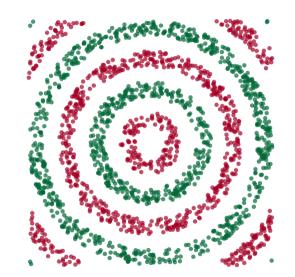
DSC 190 Machine Learning: Representations

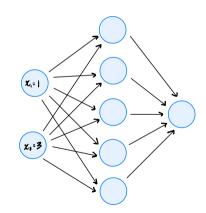
Lecture 15 | Part 1

NNs and Representations



NNs and Representations

- Hidden layer transforms to new representation.
 - ► Maps $\mathbb{R}^2 \to \mathbb{R}^5$
- Output layer makes prediction.
 - ► Maps $\mathbb{R}^5 \to \mathbb{R}^1$
- Representation optimized for classification!



NN Design

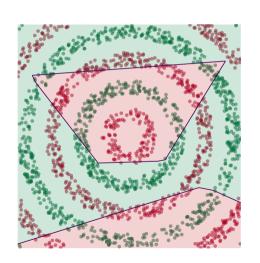
- Design a network for classification.
- Hidden layer activations: ReLU
- Output layer activation: sigmoid
- Loss function: cross-entropy

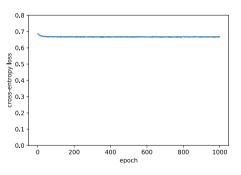
```
from tensorflow import keras
inputs = keras.Input(shape=2)
hidden_1 = keras.layers.Dense(5, activation='relu')(inputs)
outputs = keras.layers.Dense(1, activation='sigmoid')(hidden_1)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(
    optimizer=keras.optimizers.RMSprop(learning rate=.01),
```

```
history = model.fit(X, y, epochs=1000, verbose=1)
```

loss=keras.losses.BinaryCrossentropy()

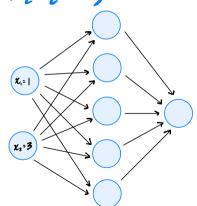
Results





NNs and Representations

- Data has complex structure.
- Only 5 hidden neurons not enough to learn a good representation.



DSC 190 Machine Learning: Representations

Lecture 15 | Part 2

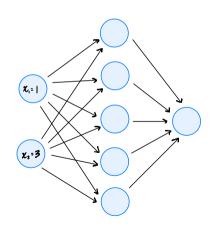
Architecture

Architecture

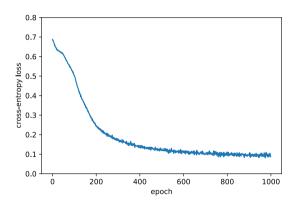
- We can increase complexity in two ways:
- ► Increasing width.
- Increasing depth.

Increasing Width

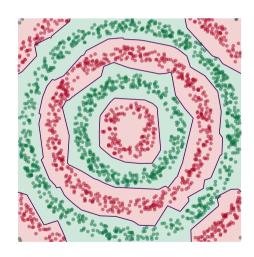
- Use a single hidden layer.
- But with 50 hidden neurons instead of 5.
- I.e., map to \mathbb{R}^{50} , then predict.



Loss



Result



Universal Approximation Theorem

- ightharpoonup A neural network f is a special type of function.
- ► Given another function g, can we make a neural network f so that $f(\vec{x}) \approx g(\vec{x})$?
- ► **Yes!** Assuming:
 - f has a hidden layer with a suitable activation function (ReLU, sigmoid, etc.)
 - the hidden layer has **enough** neurons
 - ▶ *g* is not too wild.

Main Idea

A network with a single hidden layer is able to approximate any (not-too-wild) function arbitrarily well as long as it has enough neurons in the hidden layer.

So what?

Nature uses some function *g* to assign class labels to data.

- We don't see this function. But we see $g(\vec{x})$ for a bunch of points.
- Our goal is to learn a function f approximating g using this data.

The Challenge

- NNs are universal approximators (so are RBF networks, etc.)
- But just because it can approximate any function, doesn't mean we can learn the approximation.

Number of Neurons

- UAT says one hidden layer works well with "enough neurons"
- What is enough?
- Unfortunately, it can be a lot!

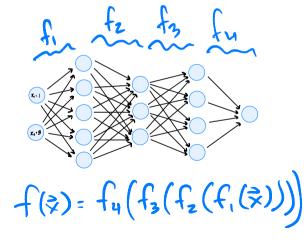
DSC 190 Machine Learning: Representations

Lecture 15 | Part 3

Deep Networks

Deep Networks

- Use a multiple hidden layers.
- Hidden layers transform to a new representation.
- Composition of simple transformations.
- Output layer performs prediction.



Main Idea

In machine learning, "deep" means "more than one hidden layer". Deep models are useful for **learning** simpler representations.

Designing a Deep NN

- Pick a number of hidden layers.
- Pick width of each hidden layer.
- There's not much theory to help us here.
- Experiment with different choices.

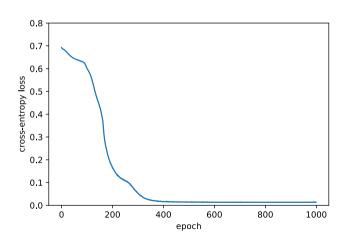
```
inputs = keras.Input(shape=2)
hidden_1 = keras.layers.Dense(15, activation='relu')(inputs)
hidden_2 = keras.layers.Dense(20, activation='relu')(hidden_1)
hidden_3 = keras.layers.Dense(2, activation='relu')(hidden_2)
outputs = keras.layers.Dense(1, activation='sigmoid')(hidden_3)
model = keras.Model(inputs=inputs, outputs=outputs)
```

optimizer=keras.optimizers.RMSprop(learning rate=.001),

```
loss=keras.losses.BinaryCrossentropy()
)
history = model.fit(X, y, epochs=1000, verbose=1)
```

model.compile(

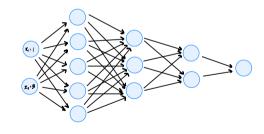
Loss

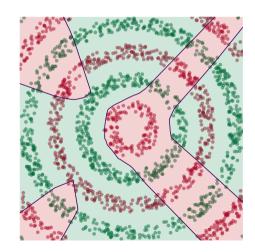


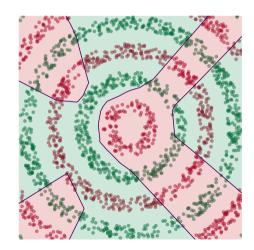
Result

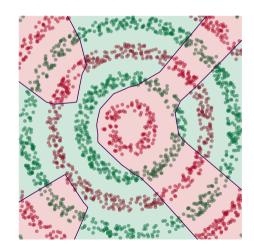
Deep Networks

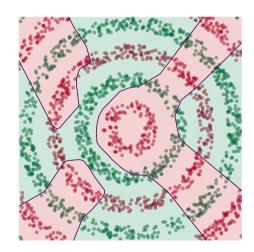
- Hidden layers map input to new representation.
- We can see this new representation!
- Plug in \vec{x} and see activations of last hidden layer.

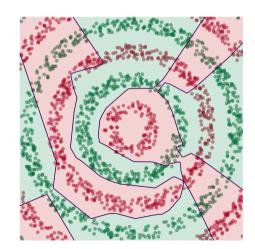


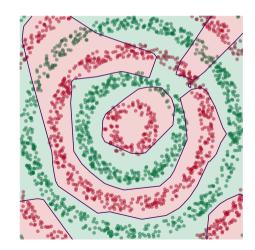


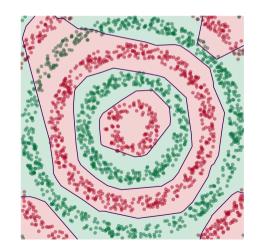


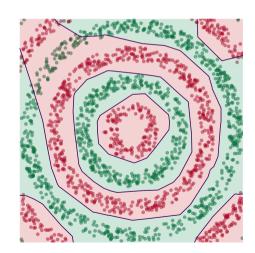


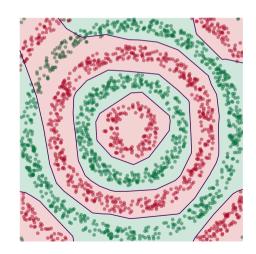


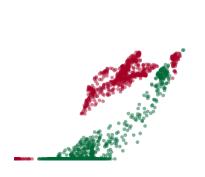


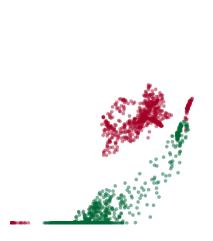


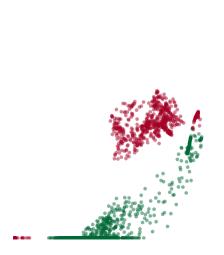


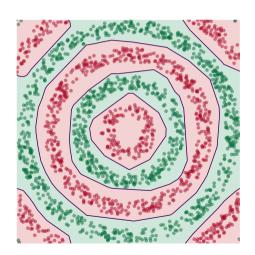




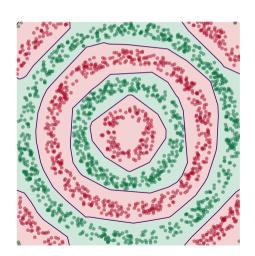














Deep Networks and Approximation

- Deep networks are also universal approximators.
- May require fewer nodes and/or parameters than single hidden layer.
- I.e., there exist functions which require an exponential number of nodes to approximate with a single hidden layer, but not with several layers.

Challenges

- ► The deeper the network, the weaker the gradient gets.
- Very non-convex!
- Deeper networks are harder to learn.

DSC 190 Machine Learning: Representations

Lecture 16 | Part 1

Convolutions

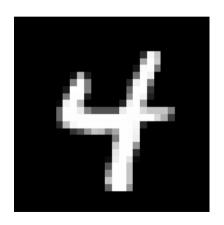
4 /----

From Simple to Complex

- Complex shapes are made of simple patterns
- ► The human visual system uses this fact
- Line detector → shape detector → ... → face detector
- Can we replicate this with a deep NN?

Edge Detector

- How do we find vertical edges in an image?
- One solution: convolution with an edge filter.



Vertical Edge Filter

0	-	_
0	-1	1
0	-1	1

- Take a patch of the image, same size as filter.
- Perform "dot product" between patch and filter.
- If large, this is a (vertical) edge.

image patch:

	<u> </u>	
0	BO	244
5	100	230
0	50	246

filter:

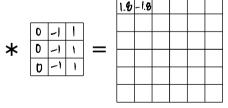
	<u>iller</u>	•
0	1	1
0	-1	1
0	-1	1

Move the filter over the entire image, repeat procedure.

0	0	0	0	0	0											
0	0	.9	0	0	.7								1.8			
0	0	.9	0	0	.8			A			٦					
0	0	.8	0	0	.9		4	-	-1	<u>'</u>	+	_				
0	0	.7	0	0	0		*	7	_1	<u>'</u>	+	=				

Move the filter over the entire image, repeat procedure.

0	0	0	0	0	0	
0	0	.9	0	0	.7	
0	0	.9	0	0	.8	
0	0	.8	0	0	.9	
0	0	.7	0	0	0	



Move the filter over the entire image, repeat procedure.

0	0	0	0	0	0								
0	0	.9	0	0	.7					1.8	-1.8	0	
0	0	.9	0	0	.8								
0	0	.8	0	0	.9		J.	0	_				
0	0	.7	0	0	0		*	<i>b</i>	=				
								\cup					

Move the filter over the entire image, repeat procedure.

0	0	0	0	0	0							
0	0	.9	0	0	.7							
0	0	.9	0	0	.8				1			
0	0	.8	0	0	.9		4		_			
0	0	.7	0	0	0		*		_			
									J			

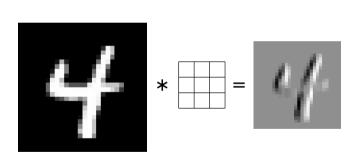
Move the filter over the entire image, repeat procedure.

0	0	0	0	0	0						
0	0	.9	0	0	.7						
0	0	.9	0	0	.8						
0	0	.8	0	0	.9		*	=			
0	0	.7	0	0	0		•	_			

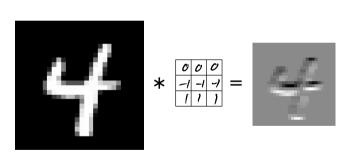
Convolution

- ► The result is the (2d) **convolution** of the filter with the image.
- Output is also 2-dimensional array.
- Called a response map.

Example: Vertical Filter



Example: Horizontal Filter

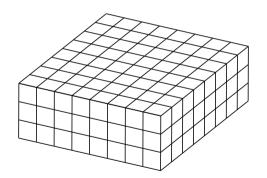


More About Filters

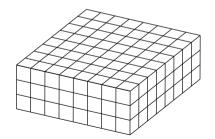
- ► Typically 3×3 or 5×5.
- ► Variations: different **stride**, image **padding**.

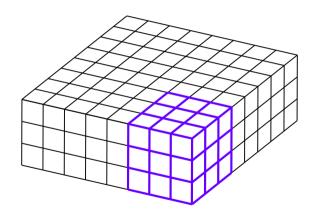
- Black and white images are 2-d arrays.
- But color images are 3-d arrays:
 - a.k.a., tensors
 - ► Three color **channels**: red, green, blue.
 - ► height × width × 3
- How does convolution work here?

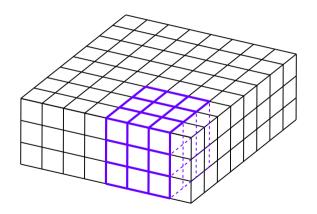
Color Image

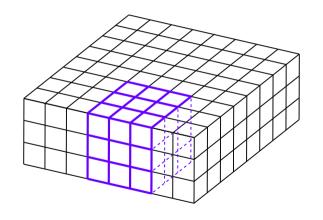


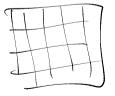
- ► The filter must also have three channels:
 - \triangleright 3 × 3 × 3, 5 × 5 × 3, etc.











Convolution with 3-d Filter

- Filter must have same number of channels as image.
 - ▶ 3 channels if image RGB.

Result is still a 2-d array.

General Case

- ► Input "image" has *k* channels.
- Filter must have *k* channels as well.
 - \triangleright e.g., $3 \times 3 \times k$
- ► Output is still 2 d

