DSC 190 Machine Learning: Representations

Lecture 12 | Part 1

Neural Networks

Recall: Linear Predictor

• Input: features
$$\vec{x} = (x_1, \dots, x_d)^T$$

Parameters: $\vec{w} = (w_0, w_1, \dots, w_d)^T$

• **Output**:
$$w_0 + w_1 x_1 + ... + w_d x_d$$

Linear Predictors

Pro: simple, usually easy to optimize w
 With square loss, solution given by normal equations

Con: Decision boundary is linear

Example

Recall: Basis Functions

- ▶ **Input**: features \vec{x} , basis functions $\varphi_1, ..., \varphi_d : \mathbb{R}^d \to \mathbb{R}$
- Parameters: $\vec{w} = (w_0, w_1, \dots, w_d)^T$
- **Output**: $W_0 + W_1 \varphi_1(\vec{x}) + \dots + W_d \varphi_d(\vec{x})$

Basis Functions

Note: the basis functions and the weights w are not chosen at the same time

Two step process

- First, basis functions are chosen and fixed
 By hand, by k-means clustering, etc.
- Then the weights \vec{w} are learned

Exercise

Why do this in two steps as opposed to one?

Answer

- By fixing basis functions then finding best w, optimization is easy again
- Using square loss, normal equations still work

- Try to learn basis functions at same time as weights, w
- Attempt #1: linear basis functions?

$$\varphi_i(\vec{x}) = W_{1i}x_1 + \dots + W_{di}x_d$$

The Model

$$\varphi_i(\vec{x}) = W_{1i}x_1 + \dots + W_{di}x_d$$

Neural Network

- Input: features x,
- Parameters: $\vec{w} = (w_0, w_1, \dots, w_d)^T,$ $(d + 1) \times d' \text{ matrix } W$
- **Output**: $w_0 + w_1 \varphi_1(\vec{x}) + \dots + w_d \varphi_d(\vec{x})$
- This is a neural network

If φ_i is linear, so is the decision boundary!

Activation Function

 $f(x) = \chi^3 \cdot 3\chi^2$

Neural Networks as Functions

A neural network is simply a special kind of function.

► $f(\vec{x}; \vec{w}, W)$

What is
$$f(\bar{x})^{?}$$
 Example $(f(\bar{x}) = 2 \times 1 + (-1) \times 2$
 $= 0$
 $\chi_{1} \quad \chi_{2}$
 $\psi_{1} \begin{pmatrix} 2 & -1 \\ 3 & -2 \\ \psi_{2} \end{pmatrix} \quad \vec{w} = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix} \quad \vec{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$
 $\chi_{2} \quad (1)$

The Xor Problem

A Solution

$$W = \begin{pmatrix} 0 & -1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \qquad \vec{W} = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$$

Prediction Surface

Learning with NNs

We can learn weights by gathering data, picking a loss function and minimizing loss.

The square loss works:

$$R(\vec{w}, W) = \frac{1}{n} \sum_{i=1}^{n} (f(\vec{x}^{(i)}; \vec{w}, W) - y_i)^2$$

Problem

- Now that the basis function weights are learnable, too, there is no simple solution for the best weights.
- We must instead use gradient descent.

DSC 190 Machine Learning: Representations

Lecture 12 | Part 2

Gradient Descent

 $f(x) = \chi^{23} \cdot 3x^2 + 5$

Gradient Descent

- ▶ We have a function $f : \mathbb{R} \to \mathbb{R}$
- We can't solve for the x that minimizes (or maximizes) f(x)
- Instead, we use the derivative to "walk" towards the optimizer

Meaning of the Derivative

We have the derivative; can we use it?

$$\frac{df}{dx}(x)$$
 is a function; it gives the slope at x.

Key Idea Behind Gradient Descent

- If the slope of f at x is **positive** then moving to the **left** decreases the value of f.
- ▶ i.e., we should **decrease** *x*

Key Idea Behind Gradient Descent

- If the slope of f at x is negative then moving to the right decreases the value of f.
- ▶ i.e., we should **increase** *x*

Key Idea Behind Gradient Descent

- Pick a starting place, x_0 . Where do we go next?
- Slope at x_0 negative? Then increase x_0 .
- Slope at x_0 positive? Then decrease x_0 .
- ► This will work:

$$x_1 = x_0 - \frac{df}{dx}(x_0)$$

Gradient Descent

- Pick α to be a positive number. It is the learning rate.
- Pick a starting prediction, x_0 .

• On step *i*, perform update
$$x_i = x_{i-1} - \alpha \cdot \frac{df}{dx}(x_{i-1})$$

Repeat until convergence (when x doesn't change much).


```
def gradient_descent(derivative, x, alpha, tol=1e-12):
    """Minimize using gradient descent."""
    while True:
        x_next = x - alpha * derivative(x)
        if abs(x_next - x) < tol:
            break
        x = x_next
    return h</pre>
```

Example: Minimizing Mean Squared Error

Recall the mean squared error and its derivative:

$$R_{sq}(x) = \frac{1}{n} \sum_{i=1}^{n} (x - y_i)^2 \qquad \frac{dR_{sq}}{dx}(x) = \frac{2}{n} \sum_{i=1}^{n} (x - y_i)^2$$

 $\frac{dR}{dr}(\mu) = \frac{2}{n} \sum_{i=1}^{n} (\mu - y_i)$

[4+2] + [4-2] + [4-4]

dx

 $-y_i$)

Exercise
Let
$$y_1 = -4$$
, $y_2 = -2$, $y_3 = 2$, $y_4 = 4$.
Pick $x_0 = 4$ and $\alpha = 1/4$. What is x_1 ?
a) -1 $x_1 = x_0 - 0x \frac{d(R)}{d(x_0)}$
b) 0 $= 4 - \frac{1}{4} \frac{3}{3}$
c) 1 $= 4 - \frac{1}{4} \frac{3}{3}$
d) 2 $= 4 - 2 = 2$

Example

Gradient Descent in > 1 dimensions

► The derivative of *f* becomes the gradient:

$$\frac{df}{dx} \to \nabla f(\vec{x})$$

- Meaning of differentiable: locally, f looks linear.
- **Key**: $\nabla f(\vec{w})$ is a function; it returns a vector pointing in direction of steepest ascent.

Gradient Descent in > 1 dimensions

• Pick α to be a positive number.

- It is the learning rate.
- Pick a starting guess, $\vec{w}^{(0)}$.

• On step *i*, update
$$\vec{w}^{(i)} = \vec{w}^{(i-1)} - \alpha \cdot \nabla f(\vec{w}^{(i-1)})$$

- Repeat until convergence
 - ▶ when ŵ doesn't change much
 - equivalently, when $\|\nabla f(\vec{w}^{(i)})\|$ is small

```
def gradient_descent(gradient, w, alpha, tol=1e-12):
    """Minimize using gradient descent."""
    while True:
        w_next = w - alpha * gradient(x)
        if np.linalg.norm(w_next - w) < tol:
            break
        w = w_next
    return w</pre>
```

DSC 190 Machine Learning: Representations

Lecture 12 | Part 3

Convexity in 1-d

Question

When is gradient descent guaranteed to work?

Convex Functions

f is convex if for every a, b the line segment between

f is convex if for every a, b the line segment between

f is convex if for every a, b the line segment between

f is convex if for every a, b the line segment between

Other Terms

- ▶ If a function is not convex, it is **non-convex**.
- Strictly convex: the line lies strictly above curve.
- **Concave**: the line lines on or below curve.

Convexity: Formal Definition

▶ A function $f : \mathbb{R} \to \mathbb{R}$ is **convex** if for every choice of $a, b \in \mathbb{R}$ and $t \in [0, 1]$:

$$(1 - t)f(a) + tf(b) \ge f((1 - t)a + tb).$$

Example

Is f(x) = |x| convex?

Another View: Second Derivatives

► If
$$\frac{d^2f}{dx^2}(x) \ge 0$$
 for all x, then f is convex.

- Example: $f(x) = x^4$ is convex.
- Warning! Only works if f is twice differentiable!

Another View: Second Derivatives

- "Best" parabola at x_0 :
 - At x_0 , f looks likes $h_2(z) = \frac{1}{2}f''(x_0) \cdot z^2 + f'(x_0)z + c$
 - Possibilities: upward-facing, downward-facing.

Convexity and Parabolas

Convex if for every x₀, parabola is upward-facing.
 That is, f"(x₀) ≥ 0.

Convexity and Gradient Descent

Convex functions are (relatively) easy to optimize.

Theorem: if R(x) is convex and differentiable¹² then gradient descent converges to a global optimum of R provided that the step size is small enough³.

¹and its derivative is not too wild

²actually, a modified GD works on non-differentiable functions

³step size related to steepness.

Nonconvexity and Gradient Descent

- Nonconvex functions are (relatively) hard to optimize.
- Gradient descent can still be useful.
- But not guaranteed to converge to a global minimum.

DSC 190 Machine Learning: Representations

Lecture 12 | Part 4

Convexity in Many Dimensions

• $f(\vec{x})$ is **convex** if for **every** \vec{a} , \vec{b} the line segment between

(*ā*, f(*ā*)) and (*b*, f(*b*))

does not go below the plot of f.

Convexity: Formal Definition

A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if for every choice of $\vec{a}, \vec{b} \in \mathbb{R}^d$ and $t \in [0, 1]$:

$$(1-t)f(\vec{a})+tf(\vec{b})\geq f((1-t)\vec{a}+t\vec{b}).$$

The Second Derivative Test

For 1-d functions, convex if second derivative \geq 0.

► For 2-d functions, convex if ???

The Hessian Matrix

Create the Hessian matrix of second derivatives:

$$H(\vec{x}) = \begin{pmatrix} \frac{\partial f^2}{\partial x_1^2}(\vec{x}) & \frac{\partial f^2}{\partial x_1 x_2}(\vec{x}) \\ \frac{\partial f^2}{\partial x_2 x_1}(\vec{x}) & \frac{\partial f^2}{\partial x_2^2}(\vec{x}) \end{pmatrix}$$

In General

▶ If $f : \mathbb{R}^d \to \mathbb{R}$, the **Hessian** at \vec{x} is:

The Second Derivative Test

▶ A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if for any $\vec{x} \in \mathbb{R}^d$, the Hessian matrix $H(\vec{x})$ is **positive semi-definite**.

► That is, all eigenvalues are ≥ 0

Next Time

Backpropagation and gradient descent for training neural networks.