Machine Learning: Representations
Lecture 12 Part 1
Neural Networks

Recall: Linear Predictor

- Input: features $\vec{x}=\left(x_{1}, \ldots, x_{d}\right)^{\top}$
- Parameters:
$\vec{w}=\left(w_{0}, w_{1}, \ldots, w_{d}\right)^{T}$
- Output: $w_{0}+w_{1} x_{1}+\ldots+w_{d} x_{d}$

Linear Predictors

- Pro: simple, usually easy to optimize \vec{w}
- With square loss, solution given by normal equations

Con: Decision boundary is linear

Example

$$
\begin{aligned}
& \cdots 0_{0}^{0} \\
& 080
\end{aligned}
$$

Recall: Basis Functions

- Input: features \vec{x}, basis functions $\varphi_{1}, \ldots, \varphi_{d}: \mathbb{R}^{d} \rightarrow \mathbb{R}$

Parameters:

$$
\overrightarrow{\vec{w}}=\left(w_{0}, w_{1}, \ldots, w_{d}\right)^{T}
$$

- Output:

$$
w_{0}+w_{1} \varphi_{1}(\vec{x})+\ldots+w_{d} \varphi_{d}(\vec{x})
$$

Basis Functions

- Note: the basis functions and the weights \vec{w} are not chosen at the same time
- Two step process
- First, basis functions are chosen and fixed
- By hand, by k-means clustering, etc.
- Then the weights \vec{w} are learned

Exercise

Why do this in two steps as opposed to one?

Answer

- By fixing basis functions then finding best \vec{w}, optimization is easy again
- Using square loss, normal equations still work

Idea

- Try to learn basis functions at same time as weights, \vec{w}
- Attempt \#1: linear basis functions?

$$
\varphi_{i}(\vec{x})=W_{1 i} x_{1}+\ldots+W_{d i} x_{d}
$$

The Model

$$
\varphi_{i}(\vec{x})=W_{1 i} x_{1}+\ldots+W_{d i} x_{d}
$$

Neural Network

- Input: features \vec{x},
- Parameters:
$\vec{w}=\left(w_{0}, w_{1}, \ldots, w_{d}\right)^{\top}$,
$(d+1) \times d^{\prime}$ matrix W
- Output:

$$
w_{0}+w_{1} \varphi_{1}(\vec{x})+\ldots+w_{d} \varphi_{d}(\vec{x})
$$

- This is a neural network

f
 $$
h=f(g(x))
$$
 Problem

- If φ_{i} is linear, so is the decision boundary!

Activation Function

- To make φ_{i} nonlinear, we often apply a activation function.
- Very commonly: rectified linear unit (ReLU)

$$
\begin{aligned}
g(z) & =\max \{0, z\} \\
\varphi_{i}(\vec{x}) & =g\left(W_{0 i}+W_{1 i} x_{1}+W_{2 i} x_{2}+\ldots+W_{d i} x_{d}\right) \\
& =\max \left\{0, W_{0 i}+W_{1 i} x_{1}+W_{2 i} x_{2}+\ldots+W_{d i} x_{d}\right\}
\end{aligned}
$$

$$
f(x)=x^{3}-3 x^{2}
$$

Neural Networks as Functions

- A neural network is simply a special kind of function.
- $f(\vec{x} ; \vec{w}, W)$

What is $f(\bar{x})$? Example $\varphi_{1}(\vec{x})=2 \times 1+(-1) \times 2$

$$
\left.\begin{array}{rrr}
x_{1} & x_{2} \\
w & 2 & -1 \\
w & \theta_{1} & -2 \\
u_{1} & -2 & -2
\end{array}\right) \quad \vec{w}=\left(\begin{array}{l}
4 \\
0 \\
2
\end{array}\right) \quad \vec{x}=\binom{1}{2}
$$

The Xor Problem

A Solution

$$
W=\left(\begin{array}{cc}
0 & -1 \\
1 & 1 \\
1 & 1
\end{array}\right) \quad \vec{w}=\left(\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right)
$$

Prediction Surface

Learning with NNs

- We can learn weights by gathering data, picking a loss function and minimizing loss.
- The square loss works:

$$
R(\vec{w}, w)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\vec{x}^{(i)} ; \vec{w}, w\right)-y_{i}\right)^{2}
$$

Problem

- Now that the basis function weights are learnable, too, there is no simple solution for the best weights.
- We must instead use gradient descent.

$$
\text { DSC } 190
$$

$$
f(x)=x^{23} \cdot 3 x^{2}+5
$$

Gradient Descent

- We have a function $f: \mathbb{R} \rightarrow \mathbb{R}$
- We can't solve for the x that minimizes (or maximizes) $f(x)$
- Instead, we use the derivative to "walk" towards the optimizer

Meaning of the Derivative

- We have the derivative; can we use it?
$\frac{d f}{d x}(x)$ is a function; it gives the slope at x.

Key Idea Behind Gradient Descent

- If the slope of f at x is positive then moving to the left decreases the value of f.
- i.e., we should decrease x

Key Idea Behind Gradient Descent

\Rightarrow If the slope of f at x is negative then moving to the right decreases the value of f.

- i.e., we should increase x

Key Idea Behind Gradient Descent

- Pick a starting place, x_{0}. Where do we go next?
\Rightarrow Slope at x_{0} negative? Then increase x_{0}.
\Rightarrow Slope at x_{0} positive? Then decrease x_{0}.
- This will work:

$$
x_{1}=x_{0}-\frac{d f}{d x}\left(x_{0}\right)
$$

Gradient Descent

\Rightarrow Pick α to be a positive number. It is the learning rate.
\Rightarrow Pick a starting prediction, x_{0}.
On step i, perform update $x_{i}=x_{i-1}-\alpha \cdot \frac{d f}{d x}\left(x_{i-1}\right)$

- Repeat until convergence (when x doesn't change much).

def gradient_descent(derivative, x, alpha, tol=1e-12):
"""Minimize using gradient descent."""
while True:
x_next = x - alpha * derivative(x)
if abs(x_next - x) < tol:
break
x = x_next
return h

Example: Minimizing Mean Squared Error
Recall the mean squared error and its derivative:

$$
\frac{d R}{d x}(4)=\frac{2}{n} \sum_{i=1}^{n}\left(4-y_{i}\right)
$$

$$
R_{\text {sq }}(x)=\frac{1}{n} \sum_{i=1}^{n}\left(x-y_{i}\right)^{2} \quad \frac{d R_{\text {sq }}}{d x}(x)=\frac{2}{n} \sum_{i=1}^{n}\left(x-y_{i}\right) \quad=\frac{2}{4}\left(\begin{array}{c}
{[4+4]+} \\
{[4+2]+}
\end{array}\right.
$$

Exercise
Let $\quad y_{1}=-4, \quad y_{2}=-2, \quad y_{3}=2, \quad y_{4}=4$.
Pick $x_{0}=4$ and $\alpha=1 / 4$. What is x_{y} ?
a) -1

$$
\begin{aligned}
& \alpha=1 / 4 \text {. What is } x_{1}{ }^{2} R \\
& x_{1}=x_{0}-\alpha \frac{d R}{d x}\left(x_{0}\right)
\end{aligned}
$$

b) 0
c) 1
$=4-\frac{1}{4} 8$

$$
\begin{aligned}
& \int^{[4-4]} \\
= & \frac{1}{2}(8+6+2) \\
= & \frac{1}{2} 16 \\
= & 8
\end{aligned}
$$

(d) 2

$$
=4-2=2
$$

Example

Gradient Descent in > 1 dimensions

- The derivative of f becomes the gradient:

$$
\frac{d f}{d x} \rightarrow \nabla f(\vec{x})
$$

- Meaning of differentiable: locally, f looks linear.
- Key: $\nabla f(\vec{w})$ is a function; it returns a vector pointing in direction of steepest ascent.

Gradient Descent in > 1 dimensions

\Rightarrow Pick α to be a positive number. $>$ It is the learning rate.

- Pick a starting guess, $\vec{w}^{(0)}$.
\Rightarrow On step i, update $\vec{w}^{(i)}=\vec{w}^{(i-1)}-\alpha \cdot \nabla f\left(\vec{w}^{(i-1)}\right)$
- Repeat until convergence
\checkmark when \vec{w} doesn't change much
> equivalently, when $\left\|\nabla f\left(\vec{w}^{(i)}\right)\right\|$ is small

```
def gradient_descent(gradient, w, alpha, tol=1e-12):
    """Minimize using gradient descent."""
while True:
    w_next = w - alpha * gradient(x)
    if np.linalg.norm(w_next - w) < tol:
            break
    w = w_next
return w
```

$$
\text { DST } 190
$$

$$
\text { Lecture } 12 \text { | Part } 3
$$

Question

When is gradient descent guaranteed to work?

Not here...

Convex Functions

Convex

Non-convex

Convexity: Definition

$\Rightarrow f$ is convex if for every a, b the line segment between

$$
(a, f(a)) \quad \text { and } \quad(b, f(b))
$$

does not go below the plot of f.

Convexity: Definition

$\Rightarrow f$ is convex if for every a, b the line segment between

$$
(a, f(a)) \quad \text { and } \quad(b, f(b))
$$

does not go below the plot of f.

Convexity: Definition

- f is convex if for every a, b the line segment between

$$
(a, f(a)) \quad \text { and } \quad(b, f(b))
$$

does not go below the plot of f.

Convexity: Definition

- f is convex if for every a, b the line segment between

$$
(a, f(a)) \quad \text { and } \quad(b, f(b))
$$

does not go below the plot of f.

Other Terms

- If a function is not convex, it is non-convex.
- Strictly convex: the line lies strictly above curve.
- Concave: the line lines on or below curve.

Convexity: Formal Definition

- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if for every choice of $a, b \in \mathbb{R}$ and $t \in[0,1]$:

$$
(1-t) f(a)+t f(b) \geq f((1-t) a+t b) .
$$

Example

Is $f(x)=|x|$ convex?

Another View: Second Derivatives

- If $\frac{d^{2} f}{d x^{2}}(x) \geq 0$ for all x, then f is convex.
- Example: $f(x)=x^{4}$ is convex.
- Warning! Only works if f is twice differentiable!

Another View: Second Derivatives

"Best" straight line at x_{0} :

- $h_{1}(z)=f^{\prime}\left(x_{0}\right) \cdot z+b$
- "Best" parabola at x_{0} :
- At x_{0}, f looks likes $h_{2}(z)=\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) \cdot z^{2}+f^{\prime}\left(x_{0}\right) z+c$
- Possibilities: upward-facing, downward-facing.

Convexity and Parabolas

\Rightarrow Convex if for every x_{0}, parabola is upward-facing.

- That is, $f^{\prime \prime}\left(x_{0}\right) \geq 0$.

Convexity and Gradient Descent

- Convex functions are (relatively) easy to optimize.
\downarrow Theorem: if $R(x)$ is convex and differentiable ${ }^{12}$ then gradient descent converges to a global optimum of R provided that the step size is small enough ${ }^{3}$.

[^0]
Nonconvexity and Gradient Descent

- Nonconvex functions are (relatively) hard to optimize.
- Gradient descent can still be useful.
- But not guaranteed to converge to a global minimum.

DSC 190
\qquad Convexity in Many Dimension

Convexity: Definition

- $f(\vec{x})$ is convex if for every \vec{a}, \vec{b} the line segment between

$$
(\vec{a}, f(\vec{a})) \quad \text { and } \quad(\vec{b}, f(\vec{b}))
$$

does not go below the plot of f.

Convexity: Formal Definition

\Rightarrow A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if for every choice of $\vec{a}, \vec{b} \in \mathbb{R}^{d}$ and $t \in[0,1]$:

$$
(1-t) f(\vec{a})+t f(\vec{b}) \geq f((1-t) \vec{a}+t \vec{b})
$$

The Second Derivative Test

- For 1-d functions, convex if second derivative ≥ 0.
- For 2-d functions, convex if ???

The Hessian Matrix

- Create the Hessian matrix of second derivatives:

$$
H(\vec{x})=\left(\begin{array}{ll}
\frac{\partial f^{2}}{\partial x_{1}^{2}}(\vec{x}) & \frac{\partial f^{2}}{\partial x_{1} x_{2}}(\vec{x}) \\
\frac{\partial f^{2}}{\partial x_{2} x_{1}}(\vec{x}) & \frac{\partial f^{2}}{\partial x_{2}^{2}}(\vec{x})
\end{array}\right)
$$

In General

- If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, the Hessian at \vec{x} is:

$$
H(\vec{x})=\left(\begin{array}{llll}
\frac{\partial f^{2}}{\partial x_{1}^{2}}(\vec{x}) & \frac{\partial f^{2}}{\partial x_{1} x_{2}}(\vec{x}) & \cdots & \frac{\partial f^{2}}{\partial x_{1} x_{d}}(\vec{x}) \\
\frac{\partial f^{2}}{\partial x_{2} x_{1}}(\vec{x}) & \frac{\partial f^{2}}{\partial x_{2}^{2}}(\vec{x}) & \cdots & \frac{\partial f^{2}}{\partial x_{2} x_{2}}(\vec{x}) \\
\frac{\partial f^{2}}{\partial x_{d} x_{1}}(\vec{x}) & \frac{\partial f^{2}}{\partial x_{d}^{2}}(\vec{x}) & \cdots & \frac{\partial f^{2}}{\partial x_{d}^{2}}(\vec{x})
\end{array}\right)
$$

The Second Derivative Test

\downarrow A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if for any $\vec{x} \in \mathbb{R}^{d}$, the Hessian matrix $H(\vec{x})$ is positive semi-definite.

- That is, all eigenvalues are ≥ 0

Next Time

Backpropagation and gradient descent for training neural networks.

[^0]: ${ }^{1}$ and its derivative is not too wild
 ${ }^{2}$ actually, a modified GD works on non-differentiable functions
 ${ }^{3}$ step size related to steepness.

