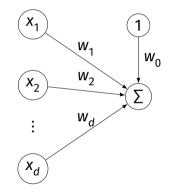
DSC 190 Machine Learning: Representations

Lecture 12 | Part 1

Neural Networks

Recall: Linear Predictor

- **Input**: features $\vec{x} = (x_1, \dots, x_d)^T$
- Parameters: $\vec{w} = (w_0, w_1, \dots, w_d)^T$
- **Output**: $w_0 + w_1 x_1 + ... + w_d x_d$

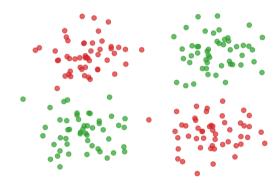


Linear Predictors

Pro: simple, usually easy to optimize w
 With square loss, solution given by normal equations

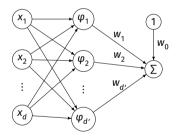
Con: Decision boundary is linear

Example



Recall: Basis Functions

- ▶ **Input**: features \vec{x} , basis functions $\varphi_1, ..., \varphi_d : \mathbb{R}^d \to \mathbb{R}$
- Parameters: $\vec{w} = (w_0, w_1, \dots, w_d)^T$
- **Output**: $w_0 + w_1 \varphi_1(\vec{x}) + ... + w_d \varphi_d(\vec{x})$



Basis Functions

Note: the basis functions and the weights w are not chosen at the same time

Two step process

- First, basis functions are chosen and fixed
 By hand, by k-means clustering, etc.
- Then the weights \vec{w} are learned

Exercise

Why do this in two steps as opposed to one?

Answer

By fixing basis functions then finding best w, optimization is easy again

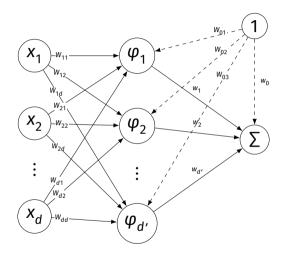
Using square loss, normal equations still work

Idea

- Try to learn basis functions at same time as weights, w
- Attempt #1: linear basis functions?

$$\varphi_i(\vec{x}) = W_{1i}x_1 + \dots + W_{di}x_d$$

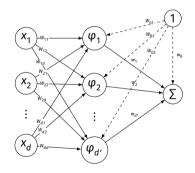
The Model



$$\varphi_i(\vec{x}) = W_{1i}X_1 + \dots + W_{di}X_d$$
 10/33

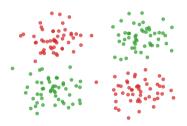
Neural Network

- lnput: features \vec{x} ,
- Parameters: $\vec{w} = (w_0, w_1, \dots, w_d)^T,$ $(d + 1) \times d' \text{ matrix } W$
- **Output**: $w_0 + w_1 \varphi_1(\vec{x}) + \dots + w_d \varphi_d(\vec{x})$
- This is a neural network

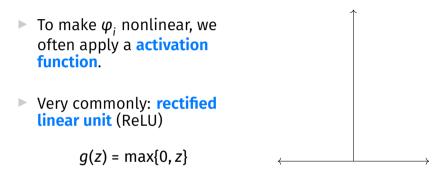


Problem

If φ_i is linear, so is the decision boundary!



Activation Function



$$\varphi_i(\vec{x}) = g(W_{0i} + W_{1i}x_1 + W_{2i}x_2 + \dots + W_{di}x_dA)$$

= max{0, $W_{0i} + W_{1i}x_1 + W_{2i}x_2 + \dots + W_{di}x_dA$ }

Neural Networks as Functions

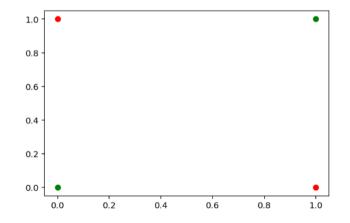
A neural network is simply a special kind of function.

►
$$f(\vec{x}; \vec{w}, W)$$

Example

$$W = \begin{pmatrix} 2 & -1 \\ 3 & -2 \\ -2 & 1 \end{pmatrix} \qquad \vec{W} = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix} \qquad \vec{X} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

The Xor Problem



A Solution

$$W = \begin{pmatrix} 0 & -1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \qquad \vec{W} = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$$

Prediction Surface



Learning with NNs

We can learn weights by gathering data, picking a loss function and minimizing loss.

The square loss works:

$$R(\vec{w}, W) = \frac{1}{n} \sum_{i=1}^{n} (f(\vec{x}^{(i)}; \vec{w}, W) - y_i)^2$$

Problem

Now that the basis function weights are learnable, too, there is no simple solution for the best weights.

We must instead use gradient descent.

DSC 190 Machine Learning: Representations

Lecture 12 | Part 2

Gradient Descent

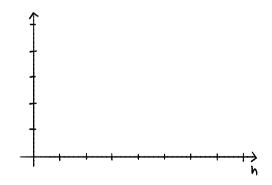
Gradient Descent

- We have a function $f : \mathbb{R} \to \mathbb{R}$
- We can't solve for the x that minimizes (or maximizes) f(x)
- Instead, we use the derivative to "walk" towards the optimizer

Meaning of the Derivative

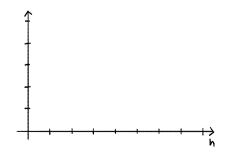
We have the derivative; can we use it?

•
$$\frac{df}{dx}(x)$$
 is a function; it gives the slope at x.



Key Idea Behind Gradient Descent

- If the slope of f at x is **positive** then moving to the **left** decreases the value of f.
- ▶ i.e., we should **decrease** *x*



Key Idea Behind Gradient Descent

- If the slope of f at x is negative then moving to the right decreases the value of f.
- ▶ i.e., we should **increase** *x*



Key Idea Behind Gradient Descent

- Pick a starting place, x_0 . Where do we go next?
- Slope at x_0 negative? Then increase x_0 .
- Slope at x_0 positive? Then decrease x_0 .
- ► This will work:

$$x_1 = x_0 - \frac{df}{dx}(x_0)$$

Gradient Descent

- Pick α to be a positive number. It is the learning rate.
- Pick a starting prediction, x_0 .

• On step *i*, perform update
$$x_i = x_{i-1} - \alpha \cdot \frac{df}{dx}(x_{i-1})$$

Repeat until convergence (when x doesn't change much).


```
def gradient_descent(derivative, x, alpha, tol=1e-12):
 """Minimize using gradient descent."""
 while True:
     x_next = x - alpha * derivative(x)
     if abs(x_next - x) < tol:
         break
     x = x_next
 return h</pre>
```

Example: Minimizing Mean Squared Error

Recall the mean squared error and its derivative:

$$R_{sq}(x) = \frac{1}{n} \sum_{i=1}^{n} (x - y_i)^2 \qquad \frac{dR_{sq}}{dx}(x) = \frac{2}{n} \sum_{i=1}^{n} (x - y_i)$$

Exercise
Let $y_1 = -4$, $y_2 = -2$, $y_3 = 2$, $y_4 = 4$.
Pick $x_0 = 4$ and $\alpha = 1/4$. What is x_1 ?
a) -1 b) 0 c) 1 d) 2

Example

Gradient Descent in > 1 dimensions

► The derivative of *f* becomes the gradient:

$$\frac{df}{dx} \to \nabla f(\vec{x})$$

- Meaning of differentiable: locally, f looks linear.
- **Key**: $\nabla f(\vec{w})$ is a function; it returns a vector pointing in direction of steepest ascent.

Gradient Descent in > 1 dimensions

• Pick α to be a positive number.

- It is the learning rate.
- Pick a starting guess, $\vec{w}^{(0)}$.

• On step *i*, update
$$\vec{w}^{(i)} = \vec{w}^{(i-1)} - \alpha \cdot \nabla f(\vec{w}^{(i-1)})$$

- Repeat until convergence
 - ▶ when ŵ doesn't change much
 - equivalently, when $\|\nabla f(\vec{w}^{(i)})\|$ is small

```
def gradient_descent(gradient, w, alpha, tol=1e-12):
 """Minimize using gradient descent."""
 while True:
     w_next = w - alpha * gradient(x)
     if np.linalg.norm(w_next - w) < tol:
         break
     w = w_next
 return w</pre>
```