if 𝑗 is a neighbor of 𝑖
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The Degree Matrix
▶ In a weighted graph, define degree of node 𝑖
similarly:

degree(𝑖) =
𝑛
∑
𝑗=1
𝑤𝑖𝑗

▶ That is, it is the total weight of all neighbors.
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The Degree Matrix
▶ The degree matrix 𝐷 of a weighted graph is the
diagonal matrix where entry (𝑖, 𝑖) is given by:

𝑑𝑖𝑖 = degree(𝑖)

=
𝑛
∑
𝑗=1
𝑤𝑖𝑗
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The Graph Laplacian
▶ Define 𝐿 = 𝐷 − 𝑊

▶ 𝐷 is the degree matrix
▶ 𝑊 is the similarity matrix (weighted adjacency)

▶ 𝐿 is called the Graph Laplacian matrix.

▶ It is a very useful object
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Very Important Fact
▶ Claim:

Cost( ⃗𝑓) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2 =

1
2
⃗𝑓𝑇𝐿 ⃗𝑓

▶ Proof: expand both sides
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Proof
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Lecture 10 | Part 4

Solving the Optimization Problem
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A New Formulation
▶ Given: an 𝑛 × 𝑛 similarity matrix 𝑊

▶ Compute: embedding vector ⃗𝑓 minimizing

Cost( ⃗𝑓) = 12
⃗𝑓𝑇𝐿 ⃗𝑓

subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇

▶ This might sound familiar...
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Recall: PCA
▶ Given: a 𝑑 × 𝑑 covariance matrix 𝐶

▶ Find: vector �⃗� maximizing the variance in the
direction of �⃗�:

�⃗�𝑇𝐶�⃗�
subject to ‖�⃗�‖ = 1.

▶ Solution: take �⃗� = top eigenvector of 𝐶
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A New Formulation
▶ Forget about orthogonality constraint for now.

▶ Compute: embedding vector ⃗𝑓 minimizing

Cost( ⃗𝑓) = 12
⃗𝑓𝑇𝐿 ⃗𝑓

subject to ‖ ⃗𝑓‖ = 1.

▶ Solution: the bottom eigenvector of 𝐿.
▶ That is, eigenvector with smallest eigenvalue.
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Claim
▶ The bottom eigenvector is ⃗𝑓 = 1

√𝑛 (1, 1, … , 1)
𝑇

▶ It has associated eigenvalue of 0.

▶ That is, 𝐿 ⃗𝑓 = 0 ⃗𝑓 = 0⃗
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Spectral1 Theorem

Theorem
If 𝐴 is a symmetric matrix, eigenvectors of 𝐴 with
distinct eigenvalues are orthogonal to one another.

1“Spectral” not in the sense of specters (ghosts), but because the
eigenvalues of a transformation form the “spectrum”
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The Fix
▶ Remember: we wanted ⃗𝑓 to be orthogonal to

1
√𝑛 (1, 1, … , 1)

𝑇 .
▶ i.e., should be orthogonal to bottom eigenvector of 𝐿.

▶ Fix: take ⃗𝑓 to the be eigenvector of 𝐿 with with
smallest eigenvalue ≠ 0.

▶ Will be ⟂ 1
√𝑛 (1, 1, … , 1)

𝑇 by the spectral theorem.
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Spectral Embeddings: Problem
▶ Given: similarity graph with 𝑛 nodes

▶ Compute: an embedding of the 𝑛 points into ℝ1
so that similar objects are placed nearby

▶ Formally: find embedding vector ⃗𝑓 minimizing

Cost( ⃗𝑓) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2 =

1
2
⃗𝑓𝑇𝐿 ⃗𝑓

subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇
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Spectral Embeddings: Solution
▶ Form the graph Laplacian matrix, 𝐿 = 𝐷 − 𝑊

▶ Choose ⃗𝑓 be an eigenvector of 𝐿 with smallest
eigenvalue > 0

▶ This is the embedding!
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Example

W = np.array([
[1, 0.1, 0.2],
[0.1, 1, 0.7],
[0.2, 0.7, 1]

])

D = np.diag(W.sum(axis=1))
L = D - W

vals, vecs = np.linalg.eigh(L)

f = vecs[:,1]
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Example
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Embedding into ℝ𝑘

▶ This embeds nodes into ℝ1.

▶ What about embedding into ℝ𝑘?

▶ Natural extension: find bottom 𝑘 eigenvectors
with eigenvalues > 0
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New Coordinates
▶ With 𝑘 eigenvectors ⃗𝑓 (1), ⃗𝑓 (2), … , ⃗𝑓 (𝑘), each node is
mapped to a point in ℝ𝑘.

▶ Consider node 𝑖.
▶ First new coordinate is ⃗𝑓 (1)𝑖 .
▶ Second new coordinate is ⃗𝑓 (2)𝑖 .
▶ Third new coordinate is ⃗𝑓 (3)𝑖 .
▶ ⋮
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Example

W = np.array([
[1, 0.1, 0.2],
[0.1, 1, 0.7],
[0.2, 0.7, 1]

])

D = np.diag(W.sum(axis=1))
L = D - W

vals, vecs = np.linalg.eigh(L)

# take two eigenvectors
# to map to R^2
f = vecs[:,1:3]
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Example
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Laplacian Eigenmaps
▶ This approach is part of the method of
“Laplacian eigenmaps”

▶ Introduced by Mikhail Belkin2 and Partha Niyogi

▶ It is a type of spectral embedding

2Now at HDSI
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A Practical Issue
▶ The Laplacian is often normalized:

𝐿norm = 𝐷−1/2𝐿𝐷−1/2

where 𝐷−1/2 is the diagonal matrix whose 𝑖th
diagonal entry is 1/√𝑑𝑖𝑖.

▶ Proceed by finding the eigenvectors of 𝐿norm.
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In Summary

▶ We can embed a similarity graph’s nodes into ℝ𝑘
using the eigenvectors of the graph Laplacian

▶ Yet another instance where eigenvectors are
solution to optimization problem

▶ Next time: using this for dimensionality
reduction
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