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Basic Backpropagation
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Computing the Gradient
▶ To train a neural network, we can use gradient
descent.

▶ Involves computing the gradient of the cost
function.

▶ Backpropagation is one method for efficiently
computing the gradient.
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The Gradient
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Interpreting the Gradient

∇�⃗�𝐶(�⃗�) =
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▶ The gradient has one term for each training example,
( ⃗𝑥(𝑖), 𝑦𝑖)

▶ If prediction for ⃗𝑥(𝑖) is good, contribution to gradient is
small.

▶ ∇�⃗�𝑓( ⃗𝑥(𝑖); �⃗�) captures how sensitive 𝑓( ⃗𝑥(𝑖)) is to value of each
parameter.
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The Chain Rule
▶ Recall the chain rule from calculus.

▶ Let 𝑓, 𝑔 ∶ ℝ → ℝ

▶ Then:
𝑑
𝑑𝑥𝑓(𝑔(𝑥)) = 𝑓

′(𝑔(𝑥)) ⋅ 𝑔(𝑥)

▶ Alternative notation: 𝑑
𝑑𝑥𝑓(𝑔(𝑥)) =

𝑑𝑓
𝑑𝑔

𝑑𝑔
𝑑𝑥 (𝑥)
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The Chain Rule for NNs
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Computation Graphs
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Example
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General Formulas
▶ Derivatives are defined
recursively

▶ Easy to compute
derivatives for early layers
if we have derivatives for
later layers.

▶ This is backpropagation.
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Warning
▶ The derivatives depend on the network
architecture
▶ Number of hidden nodes / layers

▶ Backprop is done automatically by your NN
library
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Backpropagation

Compute the derivatives for the last layers first; use them to
compute derivatives for earlier layers.
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A More Complex Example
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Complexity
▶ The strategy doesn’t change much when each
layer has more nodes.
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Computational Graph
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Example
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General Formulas
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Intuition Behind Backprop
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Intuition
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Hidden Units

19 / 52



Hidden Units
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Neuron
▶ Neuron accepts signals
along synapses.

▶ Synapses have weights.

▶ If weighted sum is “large
enough”, the neuron fires,
or activates.
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Neuron

▶ Neuron accepts weighted
inputs.

▶ If weighted sum is “large
enough”, the neuron fires,
or activates.
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Activation Functions
▶ A function 𝑔 determining whether – and how
strong – a neuron fires.

▶ We have seen two: ReLU and linear.

▶ Many different choices.

▶ Guided by intuition and only a little theory.
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Backpropagation
▶ The choice of activation function affects
performance of backpropagation.

▶ Example:

𝜕𝑓
𝜕𝑤(ℓ)

= 𝜕𝑓
𝜕𝑎(ℓ)

⋅ 𝑔′(𝑧(ℓ)) ⋅ 𝜕𝑧
(ℓ)

𝜕𝑤(ℓ)
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Vanishing Gradients
▶ A major challenge in training deep neural
networks with backpropagation is that of
vanishing gradients.

▶ The gradient for layers far from the output
becomes very small.

▶ Weights can’t be changed.

𝜕𝑓
𝜕𝑤(ℓ)
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Main Idea
Some activation functions promote “healthier”
gradients.
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Linear Activations

▶ A linear unit’s activation
function is:

𝑔(𝑧) = 𝑧
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Problem

▶ Linear activations result in
a linear prediction
function.
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Backprop. with Linear Activations

𝜕𝑓
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Summary: Linear Activations
▶ Good: healthy gradients, fast to compute

▶ Bad: still results in linear prediction function
when layers are combined
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Sigmoidal Activations
▶ A basic nonlinearity.

▶ Neuron is either “on” (1), “off” (0), or somewhere
in between.

▶ Very popular before introduction of the ReLU.

31 / 52



Sigmoidal Activations

▶ A sigmoidal unit’s activation
function is:

𝑔(𝑧) = 1
1 + 𝑒−𝑧
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Sigmoidal Activations

▶ A sigmoidal unit’s activation
function is:

𝑔(𝑧) = 1
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Backprop. with Sigmoids

𝑔′(𝑧) = 𝑔(𝑧)(1 − 𝑔(𝑧)) 𝜕𝑓
𝜕𝑤(ℓ)

= 𝜕𝑓
𝜕𝑎(ℓ)

⋅ 𝑔′(𝑧(𝑙)) ⋅ 𝜕𝑧
(ℓ)

𝜕𝑤(ℓ)
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Problem: Saturation
▶ Large/small inputs lead 𝑔(𝑧) to be very close to 1
or -1.

▶ Here, the derivative 𝜎′(𝑧) ≈ 0.

▶ Vanishing gradients!

▶ Makes learning deep networks with
gradient-based algorithms very difficult.
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ReLU
▶ Linear activations have strong gradients, but
combined are still linear.

▶ Sigmoidal activations are non-linear, but when
saturated lead to weak gradients.

▶ Can we have the best of both?
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ReLU
▶ A rectified linear unit’s
(ReLU) activation function is:

𝑔(𝑧) = max{0, 𝑧}
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ReLU
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Backprop. with ReLU
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Backprop. with ReLU
▶ Problem: If inputs < 0, ReLU “deactivates” and
gradients are not passed back.
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Fixing Deactivated ReLUs
▶ One fix: initialize all biases to be small, positive
numbers.

▶ Ensures that most units are active to begin with.

▶ Another fix: modify the ReLU.
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Leaky ReLU
▶ A leaky ReLU activation function is:

𝑔(𝑧) = max{𝛼𝑧, 𝑧} 0 ≤ 𝛼 < 1

▶ Usually, 𝛼 ≈ 0.01. Nonzero derivative.

z
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Summary: ReLU
▶ The popular, “default” choice of activation
function.

▶ Good: Strong gradient when active, fast to
compute.

▶ Bad: No gradient when inactive.
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Output Units
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Output Units
▶ As with units in hidden layers, we can customize
output units.
▶ What activation function?
▶ How many units?

▶ Good choice depends on task:
▶ Regression, binary classification, multiclass, etc.

▶ Which loss?

43 / 52



Setting 1: Regression

▶ Output can be any real
number.

▶ Single output neuron.

▶ It makes sense to use a
linear activation.
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Setting 1: Regression
▶ Prediction should not be too high/low.

▶ It makes sense to use the mean squared error.
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Setting 1: Regression

▶ Suppose we use linear
activation for output
neuron + mean squared
error.

▶ This is very similar to least
squares regression...

▶ But! Features in earlier
layers are learned,
non-linear.
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Setting 2: Binary Classification

▶ Output can be in [0, 1].

▶ Single output neuron.

▶ We could use a linear
activation, threshold.

▶ But there is a better way.
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Sigmoids for Classification
▶ Natural choice for activation in output layer for
binary classification: the sigmoid.

z
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Binary Classification Loss
▶ We could use square loss for binary
classification. There are several reasons not to:

▶ 1) Square loss penalizes predictions which are
“too correct”.

▶ 2) It doesn’t work well with the sigmoid due to
saturation.
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The Cross-Entropy
▶ Instead, we often train deep classifiers using the
cross-entropy as loss.

▶ Let 𝑦(𝑖) ∈ {0, 1} be true label of 𝑖th example.

▶ The average cross-entropy loss:

−1𝑛
𝑛
∑
𝑖=1
{log 𝑓( ⃗𝑥

(𝑖)), if 𝑦(𝑖) = 1
log [1 − 𝑓( ⃗𝑥(𝑖))] , if 𝑦(𝑖) = 0
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The Cross-Entropy and the Sigmoid
▶ Cross-entropy “undoes” the exponential in the
sigmoid, resulting in less saturation.
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Summary: Binary Classification
▶ Use sigmoidal activation the output layer +
cross-entropy loss.

▶ This will promote a strong gradient.

▶ Use whatever activation for the hidden layers
(e.g., ReLU).
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