DEC 190 Lecture 12 | Part 1

## Recall: Linear Predictor

- Input: features $\vec{x}=\left(x_{1}, \ldots, x_{d}\right)^{\top}$
- Parameters:
$\vec{w}=\left(w_{0}, w_{1}, \ldots, w_{d}\right)^{T}$
- Output: $w_{0}+w_{1} x_{1}+\ldots+w_{d} x_{d}$



## Linear Predictors

- Pro: simple, usually easy to optimize $\vec{w}$
- With square loss, solution given by normal equations

Con: Decision boundary is linear

## Example




## Recall: Basis Functions

- Input: features $\vec{x}$, basis functions $\varphi_{1}, \ldots, \varphi_{d}: \mathbb{R}^{d} \rightarrow \mathbb{R}$
- Parameters:
$\vec{w}=\left(w_{0}, w_{1}, \ldots, w_{d}\right)^{T}$
- Output:
$w_{0}+w_{1} \varphi_{1}(\vec{x})+\ldots+w_{d} \varphi_{d}(\vec{x})$



## Basis Functions

- Note: the basis functions and the weights $\vec{w}$ are not chosen at the same time
- Two step process
- First, basis functions are chosen and fixed
- By hand, by $k$-means clustering, etc.
- Then the weights $\vec{w}$ are learned


## Exercise

Why do this in two steps as opposed to one?

## Answer

- By fixing basis functions then finding best $\vec{w}$, optimization is easy again
- Using square loss, normal equations still work


## Idea

- Try to learn basis functions at same time as weights, $\vec{W}$
- Attempt \#1: linear basis functions?

$$
\varphi_{i}(\vec{x})=W_{1 i} x_{1}+\ldots+W_{d i} x_{d}
$$

## The Model



$$
\varphi_{i}(\vec{x})=W_{1 i} x_{1}+\ldots+W_{d i} x_{d}
$$

## Neural Network

- Input: features $\vec{x}$,
- Parameters:
$\vec{w}=\left(w_{0}, w_{1}, \ldots, w_{d}\right)^{\top}$, $(d+1) \times d^{\prime}$ matrix $W$
- Output:

$$
w_{0}+w_{1} \varphi_{1}(\vec{x})+\ldots+w_{d} \varphi_{d}(\vec{x})
$$



- This is a neural network


## Problem

- If $\varphi_{i}$ is linear, so is the decision boundary!



## Activation Function

- To make $\varphi_{i}$ nonlinear, we often apply a activation function.
- Very commonly: rectified linear unit (ReLU)

$$
\begin{aligned}
g(z) & =\max \{0, z\} \\
\varphi_{i}(\vec{x}) & =g\left(W_{0 i}+W_{1 i} x_{1}+W_{2 i} x_{2}+\ldots+W_{d i} x_{d} A\right) \\
& =\max \left\{0, W_{0 i}+W_{1 i} x_{1}+W_{2 i} x_{2}+\ldots+W_{d i} x_{d} A\right\}
\end{aligned}
$$

## Neural Networks as Functions

- A neural network is simply a special kind of function.
$\Rightarrow f(\vec{x} ; \vec{w}, W)$


## Example

$$
W=\left(\begin{array}{cc}
2 & -1 \\
3 & -2 \\
-2 & 1
\end{array}\right) \quad \vec{W}=\left(\begin{array}{l}
4 \\
0 \\
2
\end{array}\right) \quad \vec{x}=\binom{1}{1}
$$

## The Xor Problem



## A Solution

$$
W=\left(\begin{array}{cc}
0 & -1 \\
1 & 1 \\
1 & 1
\end{array}\right) \quad \vec{W}=\left(\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right)
$$

## Prediction Surface



## Learning with NNs

- We can learn weights by gathering data, picking a loss function and minimizing loss.
- The square loss works:

$$
R(\vec{w}, W)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\vec{x}^{(i)} ; \vec{w}, W\right)-y_{i}\right)^{2}
$$

## Problem

- Now that the basis function weights are learnable, too, there is no simple solution for the best weights.
- We must instead use gradient descent.

DST 190 Lecture 12 | Part 2

## Gradient Descent

- We have a function $f: \mathbb{R} \rightarrow \mathbb{R}$
- We can't solve for the $x$ that minimizes (or maximizes) $f(x)$
- Instead, we use the derivative to "walk" towards the optimizer


## Meaning of the Derivative

- We have the derivative; can we use it?
$\frac{d f}{d x}(x)$ is a function; it gives the slope at $x$.



## Key Idea Behind Gradient Descent

- If the slope of $f$ at $x$ is positive then moving to the left decreases the value of $f$.
- i.e., we should decrease $x$



## Key Idea Behind Gradient Descent

$\Rightarrow$ If the slope of $f$ at $x$ is negative then moving to the right decreases the value of $f$.

- i.e., we should increase $x$



## Key Idea Behind Gradient Descent

- Pick a starting place, $x_{0}$. Where do we go next?
$\Rightarrow$ Slope at $x_{0}$ negative? Then increase $x_{0}$.
$\Rightarrow$ Slope at $x_{0}$ positive? Then decrease $x_{0}$.
- This will work:

$$
x_{1}=x_{0}-\frac{d f}{d x}\left(x_{0}\right)
$$

## Gradient Descent

$\Rightarrow$ Pick $\alpha$ to be a positive number. It is the learning rate.

- Pick a starting prediction, $x_{0}$.
$\Rightarrow$ On step $i$, perform update $x_{i}=x_{i-1}-\alpha \cdot \frac{d f}{d x}\left(x_{i-1}\right)$
$\Rightarrow$ Repeat until convergence (when $x$ doesn't change much).


```
def gradient_descent(derivative, x, alpha, tol=1e-12):
    """Minimize using gradient descent."""
while True:
    x_next = x - alpha * derivative(x)
    if abs(x_next - x) < tol:
        break
        x = x_next
return h
```


## Example: Minimizing Mean Squared Error

- Recall the mean squared error and its derivative:

$$
R_{\mathrm{sq}}(x)=\frac{1}{n} \sum_{i=1}^{n}\left(x-y_{i}\right)^{2} \quad \frac{d R_{\mathrm{sq}}}{d x}(x)=\frac{2}{n} \sum_{i=1}^{n}\left(x-y_{i}\right)
$$

## Exercise

Let $\quad y_{1}=-4, \quad y_{2}=-2, \quad y_{3}=2, \quad y_{4}=4$.
Pick $x_{0}=4$ and $\alpha=1 / 4$. What is $x_{1}$ ?
a) -1
b) 0
c) 1
d) 2

## Example

## Gradient Descent in > 1 dimensions

- The derivative of $f$ becomes the gradient:

$$
\frac{d f}{d x} \rightarrow \nabla f(\vec{x})
$$

- Meaning of differentiable: locally, $f$ looks linear.
- Key: $\nabla f(\vec{w})$ is a function; it returns a vector pointing in direction of steepest ascent.


## Gradient Descent in > 1 dimensions

$\Rightarrow$ Pick $\alpha$ to be a positive number. $>$ It is the learning rate.

- Pick a starting guess, $\vec{w}^{(0)}$.
$\Rightarrow$ On step $i$, update $\vec{w}^{(i)}=\vec{w}^{(i-1)}-\alpha \cdot \nabla f\left(\vec{w}^{(i-1)}\right)$
- Repeat until convergence
$\downarrow$ when $\vec{w}$ doesn't change much
> equivalently, when $\left\|\nabla f\left(\vec{w}^{(i)}\right)\right\|$ is small

```
def gradient_descent(gradient, w, alpha, tol=1e-12):
"""Minimize using gradient descent."""
while True:
    w_next = w - alpha * gradient(x)
        if np.linalg.norm(w_next - w) < tol:
            break
        w = w_next
return w
```

