2SC /90

Hachine Zearm‘n} : Repreaaviterhong

Lecture 12 Part1

Neural Networks

1/33

Recall: Linear Predictor
Input: features X = (x,, ..., X;)"

Parameters:
> T
W= (W, Wy, .oy Wy)

Output: w, + w, X, +... + W X

2/33

Linear Predictors

Pro: simple, usually easy to optimize w
With square loss, solution given by normal equations

Con: Decision boundary is linear

3/33

9 Rs.”....
o °
£ - ‘
L) 3° g *
uxn ° lio e o © L] oo
Ll o ® ﬂuﬁ ® -2 Ky
e %% "‘ ®
o‘..‘.' “.“oo.o.
. ® o0 ®

4133

Recall: Basis Functions

Input: features X, basis
functions @,,...,, : RY > R

Parameters:
Y T
W= (Wy, Wy, ..., Wy)

Output:
W, + W, @, (X) + ... + W, ,(X)

5/33

Basis Functions

Note: the basis functions and the weights w are
not chosen at the same time

Two step process

First, basis functions are chosen and fixed
By hand, by k-means clustering, etc.

Then the weights w are learned

6/33

Why do this in two steps as opposed to one?

7/33

Answer

By fixing basis functions then finding best w,
optimization is easy again

Using square loss, normal equations still work

8/33

Idea

Try to learn basis functions at same time as
weights, w

Attempt #1: linear basis functions?

(X)) = W, x; +..+ WX,

9/33

The Model

(pl()_%) = W1,'X1 +..+ Wﬂin‘I 10/33

Neural Network

Input: features X,

Parameters:
W= (Wy, W, .., W),
(d +1)xd’ matrix W

Output:
W, + W, @, (X) + ... + W, ,(X)

This is a neural network

1/33

Problem

: c ¥ FOAR
If ¢, is linear, so is the 4% oL

decision boundary! C et e

:"6'.'". SRy
... :.‘ o8 e o ...'
° o °

12/33

Activation Function

To make ¢, nonlinear, we

often apply a activation
function.

Very commonly: rectified
linear unit (ReLU)

g(z) = max{0, z}

@;(X) = g(Wo; + WXy + Wy, + oo+ WX A)
= max{0, W, + W,.x, + W, x, +...+ W .x A}

13/33

Neural Networks as Functions

A neural network is simply a special kind of
function.

f(X; vir, W)

14/33

|

2 -1
3 -2
-2 1

Example

) 4

1.0 1

0.8 A

0.6 4

0.4 4

0.2 A

0.0 A

The Xor Problem

[] L
[] L
T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

16/33

A Solution

0 -1
Ww={(1 1 W =
1 1

Prediction Surface

18/33

Learning with NNs

We can learn weights by gathering data, picking
a loss function and minimizing loss.

The square loss works:

19/33

Problem

Now that the basis function weights are
learnable, too, there is no simple solution for the
best weights.

We must instead use gradient descent.

20/33

2scC /90

Hachine /Zearm‘n} : Repreawviterhong

Lecture 12 Part2

Gradient Descent

21/33

Gradient Descent

We have a function f : R » R
We can’t solve for the x that minimizes (or maximizes) f(x)

Instead, we use the derivative to “walk” towards the optimizer

22/33

Meaning of the

Derivative

We have the derivative; can we use it?

df

——(x) is a function; it gives the slope at x.

dx

/

N

S\

23/33

Key Idea Behind Gradient Descent

If the slope of f at x is positive then moving to the left
decreases the value of f.

i.e., we should decrease x

N

24 /33

Key Idea Behind Gradient Descent

If the slope of f at x is negative then moving to the right
decreases the value of f.

i.e., we should increase x

N

25/33

Key Idea Behind Gradient Descent

Pick a starting place, x,. Where do we go next?
Slope at x,, negative? Then increase x,.
Slope at x,, positive? Then decrease x,.

This will work:

26/33

Gradient Descent

Pick a to be a positive number. It is the learning rate.

Pick a starting prediction, x,.

df

On step i, perform update x, = x,_, -a- ax

(X,'_1)

Repeat until convergence (when x doesn’t change much).

27/33

def gradient_descent(derivative, x, alpha, tol=1e-12):

mnn ”nnn

Minimize using gradient descent.
while True:
Xx_next = x - alpha * derivative(x)
if abs(x_next - x) < tol:
break
X = X_next
return h

28/33

Example: Minimizing Mean Squared Error

Recall the mean squared error and its derivative:
1 n dR sq 2 n
H Z (x - yl E Z (x - yl

i=1 i=1

Let y,=-4, y,=-2, y;=2, y, =4
Pick x, = 4 and a = 1/4. What is x,?

a) -1
b) 0
c) 1
d) 2

29/33

Example

30/33

Gradient Descent in > 1 dimensions

The derivative of f becomes the gradient:

df 4
ax - Vf(X)

Meaning of differentiable: locally, f looks linear.

Key: Vf(W) is a function; it returns a vector pointing in direction
of steepest ascent.

31/33

Gradient Descent in > 1 dimensions

Pick a to be a positive number.
It is the learning rate.

Pick a starting guess, w(©.
On step i, update W = Wt-" - a - V(1)

Repeat until convergence
when W doesn’t change much

equivalently, when [|[VF(#")]| is small

32/33

def gradient_descent(gradient, w, alpha, tol=1e-12):

mnn ”nnn

Minimize using gradient descent.
while True:
w_next = w - alpha * gradient(x)
if np.linalg.norm(w_next - w) < tol:
break
w = w_next
return w

33/33

