
Lecture 14 | Part 1

Basic Backpropagation

1 / 52

Computing the Gradient
▶ To train a neural network, we can use gradient
descent.

▶ Involves computing the gradient of the cost
function.

▶ Backpropagation is one method for efficiently
computing the gradient.

2 / 52

The Gradient

∇�⃗�𝐶(�⃗�) = ∇�⃗�
1
𝑛

𝑛
∑
𝑖=1
(𝑓(⃗𝑥(𝑖); �⃗�) − 𝑦𝑖)

2

= 1𝑛
𝑛
∑
𝑖=1
∇�⃗� (𝑓(⃗𝑥(𝑖); �⃗�) − 𝑦𝑖)

2

= 1𝑛
𝑛
∑
𝑖=1
2 (𝑓(⃗𝑥(𝑖); �⃗�) − 𝑦𝑖) ∇�⃗�𝑓(⃗𝑥(𝑖); �⃗�)

3 / 52

Interpreting the Gradient

∇�⃗�𝐶(�⃗�) =
1
𝑛

𝑛
∑
𝑖=1
2 (𝑓(⃗𝑥(𝑖); �⃗�) − 𝑦𝑖) ∇�⃗�𝑓(⃗𝑥(𝑖); �⃗�)

▶ The gradient has one term for each training example,
(⃗𝑥(𝑖), 𝑦𝑖)

▶ If prediction for ⃗𝑥(𝑖) is good, contribution to gradient is
small.

▶ ∇�⃗�𝑓(⃗𝑥(𝑖); �⃗�) captures how sensitive 𝑓(⃗𝑥(𝑖)) is to value of each
parameter.

4 / 52

The Chain Rule
▶ Recall the chain rule from calculus.

▶ Let 𝑓, 𝑔 ∶ ℝ → ℝ

▶ Then:
𝑑
𝑑𝑥𝑓(𝑔(𝑥)) = 𝑓

′(𝑔(𝑥)) ⋅ 𝑔(𝑥)

▶ Alternative notation: 𝑑
𝑑𝑥𝑓(𝑔(𝑥)) =

𝑑𝑓
𝑑𝑔

𝑑𝑔
𝑑𝑥 (𝑥)

5 / 52

The Chain Rule for NNs

6 / 52

Computation Graphs

7 / 52

Example

8 / 52

General Formulas
▶ Derivatives are defined
recursively

▶ Easy to compute
derivatives for early layers
if we have derivatives for
later layers.

▶ This is backpropagation.

𝜕𝑓
𝜕𝑤(ℓ)

= 𝜕𝑓
𝜕𝑎(ℓ)

⋅ 𝜕𝑎
(ℓ)

𝜕𝑧(ℓ)
⋅ 𝜕𝑧

(ℓ)

𝜕𝑤(ℓ)

𝜕𝑓
𝜕𝑎(ℓ)

= 𝜕𝑓
𝜕𝑎(ℓ+1)

⋅ 𝜕𝑎
(ℓ+1)

𝜕𝑧(ℓ+1)
⋅ 𝜕𝑧

(ℓ+1)

𝜕𝑎(ℓ)

9 / 52

Warning
▶ The derivatives depend on the network
architecture
▶ Number of hidden nodes / layers

▶ Backprop is done automatically by your NN
library

10 / 52

Backpropagation

Compute the derivatives for the last layers first; use them to
compute derivatives for earlier layers.

11 / 52

Lecture 14 | Part 2

A More Complex Example

12 / 52

Complexity
▶ The strategy doesn’t change much when each
layer has more nodes.

13 / 52

Computational Graph

14 / 52

Example

15 / 52

General Formulas

𝜕𝑓
𝜕𝑤(ℓ)𝑖𝑗

= 𝜕𝑓
𝜕𝑎(ℓ)

⋅ 𝜕𝑎
(ℓ)

𝜕𝑧(ℓ)
⋅ 𝜕𝑧

(ℓ)

𝜕𝑤(ℓ)𝑖𝑗

𝜕𝑓
𝜕𝑎(ℓ)

= 𝜕𝑓
𝜕𝑎(ℓ+1)

⋅ 𝜕𝑎
(ℓ+1)

𝜕𝑧(ℓ+1)
⋅ 𝜕𝑧

(ℓ+1)

𝜕𝑎(ℓ)

16 / 52

Lecture 14 | Part 3

Intuition Behind Backprop

17 / 52

Intuition

18 / 52

Lecture 14 | Part 4

Hidden Units

19 / 52

Hidden Units

20 / 52

Neuron
▶ Neuron accepts signals
along synapses.

▶ Synapses have weights.

▶ If weighted sum is “large
enough”, the neuron fires,
or activates.

21 / 52

Neuron

▶ Neuron accepts weighted
inputs.

▶ If weighted sum is “large
enough”, the neuron fires,
or activates.

22 / 52

Activation Functions
▶ A function 𝑔 determining whether – and how
strong – a neuron fires.

▶ We have seen two: ReLU and linear.

▶ Many different choices.

▶ Guided by intuition and only a little theory.

23 / 52

Backpropagation
▶ The choice of activation function affects
performance of backpropagation.

▶ Example:

𝜕𝑓
𝜕𝑤(ℓ)

= 𝜕𝑓
𝜕𝑎(ℓ)

⋅ 𝑔′(𝑧(ℓ)) ⋅ 𝜕𝑧
(ℓ)

𝜕𝑤(ℓ)
24 / 52

Vanishing Gradients
▶ A major challenge in training deep neural
networks with backpropagation is that of
vanishing gradients.

▶ The gradient for layers far from the output
becomes very small.

▶ Weights can’t be changed.

𝜕𝑓
𝜕𝑤(ℓ)

= 𝜕𝑓
𝜕𝑎(ℓ)

⋅ 𝑔′(𝑧(ℓ)) ⋅ 𝜕𝑧
(ℓ)

𝜕𝑤(ℓ)
25 / 52

Main Idea
Some activation functions promote “healthier”
gradients.

26 / 52

Linear Activations

▶ A linear unit’s activation
function is:

𝑔(𝑧) = 𝑧

1

2

3

-1

2

1

27 / 52

Problem

▶ Linear activations result in
a linear prediction
function.

28 / 52

Backprop. with Linear Activations

𝜕𝑓
𝜕𝑤(ℓ)

= 𝜕𝑓
𝜕𝑎(ℓ)

⋅ 𝑔′(𝑧(ℓ)) ⋅ 𝜕𝑧
(ℓ)

𝜕𝑤(ℓ)

29 / 52

Summary: Linear Activations
▶ Good: healthy gradients, fast to compute

▶ Bad: still results in linear prediction function
when layers are combined

30 / 52

Sigmoidal Activations
▶ A basic nonlinearity.

▶ Neuron is either “on” (1), “off” (0), or somewhere
in between.

▶ Very popular before introduction of the ReLU.

31 / 52

Sigmoidal Activations

▶ A sigmoidal unit’s activation
function is:

𝑔(𝑧) = 1
1 + 𝑒−𝑧

z

1

2

3

-1

2

1

32 / 52

Sigmoidal Activations

▶ A sigmoidal unit’s activation
function is:

𝑔(𝑧) = 1
1 + 𝑒−𝑧

z

1

-2

3

-1

2

1

32 / 52

Backprop. with Sigmoids

𝑔′(𝑧) = 𝑔(𝑧)(1 − 𝑔(𝑧)) 𝜕𝑓
𝜕𝑤(ℓ)

= 𝜕𝑓
𝜕𝑎(ℓ)

⋅ 𝑔′(𝑧(𝑙)) ⋅ 𝜕𝑧
(ℓ)

𝜕𝑤(ℓ)

33 / 52

Problem: Saturation
▶ Large/small inputs lead 𝑔(𝑧) to be very close to 1
or -1.

▶ Here, the derivative 𝜎′(𝑧) ≈ 0.

▶ Vanishing gradients!

▶ Makes learning deep networks with
gradient-based algorithms very difficult.

34 / 52

ReLU
▶ Linear activations have strong gradients, but
combined are still linear.

▶ Sigmoidal activations are non-linear, but when
saturated lead to weak gradients.

▶ Can we have the best of both?

35 / 52

ReLU
▶ A rectified linear unit’s
(ReLU) activation function is:

𝑔(𝑧) = max{0, 𝑧}

z

1

2

3

-1

2

1

36 / 52

ReLU
▶ A rectified linear unit’s
(ReLU) activation function is:

𝑔(𝑧) = max{0, 𝑧}

z

1

-2

3

-1

2

1

36 / 52

Backprop. with ReLU

𝜕𝑓
𝜕𝑤(ℓ)

= 𝜕𝑓
𝜕𝑎(ℓ)

⋅ 𝑔′(𝑧(ℓ)) ⋅ 𝜕𝑧
(ℓ)

𝜕𝑤(ℓ)

37 / 52

Backprop. with ReLU
▶ Problem: If inputs < 0, ReLU “deactivates” and
gradients are not passed back.

38 / 52

Fixing Deactivated ReLUs
▶ One fix: initialize all biases to be small, positive
numbers.

▶ Ensures that most units are active to begin with.

▶ Another fix: modify the ReLU.

39 / 52

Leaky ReLU
▶ A leaky ReLU activation function is:

𝑔(𝑧) = max{𝛼𝑧, 𝑧} 0 ≤ 𝛼 < 1

▶ Usually, 𝛼 ≈ 0.01. Nonzero derivative.

z

40 / 52

Summary: ReLU
▶ The popular, “default” choice of activation
function.

▶ Good: Strong gradient when active, fast to
compute.

▶ Bad: No gradient when inactive.

41 / 52

Lecture 14 | Part 5

Output Units

42 / 52

Output Units
▶ As with units in hidden layers, we can customize
output units.
▶ What activation function?
▶ How many units?

▶ Good choice depends on task:
▶ Regression, binary classification, multiclass, etc.

▶ Which loss?

43 / 52

Setting 1: Regression

▶ Output can be any real
number.

▶ Single output neuron.

▶ It makes sense to use a
linear activation.

1

2

3

-1

2

1

44 / 52

Setting 1: Regression
▶ Prediction should not be too high/low.

▶ It makes sense to use the mean squared error.

45 / 52

Setting 1: Regression

▶ Suppose we use linear
activation for output
neuron + mean squared
error.

▶ This is very similar to least
squares regression...

▶ But! Features in earlier
layers are learned,
non-linear.

46 / 52

Setting 2: Binary Classification

▶ Output can be in [0, 1].

▶ Single output neuron.

▶ We could use a linear
activation, threshold.

▶ But there is a better way.

1

2

3

-1

2

1

47 / 52

Sigmoids for Classification
▶ Natural choice for activation in output layer for
binary classification: the sigmoid.

z

48 / 52

Binary Classification Loss
▶ We could use square loss for binary
classification. There are several reasons not to:

▶ 1) Square loss penalizes predictions which are
“too correct”.

▶ 2) It doesn’t work well with the sigmoid due to
saturation.

49 / 52

The Cross-Entropy
▶ Instead, we often train deep classifiers using the
cross-entropy as loss.

▶ Let 𝑦(𝑖) ∈ {0, 1} be true label of 𝑖th example.

▶ The average cross-entropy loss:

−1𝑛
𝑛
∑
𝑖=1
{log 𝑓(⃗𝑥

(𝑖)), if 𝑦(𝑖) = 1
log [1 − 𝑓(⃗𝑥(𝑖))] , if 𝑦(𝑖) = 0

50 / 52

The Cross-Entropy and the Sigmoid
▶ Cross-entropy “undoes” the exponential in the
sigmoid, resulting in less saturation.

51 / 52

Summary: Binary Classification
▶ Use sigmoidal activation the output layer +
cross-entropy loss.

▶ This will promote a strong gradient.

▶ Use whatever activation for the hidden layers
(e.g., ReLU).

52 / 52

