DSC 190
Machine Learning: Representations
Lecture 13 | Part 1
Convexity in 1-d

Neural Networks

A NN is just a function: $f(\vec{x} ; \vec{w})$

Example

Learning

Given: a data set $\left(\vec{x}^{(i)}, y_{i}\right)$

- Find: weights \vec{w} minimizing some cost function (e.g., expected square loss):

$$
C(\vec{w})=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\vec{x}^{(i)} ; \vec{w}\right)-y_{i}\right)^{2}
$$

- Problem: there is no closed-form solution

Gradient Descent

Idea: start at arbitrary $\overrightarrow{\mathrm{w}}^{(0)}$, walk in direction of gradient:

$$
\nabla C=\left(\begin{array}{c}
\frac{\partial C}{\partial w_{0}} \\
\frac{\partial C}{\partial w_{1}} \\
\vdots \\
\frac{\partial C}{\partial w_{k}}
\end{array}\right)
$$

Question

When is gradient descent guaranteed to work?

Not here...

Convex Functions

Convexity: Definition

> f is convex if for every a, b the line segment between

$$
(a, f(a)) \quad \text { and } \quad(b, f(b))
$$

does not go below the plot of f.

Convexity: Definition

> f is convex if for every a, b the line segment between

$$
(a, f(a)) \quad \text { and } \quad(b, f(b))
$$

does not go below the plot of f.

Convexity: Definition

> f is convex if for every a, b the line segment between

$$
(a, f(a)) \quad \text { and } \quad(b, f(b))
$$

does not go below the plot of f.

Convexity: Definition

> f is convex if for every a, b the line segment between

$$
(a, f(a)) \quad \text { and } \quad(b, f(b))
$$

does not go below the plot of f.

Other Terms

- If a function is not convex, it is non-convex.
- Strictly convex: the line lies strictly above curve.
- Concave: the line lines on or below curve.

Convexity: Formal Definition

\downarrow A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if for every choice of $a, b \in \mathbb{R}$ and $t \in[0,1]$:

$$
(1-t) f(a)+t f(b) \geq f((1-t) a+t b)
$$

Example

Is $f(x)=|x|$ convex?

Another View: Second Derivatives

- If $\frac{d^{2} f}{d x^{2}}(x) \geq 0$ for all x, then f is convex.
- Example: $f(x)=x^{4}$ is convex.
- Warning! Only works if f is twice differentiable!

Another View: Second Derivatives

- "Best" straight line at x_{0} :

$$
h_{1}(z)=f^{\prime}\left(x_{0}\right) \cdot z+b
$$

- "Best" parabola at x_{0} :
- At x_{0}, f looks likes $h_{2}(z)=\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) \cdot z^{2}+f^{\prime}\left(x_{0}\right) z+c$
- Possibilities: upward-facing, downward-facing.

Convexity and Parabolas

> Convex if for every x_{0}, parabola is upward-facing. - That is, $f^{\prime \prime}\left(x_{0}\right) \geq 0$.

Convexity and Gradient Descent

- Convex functions are (relatively) easy to optimize.
- Theorem: if $R(x)$ is convex and differentiable ${ }^{12}$ then gradient descent converges to a global optimum of R provided that the step size is small enough ${ }^{3}$.

[^0]
Nonconvexity and Gradient Descent

- Nonconvex functions are (relatively) hard to optimize.
- Gradient descent can still be useful.
- But not guaranteed to converge to a global minimum.

Machine Learning: Representations
Lecture 13 Part 2
Convexity in Many Dimensions

Convexity: Definition

- $f(\vec{x})$ is convex if for every \vec{a}, \vec{b} the line segment between

$$
(\vec{a}, f(\vec{a})) \quad \text { and } \quad(\vec{b}, f(\vec{b}))
$$

does not go below the plot of f.

Convexity: Formal Definition

- A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if for every choice of $\vec{a}, \vec{b} \in \mathbb{R}^{d}$ and $t \in[0,1]$:

$$
(1-t) f(\vec{a})+t f(\vec{b}) \geq f((1-t) \vec{a}+t \vec{b}) .
$$

The Second Derivative Test

- For 1-d functions, convex if second derivative ≥ 0.
- For 2-d functions, convex if ???

The Hessian Matrix

- Create the Hessian matrix of second derivatives:

$$
H(\vec{x})=\left(\begin{array}{ll}
\frac{\partial f^{2}}{\partial x_{1}^{2}}(\vec{x}) & \frac{\partial f^{2}}{\partial x_{1} x_{2}}(\vec{x}) \\
\frac{\partial f^{2}}{\partial x_{2} x_{1}}(\vec{x}) & \frac{\partial f^{2}}{\partial x_{2}^{2}}(\vec{x})
\end{array}\right)
$$

In General

- If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, the Hessian at \vec{x} is:

$$
H(\vec{x})=\left(\begin{array}{cccc}
\frac{\partial f^{2}}{\partial x_{1}^{2}}(\vec{x}) & \frac{\partial f^{2}}{\partial x_{1} x_{2}}(\vec{x}) & \cdots & \frac{\partial f^{2}}{\partial x_{1} x_{d}}(\vec{x}) \\
\frac{\partial f^{2}}{\partial x_{2} x_{1}}(\vec{x}) & \frac{\partial f^{2}}{\partial x_{2}^{2}}(\vec{x}) & \cdots & \frac{\partial f^{2}}{\partial x_{2} x_{2}}(\vec{x}) \\
\frac{\partial f^{2}}{\partial x_{d} x_{1}}(\vec{x}) & \frac{\partial f^{2}}{\partial x_{d}^{2}}(\vec{x}) & \cdots & \frac{\partial f^{2}}{\partial x_{d}^{2}}(\vec{x})
\end{array}\right)
$$

The Second Derivative Test

\Rightarrow A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if for any $\vec{x} \in \mathbb{R}^{d}$, the Hessian matrix $H(\vec{x})$ is positive semi-definite.

- That is, all eigenvalues are ≥ 0

[^0]: ${ }^{1}$ and its derivative is not too wild
 ${ }^{2}$ actually, a modified GD works on non-differentiable functions
 ${ }^{3}$ step size related to steepness.

