
Lecture 12 | Part 1

Neural Networks

1 / 33

Recall: Linear Predictor

▶ Input: features ⃗𝑥 = (𝑥1, … , 𝑥𝑑)𝑇

▶ Parameters:
�⃗� = (𝑤0, 𝑤1, … , 𝑤𝑑)𝑇

▶ Output: 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑

𝑥1

𝑥2

⋮

𝑥𝑑

∑

1
𝑤1
𝑤2

𝑤𝑑

𝑤0

2 / 33

Linear Predictors
▶ Pro: simple, usually easy to optimize �⃗�

▶ With square loss, solution given by normal equations

▶ Con: Decision boundary is linear

3 / 33

Example

4 / 33

Recall: Basis Functions
▶ Input: features ⃗𝑥, basis
functions 𝜑1, … , 𝜑𝑑 ∶ ℝ𝑑 → ℝ

▶ Parameters:
�⃗� = (𝑤0, 𝑤1, … , 𝑤𝑑)𝑇

▶ Output:
𝑤0 + 𝑤1𝜑1(⃗𝑥) + … + 𝑤𝑑𝜑𝑑(⃗𝑥)

𝑥1

𝑥2

⋮

𝑥𝑑

𝜑1

𝜑2

⋮

𝜑𝑑′

∑

1
𝑤1
𝑤2

𝑤𝑑′

𝑤0

5 / 33

Basis Functions
▶ Note: the basis functions and the weights �⃗� are
not chosen at the same time

▶ Two step process

▶ First, basis functions are chosen and fixed
▶ By hand, by 𝑘-means clustering, etc.

▶ Then the weights �⃗� are learned

6 / 33

Exercise
Why do this in two steps as opposed to one?

7 / 33

Answer
▶ By fixing basis functions then finding best �⃗�,
optimization is easy again

▶ Using square loss, normal equations still work

8 / 33

Idea
▶ Try to learn basis functions at same time as
weights, �⃗�

▶ Attempt #1: linear basis functions?

𝜑𝑖(⃗𝑥) = 𝑊1𝑖𝑥1 + … + 𝑊𝑑𝑖𝑥𝑑

9 / 33

The Model

𝑥1

𝑥2

⋮

𝑥𝑑

𝜑1

𝜑2

⋮

𝜑𝑑′

𝑊11

𝑊12

𝑊1𝑑
𝑊21

𝑊22

𝑊2𝑑

𝑊𝑑1
𝑊𝑑2

𝑊𝑑𝑑

∑

1

𝑤1

𝑤2

𝑤𝑑′

𝑤0

𝑊01

𝑊02

𝑊03

𝜑𝑖(⃗𝑥) = 𝑊1𝑖𝑥1 + … + 𝑊𝑑𝑖𝑥𝑑 10 / 33

Neural Network
▶ Input: features ⃗𝑥,

▶ Parameters:
�⃗� = (𝑤0, 𝑤1, … , 𝑤𝑑)𝑇 ,
(𝑑 + 1) × 𝑑′ matrix 𝑊

▶ Output:
𝑤0 + 𝑤1𝜑1(⃗𝑥) + … + 𝑤𝑑𝜑𝑑(⃗𝑥)

▶ This is a neural network

𝑥1

𝑥2

⋮

𝑥𝑑

𝜑1

𝜑2

⋮

𝜑𝑑′

𝑊11

𝑊12

𝑊1𝑑
𝑊21

𝑊22

𝑊2𝑑

𝑊𝑑1
𝑊𝑑2

𝑊𝑑𝑑

∑

1

𝑤1

𝑤2

𝑤𝑑′

𝑤0

𝑊01

𝑊02

𝑊03

11 / 33

Problem

▶ If 𝜑𝑖 is linear, so is the
decision boundary!

12 / 33

Activation Function
▶ To make 𝜑𝑖 nonlinear, we
often apply a activation
function.

▶ Very commonly: rectified
linear unit (ReLU)

𝑔(𝑧) = max{0, 𝑧}

𝜑𝑖(⃗𝑥) = 𝑔(𝑊0𝑖 + 𝑊1𝑖𝑥1 + 𝑊2𝑖𝑥2 + … + 𝑊𝑑𝑖𝑥𝑑𝐴)
= max{0,𝑊0𝑖 + 𝑊1𝑖𝑥1 + 𝑊2𝑖𝑥2 + … + 𝑊𝑑𝑖𝑥𝑑𝐴}

13 / 33

Neural Networks as Functions
▶ A neural network is simply a special kind of
function.

▶ 𝑓(⃗𝑥; �⃗�, 𝑊)

14 / 33

Example

𝑊 = (
2 −1
3 −2
−2 1

) �⃗� = (
4
0
2
) ⃗𝑥 = (11)

15 / 33

The Xor Problem

16 / 33

A Solution

𝑊 = (
0 −1
1 1
1 1

) �⃗� = (
0
1
−2
)

17 / 33

Prediction Surface

18 / 33

Learning with NNs
▶ We can learn weights by gathering data, picking
a loss function and minimizing loss.

▶ The square loss works:

𝑅(�⃗�,𝑊) = 1𝑛
𝑛
∑
𝑖=1
(𝑓(⃗𝑥(𝑖); �⃗�, 𝑊) − 𝑦𝑖)2

19 / 33

Problem
▶ Now that the basis function weights are
learnable, too, there is no simple solution for the
best weights.

▶ We must instead use gradient descent.

20 / 33

Lecture 12 | Part 2

Gradient Descent

21 / 33

Gradient Descent
▶ We have a function 𝑓 ∶ ℝ → ℝ

▶ We can’t solve for the 𝑥 that minimizes (or maximizes) 𝑓(𝑥)

▶ Instead, we use the derivative to “walk” towards the optimizer

22 / 33

Meaning of the Derivative
▶ We have the derivative; can we use it?

▶ 𝑑𝑓
𝑑𝑥 (𝑥) is a function; it gives the slope at 𝑥.

23 / 33

Key Idea Behind Gradient Descent
▶ If the slope of 𝑓 at 𝑥 is positive then moving to the left
decreases the value of 𝑓 .

▶ i.e., we should decrease 𝑥

24 / 33

Key Idea Behind Gradient Descent
▶ If the slope of 𝑓 at 𝑥 is negative then moving to the right
decreases the value of 𝑓 .

▶ i.e., we should increase 𝑥

25 / 33

Key Idea Behind Gradient Descent
▶ Pick a starting place, 𝑥0. Where do we go next?

▶ Slope at 𝑥0 negative? Then increase 𝑥0.

▶ Slope at 𝑥0 positive? Then decrease 𝑥0.

▶ This will work:
𝑥1 = 𝑥0 −

𝑑𝑓
𝑑𝑥 (𝑥0)

26 / 33

Gradient Descent
▶ Pick 𝛼 to be a positive number. It is the learning rate.

▶ Pick a starting prediction, 𝑥0.

▶ On step 𝑖, perform update 𝑥𝑖 = 𝑥𝑖−1 − 𝛼 ⋅
𝑑𝑓
𝑑𝑥 (𝑥𝑖−1)

▶ Repeat until convergence (when 𝑥 doesn’t change much).

27 / 33

def gradient_descent(derivative, x, alpha, tol=1e-12):
”””Minimize using gradient descent.”””
while True:

x_next = x - alpha * derivative(x)
if abs(x_next - x) < tol:

break
x = x_next

return h

28 / 33

Example: Minimizing Mean Squared Error
▶ Recall the mean squared error and its derivative:

𝑅sq(𝑥) =
1
𝑛

𝑛
∑
𝑖=1
(𝑥 − 𝑦𝑖)2

𝑑𝑅sq
𝑑𝑥 (𝑥) = 2𝑛

𝑛
∑
𝑖=1
(𝑥 − 𝑦𝑖)

Exercise

Let 𝑦1 = −4, 𝑦2 = −2, 𝑦3 = 2, 𝑦4 = 4.
Pick 𝑥0 = 4 and 𝛼 = 1/4. What is 𝑥1?

a) -1
b) 0
c) 1
d) 2

29 / 33

Example

30 / 33

Gradient Descent in > 1 dimensions
▶ The derivative of 𝑓 becomes the gradient:

𝑑𝑓
𝑑𝑥 → ∇𝑓(⃗𝑥)

▶ Meaning of differentiable: locally, 𝑓 looks linear.

▶ Key: ∇𝑓(�⃗�) is a function; it returns a vector pointing in direction
of steepest ascent.

31 / 33

Gradient Descent in > 1 dimensions
▶ Pick 𝛼 to be a positive number.

▶ It is the learning rate.

▶ Pick a starting guess, �⃗�(0).

▶ On step 𝑖, update �⃗�(𝑖) = �⃗�(𝑖−1) − 𝛼 ⋅ ∇𝑓(�⃗�(𝑖−1))

▶ Repeat until convergence
▶ when �⃗� doesn’t change much
▶ equivalently, when ‖∇𝑓(�⃗�(𝑖))‖ is small

32 / 33

def gradient_descent(gradient, w, alpha, tol=1e-12):
”””Minimize using gradient descent.”””
while True:

w_next = w - alpha * gradient(x)
if np.linalg.norm(w_next - w) < tol:

break
w = w_next

return w

33 / 33

