DSC 190 Machine Learning: Representations

Lecture 15 | Part 1

NNs and Representations

NNs and Representations

Hidden layer transforms to new representation.

▶ Maps $\mathbb{R}^2 \to \mathbb{R}^5$

- Output layer makes prediction.
 - ▶ Maps $\mathbb{R}^5 \to \mathbb{R}^1$
- Representation optimized for classification!

NN Design

- Design a network for classification.
- Hidden layer activations: ReLU
- Output layer activation: sigmoid
- Loss function: cross-entropy

from tensorflow import keras

```
inputs = keras.Input(shape=2)
hidden_1 = keras.layers.Dense(5, activation='relu')(inputs)
outputs = keras.layers.Dense(1, activation='sigmoid')(hidden_1)
```

model = keras.Model(inputs=inputs, outputs=outputs)

```
model.compile(
    optimizer=keras.optimizers.RMSprop(learning_rate=.01),
    loss=keras.losses.BinaryCrossentropy()
)
```

```
history = model.fit(X, y, epochs=1000, verbose=1)
```

Results

NNs and Representations

- Data has complex structure.
- Only 5 hidden neurons not enough to learn a good representation.

DSC 190 Machine Learning: Representations

Lecture 15 | Part 2

Architecture

Architecture

We can increase complexity in two ways:

Increasing width.

► Increasing **depth**.

Increasing Width

- Use a single hidden layer.
- But with 50 hidden neurons instead of 5.
- ► I.e., map to ℝ⁵⁰, then predict.

Loss

Result

Universal Approximation Theorem

A neural network *f* is a special type of function.

Given another function g, can we make a neural network f so that $f(\vec{x}) \approx g(\vec{x})$?

Yes! Assuming:

- f has a hidden layer with a suitable activation function (ReLU, sigmoid, etc.)
- the hidden layer has enough neurons
- ▶ g is not too wild.

Main Idea

A network with a single hidden layer is able to approximate any (not-too-wild) function arbitrarily well as long as it has enough neurons in the hidden layer.

So what?

- Nature uses some function g to assign class labels to data.
- We don't see this function. But we see g(x) for a bunch of points.
- Our goal is to learn a function f approximating g using this data.

The Challenge

- NNs are universal approximators (so are RBF networks, etc.)
- But just because it can approximate any function, doesn't mean we can *learn* the approximation.

Number of Neurons

- UAT says one hidden layer works well with "enough neurons"
- ▶ What is enough?
- Unfortunately, it can be a lot!

DSC 190 Machine Learning: Representations

Lecture 15 | Part 3

Deep Networks

Deep Networks

- Use a multiple hidden layers.
- Hidden layers transform to a new representation.
- Composition of simple transformations.
- Output layer performs prediction.

Main Idea

In machine learning, "deep" means "more than one hidden layer". Deep models are useful for **learning** simpler representations.

Designing a Deep NN

- Pick a number of hidden layers.
- Pick width of each hidden layer.
- There's not much theory to help us here.
- Experiment with different choices.

```
inputs = keras.Input(shape=2)
hidden_1 = keras.layers.Dense(15, activation='relu')(inputs)
hidden_2 = keras.layers.Dense(20, activation='relu')(hidden_1)
hidden_3 = keras.layers.Dense(2, activation='relu')(hidden_2)
outputs = keras.layers.Dense(1, activation='sigmoid')(hidden_3)
```

model = keras.Model(inputs=inputs, outputs=outputs)

```
model.compile(
    optimizer=keras.optimizers.RMSprop(learning_rate=.001),
    loss=keras.losses.BinaryCrossentropy()
)
```

```
history = model.fit(X, y, epochs=1000, verbose=1)
```

Loss

Result

Deep Networks

- Hidden layers map input to new representation.
- We can see this new representation!
- Plug in x and see activations of last hidden layer.

The New Representation

Deep Networks and Approximation

- Deep networks are also universal approximators.
- May require fewer nodes and/or parameters than single hidden layer.
- I.e., there exist functions which require an exponential number of nodes to approximate with a single hidden layer, but not with several layers.

Challenges

- The deeper the network, the weaker the gradient gets.
- Very non-convex!
- Deeper networks are harder to learn.

DSC 190 Machine Learning: Representations

Lecture 15 | Part 4

Convolutions

From Simple to Complex

- Complex shapes are made of simple patterns
- The human visual system uses this fact
- Line detector → shape detector → ... → face detector
- Can we replicate this with a deep NN?

Edge Detector

- How do we find vertical edges in an image?
- One solution: convolution with an edge filter.

Vertical Edge Filter

- Take a patch of the image, same size as filter.
- Perform "dot product" between patch and filter.
- If large, this is a (vertical) edge.

Convolution

- The result is the (2d) convolution of the filter with the image.
- Output is also 2-dimensional array.
- Called a response map.

Example: Vertical Filter

Example: Horizontal Filter

=
More About Filters

► Typically 3×3 or 5×5.

Variations: different stride, image padding.

Black and white images are 2-d arrays.

But color images are 3-d arrays:

- a.k.a., **tensors**
- Three color **channels**: red, green, blue.
- height × width × 3

How does convolution work here?

Color Image

The filter must also have three channels: 3 × 3 × 3, 5 × 5 × 3, etc.

Convolution with 3-d Filter

- Filter must have same number of channels as image.
 - 3 channels if image RGB.
- Result is still a 2-d array.

General Case

- Input "image" has k channels.
- Filter must have k channels as well.
 - ▶ e.g., 3 × 3 × k
- Output is still 2 d

