DSC 190 Machine Learning: Representations

Lecture 14 | Part 1

Basic Backpropagation

Computing the Gradient

- To train a neural network, we can use gradient descent.
- Involves computing the gradient of the cost function.
- Backpropagation is one method for efficiently computing the gradient.

The Gradient

$$\begin{aligned} \nabla_{\vec{w}} C(\vec{w}) &= \nabla_{\vec{w}} \frac{1}{n} \sum_{i=1}^{n} \left(f(\vec{x}^{(i)}; \vec{w}) - y_i \right)^2 \\ &= \frac{1}{n} \sum_{i=1}^{n} \nabla_{\vec{w}} \left(f(\vec{x}^{(i)}; \vec{w}) - y_i \right)^2 \\ &= \frac{1}{n} \sum_{i=1}^{n} 2 \left(f(\vec{x}^{(i)}; \vec{w}) - y_i \right) \nabla_{\vec{w}} f(\vec{x}^{(i)}; \vec{w}) \end{aligned}$$

Interpreting the Gradient

$$\nabla_{\vec{w}} C(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} 2(f(\vec{x}^{(i)}; \vec{w}) - y_i) \nabla_{\vec{w}} f(\vec{x}^{(i)}; \vec{w})$$

- The gradient has one term for each training example, $(\vec{x}^{(i)}, y_i)$
- If prediction for x⁽ⁱ⁾ is good, contribution to gradient is small.
- ► $\nabla_{\vec{w}} f(\vec{x}^{(i)}; \vec{w})$ captures how sensitive $f(\vec{x}^{(i)})$ is to value of each parameter.

The Chain Rule

Recall the chain rule from calculus.

• Let
$$f, g : \mathbb{R} \to \mathbb{R}$$

► Then:

$$\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g(x)$$

Alternative notation:
$$\frac{d}{dx}f(g(x)) = \frac{df}{dg}\frac{dg}{dx}(x)$$

The Chain Rule for NNs

Computation Graphs

Example

General Formulas

- Derivatives are defined recursively
- Easy to compute derivatives for early layers if we have derivatives for later layers.

∂f	∂f	$\partial a^{(l)}$	∂z	(१)
∂w ^(ℓ)	$\frac{\partial a^{(\ell)}}{\partial a^{(\ell)}}$	$\partial Z^{(\ell)}$	Эw	((१)
∂f	∂f	<i>∂a</i> (ℓ	+1)	$\partial z^{(\ell+1)}$
$\partial a^{(\ell)}$	$\frac{1}{\partial a^{(\ell+1)}}$	$\partial Z^{(\ell)}$	+1)	$\partial a^{(\ell)}$

This is backpropagation.

Warning

The derivatives depend on the network architecture

- Number of hidden nodes / layers
- Backprop is done automatically by your NN library

Backpropagation

Compute the derivatives for the last layers first; use them to compute derivatives for earlier layers.

DSC 190 Machine Learning: Representations

Lecture 14 | Part 2

A More Complex Example

Complexity

The strategy doesn't change much when each layer has more nodes.

Computational Graph

Example

General Formulas

DSC 190 Machine Learning: Representations

Lecture 14 | Part 3

Intuition Behind Backprop

Intuition

DSC 190 Machine Learning: Representations

Lecture 14 | Part 4

Hidden Units

Hidden Units

Neuron

- Neuron accepts signals along synapses.
- Synapses have weights.
- If weighted sum is "large enough", the neuron fires, or activates.

Neuron

- Neuron accepts weighted inputs.
- If weighted sum is "large enough", the neuron fires, or activates.

Activation Functions

- A function g determining whether and how strong – a neuron fires.
- We have seen two: ReLU and linear.
- Many different choices.
- Guided by intuition and only a little theory.

Backpropagation

- The choice of activation function affects performance of backpropagation.
- Example:

$$\frac{\partial f}{\partial w^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell)}} \cdot g'(z^{(\ell)}) \cdot \frac{\partial z^{(\ell)}}{\partial w^{(\ell)}}$$

Vanishing Gradients

- A major challenge in training deep neural networks with backpropagation is that of vanishing gradients.
- The gradient for layers far from the output becomes very small.
- Weights can't be changed.

$$\frac{\partial f}{\partial w^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell)}} \cdot g'(z^{(\ell)}) \cdot \frac{\partial z^{(\ell)}}{\partial w^{(\ell)}}$$

Main Idea

Some activation functions promote "healthier" gradients.

Linear Activations

A linear unit's activation function is:

$$g(z) = z$$

Problem

 Linear activations result in a linear prediction function.

Backprop. with Linear Activations

$$\frac{\partial f}{\partial w^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell)}} \cdot g'(z^{(\ell)}) \cdot \frac{\partial z^{(\ell)}}{\partial w^{(\ell)}}$$

Summary: Linear Activations

Good: healthy gradients, fast to compute

Bad: still results in linear prediction function when layers are combined

Sigmoidal Activations

► A basic nonlinearity.

- Neuron is either "on" (1), "off" (0), or somewhere in between.
- Very popular before introduction of the ReLU.

Sigmoidal Activations

A sigmoidal unit's activation function is:

Sigmoidal Activations

A sigmoidal unit's activation function is:

Backprop. with Sigmoids

$$g'(z) = g(z)(1 - g(z)) \qquad \frac{\partial f}{\partial w^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell)}} \cdot g'(z^{(\ell)}) \cdot \frac{\partial z^{(\ell)}}{\partial w^{(\ell)}}$$

101

Problem: Saturation

- Large/small inputs lead g(z) to be very close to 1 or -1.
- Here, the derivative $\sigma'(z) \approx 0$.
- Vanishing gradients!
- Makes learning deep networks with gradient-based algorithms very difficult.

ReLU

- Linear activations have strong gradients, but combined are still linear.
- Sigmoidal activations are non-linear, but when saturated lead to weak gradients.
- Can we have the best of both?

ReLU

A rectified linear unit's (ReLU) activation function is:

 $g(z) = \max\{0, z\}$

ReLU

A rectified linear unit's (ReLU) activation function is:

 $g(z) = \max\{0, z\}$

Backprop. with ReLU

$$\frac{\partial f}{\partial w^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell)}} \cdot g'(z^{(\ell)}) \cdot \frac{\partial z^{(\ell)}}{\partial w^{(\ell)}}$$

Backprop. with ReLU

Problem: If inputs < 0, ReLU "deactivates" and gradients are not passed back.

Fixing Deactivated ReLUs

- One fix: initialize all biases to be small, positive numbers.
- Ensures that most units are active to begin with.
- Another fix: modify the ReLU.

Leaky ReLU

A **leaky ReLU** activation function is:

$$g(z) = \max\{\alpha z, z\} \qquad 0 \le \alpha < 1$$

► Usually, $\alpha \approx 0.01$. Nonzero derivative.

Summary: ReLU

- The popular, "default" choice of activation function.
- Good: Strong gradient when active, fast to compute.
- **Bad:** No gradient when inactive.

DSC 190 Machine Learning: Representations

Lecture 14 | Part 5

Output Units

Output Units

- As with units in hidden layers, we can customize output units.
 - What activation function?
 - How many units?
- Good choice depends on task:
 - Regression, binary classification, multiclass, etc.
- Which loss?

Setting 1: Regression

- Output can be any real number.
- Single output neuron.
- It makes sense to use a linear activation.

Setting 1: Regression

Prediction should not be too high/low.

It makes sense to use the mean squared error.

Setting 1: Regression

- Suppose we use linear activation for output neuron + mean squared error.
- This is very similar to least squares regression...
- But! Features in earlier layers are learned, non-linear.

Setting 2: Binary Classification

- Output can be in [0, 1].
- Single output neuron.
- We could use a linear activation, threshold.
- But there is a better way.

Sigmoids for Classification

Natural choice for activation in output layer for binary classification: the **sigmoid**.

Binary Classification Loss

- We could use square loss for binary classification. There are several reasons not to:
- 1) Square loss penalizes predictions which are "too correct".
- 2) It doesn't work well with the sigmoid due to saturation.

The Cross-Entropy

Instead, we often train deep classifiers using the cross-entropy as loss.

Let $y^{(i)} \in \{0, 1\}$ be true label of *i*th example.

The average cross-entropy loss:

$$-\frac{1}{n}\sum_{i=1}^{n} \begin{cases} \log f(\vec{x}^{(i)}), & \text{if } y^{(i)} = 1\\ \log \left[1 - f(\vec{x}^{(i)})\right], & \text{if } y^{(i)} = 0 \end{cases}$$

The Cross-Entropy and the Sigmoid

Cross-entropy "undoes" the exponential in the sigmoid, resulting in less saturation.

Summary: Binary Classification

- Use sigmoidal activation the output layer + cross-entropy loss.
- This will promote a strong gradient.
- Use whatever activation for the hidden layers (e.g., ReLU).