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NNs and Representations
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NNs and Representations

▶ Hidden layer transforms to
new representation.
▶ Maps ℝ2 → ℝ5

▶ Output layer makes
prediction.
▶ Maps ℝ5 → ℝ1

▶ Representation optimized for
classification!
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NN Design
▶ Design a network for classification.

▶ Hidden layer activations: ReLU

▶ Output layer activation: sigmoid

▶ Loss function: cross-entropy
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from tensorflow import keras

inputs = keras.Input(shape=2)
hidden_1 = keras.layers.Dense(5, activation='relu')(inputs)
outputs = keras.layers.Dense(1, activation='sigmoid')(hidden_1)

model = keras.Model(inputs=inputs, outputs=outputs)

model.compile(
optimizer=keras.optimizers.RMSprop(learning_rate=.01),
loss=keras.losses.BinaryCrossentropy()

)

history = model.fit(X, y, epochs=1000, verbose=1)
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Results
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NNs and Representations

▶ Data has complex
structure.

▶ Only 5 hidden neurons not
enough to learn a good
representation.
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Architecture
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Architecture
▶ We can increase complexity in two ways:

▶ Increasing width.

▶ Increasing depth.
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Increasing Width

▶ Use a single hidden layer.

▶ But with 50 hidden
neurons instead of 5.

▶ I.e., map to ℝ50, then
predict.
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Loss
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Result
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Universal Approximation Theorem
▶ A neural network 𝑓 is a special type of function.

▶ Given another function 𝑔, can we make a neural
network 𝑓 so that 𝑓( ⃗𝑥) ≈ 𝑔( ⃗𝑥)?

▶ Yes! Assuming:
▶ 𝑓 has a hidden layer with a suitable activation
function (ReLU, sigmoid, etc.)

▶ the hidden layer has enough neurons
▶ 𝑔 is not too wild.
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Main Idea
A network with a single hidden layer is able to ap-
proximate any (not-too-wild) function arbitrarily
well as long as it has enough neurons in the hid-
den layer.
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So what?
▶ Nature uses some function 𝑔 to assign class
labels to data.

▶ We don’t see this function. But we see 𝑔( ⃗𝑥) for a
bunch of points.

▶ Our goal is to learn a function 𝑓 approximating 𝑔
using this data.
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The Challenge
▶ NNs are universal approximators (so are RBF
networks, etc.)

▶ But just because it can approximate any function,
doesn’t mean we can learn the approximation.
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Number of Neurons
▶ UAT says one hidden layer works well with
“enough neurons”

▶ What is enough?

▶ Unfortunately, it can be a lot!
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Deep Networks
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Deep Networks

▶ Use a multiple hidden
layers.

▶ Hidden layers transform to
a new representation.

▶ Composition of simple
transformations.

▶ Output layer performs
prediction.
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Main Idea
Inmachine learning, “deep”means “more than one
hidden layer”. Deep models are useful for learning
simpler representations.
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Designing a Deep NN
▶ Pick a number of hidden layers.

▶ Pick width of each hidden layer.

▶ There’s not much theory to help us here.

▶ Experiment with different choices.
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inputs = keras.Input(shape=2)
hidden_1 = keras.layers.Dense(15, activation='relu')(inputs)
hidden_2 = keras.layers.Dense(20, activation='relu')(hidden_1)
hidden_3 = keras.layers.Dense(2, activation='relu')(hidden_2)
outputs = keras.layers.Dense(1, activation='sigmoid')(hidden_3)

model = keras.Model(inputs=inputs, outputs=outputs)

model.compile(
optimizer=keras.optimizers.RMSprop(learning_rate=.001),
loss=keras.losses.BinaryCrossentropy()

)

history = model.fit(X, y, epochs=1000, verbose=1)
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Loss
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Result
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Deep Networks

▶ Hidden layers map input
to new representation.

▶ We can see this new
representation!

▶ Plug in ⃗𝑥 and see
activations of last hidden
layer.
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The New Representation
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Learning a New Representation
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Deep Networks and Approximation
▶ Deep networks are also universal approximators.

▶ May require fewer nodes and/or parameters
than single hidden layer.

▶ I.e., there exist functions which require an
exponential number of nodes to approximate
with a single hidden layer, but not with several
layers.
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Challenges
▶ The deeper the network, the weaker the gradient
gets.

▶ Very non-convex!

▶ Deeper networks are harder to learn.
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Convolutions
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From Simple to Complex
▶ Complex shapes are made of simple patterns

▶ The human visual system uses this fact

▶ Line detector→ shape detector→ …→ face
detector

▶ Can we replicate this with a deep NN?
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Edge Detector

▶ How do we find vertical
edges in an image?

▶ One solution: convolution
with an edge filter.
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Vertical Edge Filter
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Idea

▶ Take a patch of the image,
same size as filter.

▶ Perform “dot product”
between patch and filter.

▶ If large, this is a (vertical)
edge.

image patch:

filter:
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Idea
▶ Move the filter over the entire image, repeat
procedure.
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Convolution
▶ The result is the (2d) convolution of the filter
with the image.

▶ Output is also 2-dimensional array.

▶ Called a response map.
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Example: Vertical Filter
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Example: Horizontal Filter
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More About Filters
▶ Typically 3×3 or 5×5.

▶ Variations: different stride, image padding.
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3-d Filters
▶ Black and white images are 2-d arrays.

▶ But color images are 3-d arrays:
▶ a.k.a., tensors
▶ Three color channels: red, green, blue.
▶ height × width × 3

▶ How does convolution work here?
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Color Image
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3-d Filter
▶ The filter must also have three channels:

▶ 3 × 3 × 3, 5 × 5 × 3, etc.
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3-d Filter
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3-d Filter
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3-d Filter
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Convolution with 3-d Filter
▶ Filter must have same number of channels as
image.
▶ 3 channels if image RGB.

▶ Result is still a 2-d array.
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General Case

▶ Input “image” has 𝑘
channels.

▶ Filter must have 𝑘
channels as well.
▶ e.g., 3 × 3 × 𝑘

▶ Output is still 2 − 𝑑
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