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Lecture 13  Part1

Convexity in 1-d
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Neural Networks

A NN is just a function: f(X; W)
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Learning
Given: a data set (X(i),y,-)

Find: weights w minimizing some cost function
(e.g., expected square loss):

Problem: there is no closed-form solution
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Gradient Descent

Idea: start at arbitrary W), walk in direction of

gradient:
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Question

When is gradient descent guaranteed to work?
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Not here...
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Convex Functions

Convex Non-convex
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Convexity: Definition

f is convex if for every a, b the line segment
between

(a,f(a)) and (b, f(b))
does not go below the plot of f.
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Convexity: Definition
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Other Terms

If a function is not convex, it is non-convex.
Strictly convex: the line lies strictly above curve.

Concave: the line lines on or below curve.
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Convexity: Formal Definition

A function f : R - R is convex if for every choice
ofa,be Randte[0,1]:

(1-t)f(a) + tf(b) 2 f((1 - t)a + tb).
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Example

Is f(x) = | x| convex?
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Another View: Second Derivatives

If g(x) > 0 for all x, then f is convex.

Example: f(x) = x* is convex.

Warning! Only works if f is twice differentiable!
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Another View: Second Derivatives

“Best” straight line at x,:
h1(z) = f,(Xo) +z+b

“Best” parabola at x:
At X,, f looks likes h,(2) = 2f"(x,) - 2%+ f'(x,)z +
Possibilities: upward-facing, downward-facing.
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Convexity and Parabolas

Convex if for every x,,, parabola is upward-facing.
That is, f"(x,) 2 0.
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Convexity and Gradient Descent

Convex functions are (relatively) easy to optimize.

Theorem: if R(x) is convex and differentiable
then gradient descent converges to a global
optimum of R provided that the step size is small

enough’.

'and its derivative is not too wild
2actually, a modified GD works on non-differentiable functions

3step size related to steepness.
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Nonconvexity and Gradient Descent

Nonconvex functions are (relatively) hard to
optimize.

Gradient descent can still be useful.

But not guaranteed to converge to a global
minimum.
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Convexity in Many Dimensions
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Convexity: Definition

f(X) is convex if for every d, b the line segment
between

@ f(@) and (b, f(b))
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Convexity: Formal Definition

A function f : R? - R is convex if for every choice
ofd,be RYand t e[0,1]:

(1 - t)f(d) + tf(b) = f((1 - t)d + tb).
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The Second Derivative Test

For 1-d functions, convex if second derivative = 0.

For 2-d functions, convex if ???
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The Hessian Matrix

Create the Hessian matrix of second derivatives:
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In General

If f : RY - R, the Hessian at X is:
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H(X) = | ox,x, (X) ox3 (X) OX, Xy (X)
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0X4X, (X) (X) axﬁ (

X)
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The Second Derivative Test

A function f : R? - R is convex if for any X € RY,
the Hessian matrix H(X) is positive semi-definite.

That is, all eigenvalues are 2 0
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