
Lecture 12 | Part 1

Neural Networks

Recall: Linear Predictor

▶ Input: features ⃗𝑥 = (𝑥1, … , 𝑥𝑑)𝑇▶ Parameters:�⃗� = (𝑤0, 𝑤1, … , 𝑤𝑑)𝑇▶ Output: 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑
𝑥1
𝑥2
⋮𝑥𝑑

∑
1𝑤1𝑤2𝑤𝑑
𝑤0

Linear Predictors▶ Pro: simple, usually easy to optimize �⃗�▶ With square loss, solution given by normal equations▶ Con: Decision boundary is linear

Example

Recall: Basis Functions▶ Input: features ⃗𝑥, basis
functions 𝜑1,… ,𝜑𝑑 ∶ ℝ𝑑 → ℝ▶ Parameters:�⃗� = (𝑤0, 𝑤1, … , 𝑤𝑑)𝑇▶ Output:𝑤0 + 𝑤1𝜑1(⃗𝑥) + … + 𝑤𝑑𝜑𝑑(⃗𝑥)

𝑥1
𝑥2
⋮𝑥𝑑

𝜑1
𝜑2
⋮𝜑𝑑′

∑
1𝑤1𝑤2𝑤𝑑′
𝑤0"I

Basis Functions▶ Note: the basis functions and the weights �⃗� are
not chosen at the same time▶ Two step process▶ First, basis functions are chosen and fixed▶ By hand, by 𝑘-means clustering, etc.▶ Then the weights �⃗� are learned

Exercise
Why do this in two steps as opposed to one?

Answer▶ By fixing basis functions then finding best �⃗�,
optimization is easy again▶ Using square loss, normal equations still work

Idea▶ Try to learn basis functions at same time as
weights, �⃗�▶ Attempt #1: linear basis functions?𝜑𝑖(⃗𝑥) = 𝑊1𝑖𝑥1 + … + 𝑊𝑑𝑖𝑥𝑑

÷÷÷÷÷

The Model

𝑥1
𝑥2
⋮𝑥𝑑

𝜑1
𝜑2
⋮𝜑𝑑′

𝑊11𝑊12𝑊1𝑑𝑊21𝑊22𝑊2𝑑
𝑊𝑑1𝑊𝑑2𝑊𝑑𝑑

∑
1

𝑤1
𝑤2
𝑤𝑑′

𝑤0
𝑊01𝑊02𝑊03

𝜑𝑖(⃗𝑥) = 𝑊1𝑖𝑥1 + … + 𝑊𝑑𝑖𝑥𝑑

Neural Network▶ Input: features ⃗𝑥,▶ Parameters:�⃗� = (𝑤0, 𝑤1, … , 𝑤𝑑)𝑇 ,(𝑑 + 1) × 𝑑′ matrix 𝑊▶ Output:𝑤0 + 𝑤1𝜑1(⃗𝑥) + … + 𝑤𝑑𝜑𝑑(⃗𝑥)▶ This is a neural network

𝑥1
𝑥2
⋮𝑥𝑑

𝜑1
𝜑2
⋮𝜑𝑑′

𝑊11𝑊12𝑊1𝑑𝑊21𝑊22𝑊2𝑑
𝑊𝑑1𝑊𝑑2𝑊𝑑𝑑

∑
1

𝑤1
𝑤2
𝑤𝑑′

𝑤0
𝑊01𝑊02𝑊03

Problem

▶ If 𝜑𝑖 is linear, so is the
decision boundary!

f
g

h -_ flgtxs)

Activation Function▶ To make 𝜑𝑖 nonlinear, we
often apply a activation
function.▶ Very commonly: rectified
linear unit (ReLU)𝑔(𝑧) = max{0, 𝑧}𝜑𝑖(⃗𝑥) = 𝑔(𝑊0𝑖 + 𝑊1𝑖𝑥1 + 𝑊2𝑖𝑥2 + … + 𝑊𝑑𝑖𝑥𝑑𝐴)= max{0,𝑊0𝑖 + 𝑊1𝑖𝑥1 + 𝑊2𝑖𝑥2 + … + 𝑊𝑑𝑖𝑥𝑑𝐴}k

Neural Networks as Functions▶ A neural network is simply a special kind of
function.▶ 𝑓(⃗𝑥; �⃗�, 𝑊)

ffx) = ✗3-3×2

Example

𝑊 = (2 −13 −2−2 1) �⃗� = (402) ⃗𝑥 = (11)
What is ft)

? 4,1×7=2×11-47×2
= 0

✗ , ✗2
Is

Ur
92

Cly

2 0,0

☐ too

30

The Xor Problem

Ew

A Solution

𝑊 = (0 −11 11 1) �⃗� = (01−2)

Prediction Surface

Learning with NNs▶ We can learn weights by gathering data, picking
a loss function and minimizing loss.▶ The square loss works:𝑅(�⃗�,𝑊) = 1𝑛 𝑛∑𝑖=1 (𝑓(⃗𝑥(𝑖); �⃗�, 𝑊) − 𝑦𝑖)2

Problem▶ Now that the basis function weights are
learnable, too, there is no simple solution for the
best weights.▶ We must instead use gradient descent.

Lecture 12 | Part 2

Gradient Descent

Gradient Descent▶ We have a function 𝑓 ∶ ℝ → ℝ▶ We can’t solve for the 𝑥 that minimizes (or maximizes) 𝑓(𝑥)▶ Instead, we use the derivative to “walk” towards the optimizer

f- (x) = ✗
% 3×2+5

Meaning of the Derivative▶ We have the derivative; can we use it?▶ 𝑑𝑓𝑑𝑥 (𝑥) is a function; it gives the slope at 𝑥.

w

Key Idea Behind Gradient Descent▶ If the slope of 𝑓 at 𝑥 is positive then moving to the left
decreases the value of 𝑓 .▶ i.e., we should decrease 𝑥

¥

Key Idea Behind Gradient Descent▶ If the slope of 𝑓 at 𝑥 is negative then moving to the right
decreases the value of 𝑓 .▶ i.e., we should increase 𝑥

Key Idea Behind Gradient Descent▶ Pick a starting place, 𝑥0. Where do we go next?▶ Slope at 𝑥0 negative? Then increase 𝑥0.▶ Slope at 𝑥0 positive? Then decrease 𝑥0.▶ This will work: 𝑥1 = 𝑥0 − 𝑑𝑓𝑑𝑥 (𝑥0)

Gradient Descent▶ Pick 𝛼 to be a positive number. It is the learning rate.▶ Pick a starting prediction, 𝑥0.▶ On step 𝑖, perform update 𝑥𝑖 = 𝑥𝑖−1 − 𝛼 ⋅ 𝑑𝑓𝑑𝑥 (𝑥𝑖−1)▶ Repeat until convergence (when 𝑥 doesn’t change much).
- -

- - -
-⇒

← - - -
- - - - .

I 1 I 1

✗0×2 ✗3×1

def gradient_descent(derivative, x, alpha, tol=1e-12):
”””Minimize using gradient descent.”””
while True:

x_next = x - alpha * derivative(x)
if abs(x_next - x) < tol:

break
x = x_next

return h

Example: Minimizing Mean Squared Error▶ Recall the mean squared error and its derivative:𝑅sq(𝑥) = 1𝑛 𝑛∑𝑖=1 (𝑥 − 𝑦𝑖)2 𝑑𝑅sq𝑑𝑥 (𝑥) = 2𝑛 𝑛∑𝑖=1 (𝑥 − 𝑦𝑖)
Exercise

Let 𝑦1 = −4, 𝑦2 = −2, 𝑦3 = 2, 𝑦4 = 4.
Pick 𝑥0 = 4 and 𝛼 = 1/4. What is 𝑥1?
a) -1
b) 0
c) 1
d) 2

%-(a) = :-&:(4-y;)
E-I

-

-2-44-+4]+4

[41-2]t

[4-2] +

[4-4]
)

× , :X.
- ✗ ᵈRq(✗o) (81-6+2)

= 4-41-8
=

{ 16
= 4-2--2 = 8

Example

Gradient Descent in > 1 dimensions▶ The derivative of 𝑓 becomes the gradient:𝑑𝑓𝑑𝑥 → ∇𝑓(⃗𝑥)▶ Meaning of differentiable: locally, 𝑓 looks linear.▶ Key: ∇𝑓(�⃗�) is a function; it returns a vector pointing in direction
of steepest ascent.

Gradient Descent in > 1 dimensions▶ Pick 𝛼 to be a positive number.▶ It is the learning rate.▶ Pick a starting guess, �⃗�(0).▶ On step 𝑖, update �⃗�(𝑖) = �⃗�(𝑖−1) − 𝛼 ⋅ ∇𝑓(�⃗�(𝑖−1))▶ Repeat until convergence▶ when �⃗� doesn’t change much▶ equivalently, when ‖∇𝑓(�⃗�(𝑖))‖ is small

def gradient_descent(gradient, w, alpha, tol=1e-12):
”””Minimize using gradient descent.”””
while True:

w_next = w - alpha * gradient(x)
if np.linalg.norm(w_next - w) < tol:

break
w = w_next

return w

Lecture 12 | Part 3

Convexity in 1-d

Question
When is gradient descent guaranteed to work?

Not here...

Convex Functions

Convex Non-convex

Convexity: Definition▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
does not go below the plot of 𝑓 .

Convexity: Definition▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
does not go below the plot of 𝑓 .

Convexity: Definition▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
does not go below the plot of 𝑓 .

Convexity: Definition▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
does not go below the plot of 𝑓 .

Other Terms▶ If a function is not convex, it is non-convex.▶ Strictly convex: the line lies strictly above curve.▶ Concave: the line lines on or below curve.

Convexity: Formal Definition▶ A function 𝑓 ∶ ℝ → ℝ is convex if for every choice
of 𝑎, 𝑏 ∈ ℝ and 𝑡 ∈ [0, 1]:(1 − 𝑡)𝑓(𝑎) + 𝑡𝑓(𝑏) ≥ 𝑓((1 − 𝑡)𝑎 + 𝑡𝑏).

Example
Is 𝑓(𝑥) = |𝑥| convex?

Another View: Second Derivatives▶ If 𝑑2𝑓𝑑𝑥2 (𝑥) ≥ 0 for all 𝑥, then 𝑓 is convex.▶ Example: 𝑓(𝑥) = 𝑥4 is convex.▶ Warning! Only works if 𝑓 is twice differentiable!

Another View: Second Derivatives▶ “Best” straight line at 𝑥0:▶ ℎ1(𝑧) = 𝑓′(𝑥0) ⋅ 𝑧 + 𝑏▶ “Best” parabola at 𝑥0:▶ At 𝑥0, 𝑓 looks likes ℎ2(𝑧) = 12𝑓″(𝑥0) ⋅ 𝑧2 + 𝑓′(𝑥0)𝑧 + 𝑐▶ Possibilities: upward-facing, downward-facing.

Convexity and Parabolas▶ Convex if for every 𝑥0, parabola is upward-facing.▶ That is, 𝑓″(𝑥0) ≥ 0.

Convexity and Gradient Descent▶ Convex functions are (relatively) easy to optimize.▶ Theorem: if 𝑅(𝑥) is convex and differentiable12
then gradient descent converges to a global
optimum of 𝑅 provided that the step size is small
enough3.

1and its derivative is not too wild
2actually, a modified GD works on non-differentiable functions
3step size related to steepness.

Nonconvexity and Gradient Descent▶ Nonconvex functions are (relatively) hard to
optimize.▶ Gradient descent can still be useful.▶ But not guaranteed to converge to a global
minimum.

Lecture 12 | Part 4

Convexity in Many Dimensions

Convexity: Definition▶ 𝑓(⃗𝑥) is convex if for every �⃗�, �⃗� the line segment
between (�⃗�, 𝑓(�⃗�)) and (�⃗�, 𝑓(�⃗�))
does not go below the plot of 𝑓 .

Convexity: Formal Definition▶ A function 𝑓 ∶ ℝ𝑑 → ℝ is convex if for every choice
of �⃗�, �⃗� ∈ ℝ𝑑 and 𝑡 ∈ [0, 1]:(1 − 𝑡)𝑓(�⃗�) + 𝑡𝑓(�⃗�) ≥ 𝑓((1 − 𝑡)�⃗� + 𝑡�⃗�).

The Second Derivative Test▶ For 1-d functions, convex if second derivative ≥ 0.▶ For 2-d functions, convex if ???

The Hessian Matrix▶ Create the Hessian matrix of second derivatives:

𝐻(⃗𝑥) = (𝜕𝑓2𝜕𝑥21 (⃗𝑥) 𝜕𝑓2𝜕𝑥1𝑥2 (⃗𝑥)𝜕𝑓2𝜕𝑥2𝑥1 (⃗𝑥) 𝜕𝑓2𝜕𝑥22 (⃗𝑥))

In General▶ If 𝑓 ∶ ℝ𝑑 → ℝ, the Hessian at ⃗𝑥 is:
𝐻(⃗𝑥) = ⎛⎜⎜⎝

𝜕𝑓2𝜕𝑥21 (⃗𝑥) 𝜕𝑓2𝜕𝑥1𝑥2 (⃗𝑥) ⋯ 𝜕𝑓2𝜕𝑥1𝑥𝑑 (⃗𝑥)𝜕𝑓2𝜕𝑥2𝑥1 (⃗𝑥) 𝜕𝑓2𝜕𝑥22 (⃗𝑥) ⋯ 𝜕𝑓2𝜕𝑥2𝑥𝑑 (⃗𝑥)⋯ ⋯ ⋯ ⋯𝜕𝑓2𝜕𝑥𝑑𝑥1 (⃗𝑥) 𝜕𝑓2𝜕𝑥2𝑑 (⃗𝑥) ⋯ 𝜕𝑓2𝜕𝑥2𝑑 (⃗𝑥)
⎞⎟⎟⎠

The Second Derivative Test▶ A function 𝑓 ∶ ℝ𝑑 → ℝ is convex if for any ⃗𝑥 ∈ ℝ𝑑 ,
the Hessian matrix 𝐻(⃗𝑥) is positive semi-definite.▶ That is, all eigenvalues are ≥ 0

Next Time▶ Backpropagation and gradient descent for training
neural networks.

