DSC 190 Machine Learning: Representations

Lecture 13 | Part 1

Convexity in 1-d

Neural Networks

A NN is just a function: $f(\vec{x}; \vec{w})$

Example

Learning

- **Given**: a data set $(\vec{x}^{(i)}, y_i)$
- Find: weights w minimizing some cost function (e.g., expected square loss):

$$C(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(f(\vec{x}^{(i)}; \vec{w}) - y_i \right)^2$$

Problem: there is no closed-form solution

Gradient Descent

• Idea: start at arbitrary $\vec{w}^{(0)}$, walk in direction of gradient:

$$\nabla C = \begin{pmatrix} \frac{\partial C}{\partial w_0} \\ \frac{\partial C}{\partial w_1} \\ \vdots \\ \frac{\partial C}{\partial w_k} \end{pmatrix}$$

Question

When is gradient descent guaranteed to work?

Not here...

Convex Functions

f is convex if for every a, b the line segment between

f is convex if for every a, b the line segment between

f is convex if for every a, b the line segment between

f is convex if for every a, b the line segment between

Other Terms

▶ If a function is not convex, it is **non-convex**.

- Strictly convex: the line lies strictly above curve.
- **Concave:** the line lines on or below curve.

Convexity: Formal Definition

A function $f : \mathbb{R} \to \mathbb{R}$ is **convex** if for every choice of $a, b \in \mathbb{R}$ and $t \in [0, 1]$:

$$(1 - t)f(a) + tf(b) \ge f((1 - t)a + tb).$$

Example

Is f(x) = |x| convex?

Another View: Second Derivatives

- ► If $\frac{d^2f}{dx^2}(x) \ge 0$ for all x, then f is convex.
- Example: $f(x) = x^4$ is convex.
- Warning! Only works if f is twice differentiable!

Another View: Second Derivatives

- "Best" parabola at x₀:
 - At x_0 , f looks likes $h_2(z) = \frac{1}{2}f''(x_0) \cdot z^2 + f'(x_0)z + c$ Possibilities: upward-facing, downward-facing.

Convexity and Parabolas

Convex if for every x₀, parabola is upward-facing.
That is, f"(x₀) ≥ 0.

Convexity and Gradient Descent

Convex functions are (relatively) easy to optimize.

Theorem: if R(x) is convex and differentiable¹² then gradient descent converges to a global optimum of R provided that the step size is small enough³.

¹and its derivative is not too wild

²actually, a modified GD works on non-differentiable functions

³step size related to steepness.

Nonconvexity and Gradient Descent

- Nonconvex functions are (relatively) hard to optimize.
- Gradient descent can still be useful.
- But not guaranteed to converge to a global minimum.

DSC 190 Machine Learning: Representations

Lecture 13 | Part 2

Convexity in Many Dimensions

- ► $f(\vec{x})$ is **convex** if for **every** \vec{a} , \vec{b} the line segment between
 - (*ā*, *f*(*ā*)) and (*b*, *f*(*b*))

does not go below the plot of f.

Convexity: Formal Definition

A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if for every choice of $\vec{a}, \vec{b} \in \mathbb{R}^d$ and $t \in [0, 1]$:

$$(1-t)f(\vec{a})+tf(\vec{b})\geq f((1-t)\vec{a}+t\vec{b}).$$

The Second Derivative Test

- For 1-d functions, convex if second derivative \geq 0.
- ► For 2-d functions, convex if ???

The Hessian Matrix

Create the Hessian matrix of second derivatives:

$$H(\vec{x}) = \begin{pmatrix} \frac{\partial f^2}{\partial x_1^2}(\vec{x}) & \frac{\partial f^2}{\partial x_1 x_2}(\vec{x}) \\ \frac{\partial f^2}{\partial x_2 x_1}(\vec{x}) & \frac{\partial f^2}{\partial x_2^2}(\vec{x}) \end{pmatrix}$$

In General

▶ If $f : \mathbb{R}^d \to \mathbb{R}$, the **Hessian** at \vec{x} is:

$$H(\vec{x}) = \begin{pmatrix} \frac{\partial f^2}{\partial x_1^2}(\vec{x}) & \frac{\partial f^2}{\partial x_1 x_2}(\vec{x}) & \cdots & \frac{\partial f^2}{\partial x_1 x_d}(\vec{x}) \\ \frac{\partial f^2}{\partial x_2 x_1}(\vec{x}) & \frac{\partial f^2}{\partial x_2^2}(\vec{x}) & \cdots & \frac{\partial f^2}{\partial x_2 x_d}(\vec{x}) \\ \cdots & \cdots & \cdots \\ \frac{\partial f^2}{\partial x_d x_1}(\vec{x}) & \frac{\partial f^2}{\partial x_d^2}(\vec{x}) & \cdots & \frac{\partial f^2}{\partial x_d^2}(\vec{x}) \end{pmatrix}$$

The Second Derivative Test

- ▶ A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if for any $\vec{x} \in \mathbb{R}^d$, the Hessian matrix $H(\vec{x})$ is **positive semi-definite**.
- ► That is, all eigenvalues are ≥ 0