DSC
190
Machine Learning: Representations
Lecture 15 | Part 1
NNs and Representations

NNs and Representations

- Hidden layer transforms to new representation.
- Maps $\mathbb{R}^{2} \rightarrow \mathbb{R}^{5}$
- Output layer makes prediction.
$>\operatorname{Maps} \mathbb{R}^{5} \rightarrow \mathbb{R}^{1}$
- Representation optimized for classification!

NN Design

- Design a network for classification.
- Hidden layer activations: ReLU
- Output layer activation: sigmoid
- Loss function: cross-entropy

```
from tensorflow import keras
inputs = keras.Input(shape=2)
hidden_1 = keras.layers.Dense(5, activation='relu')(inputs)
output\overline{s}= keras.layers.Dense(1, activation='sigmoid')(hidden_1)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(
        optimizer=keras.optimizers.RMSprop(learning_rate=.01),
        loss=keras.losses.BinaryCrossentropy()
)
history = model.fit(X, y, epochs=1000, verbose=1)
```


Results

NNs and Representations

- Data has complex structure.
- Only 5 hidden neurons not enough to learn a good representation.

DEC 190 Lecture 15 | Part 2 Architecture

Architecture

We can increase complexity in two ways:

- Increasing width.
- Increasing depth.

Increasing Width

- Use a single hidden layer.
- But with 50 hidden neurons instead of 5 .
\downarrow I.e., map to \mathbb{R}^{50}, then predict.

Loss

Result

Universal Approximation Theorem

- A neural network f is a special type of function.
- Given another function g, can we make a neural network f so that $f(\vec{x}) \approx g(\vec{x})$?
- Yes! Assuming:
- f has a hidden layer with a suitable activation function (ReLU, sigmoid, etc.)
- the hidden layer has enough neurons
$\Rightarrow g$ is not too wild.

Main Idea

A network with a single hidden layer is able to approximate any (not-too-wild) function arbitrarily well as long as it has enough neurons in the hidden layer.

So what?

- Nature uses some function g to assign class labels to data.
- We don't see this function. But we see $g(\vec{x})$ for a bunch of points.
- Our goal is to learn a function f approximating g using this data.

The Challenge

- NNs are universal approximators (so are RBF networks, etc.)
- But just because it can approximate any function, doesn't mean we can learn the approximation.

Number of Neurons

- UAT says one hidden layer works well with "enough neurons"
- What is enough?
- Unfortunately, it can be a lot!

SC 190 Lecture 15 | Part

Deep Networks

- Use a multiple hidden layers.
- Hidden layers transform to a new representation.
- Composition of simple transformations.

- Output layer performs prediction.

Main Idea

In machine learning, "deep" means "more than one hidden layer". Deep models are useful for learning simpler representations.

Designing a Deep NN

- Pick a number of hidden layers.
- Pick width of each hidden layer.
- There's not much theory to help us here.
- Experiment with different choices.

```
inputs = keras.Input(shape=2)
hidden_1 = keras.layers.Dense(15, activation='relu')(inputs)
hidden_2 = keras.layers.Dense(20, activation='relu')(hidden_1)
hidden_3 = keras.layers.Dense(2, activation='relu')(hidden_2)
output\overline{s}= keras.layers.Dense(1, activation='sigmoid')(hiddēn_3)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(
        optimizer=keras.optimizers.RMSprop(learning_rate=.001),
        loss=keras.losses.BinaryCrossentropy()
)
history = model.fit(X, y, epochs=1000, verbose=1)
```


Loss

Result

Deep Networks

- Hidden layers map input to new representation.
- We can see this new representation!
- Plug in \vec{x} and see activations of last hidden
 layer.

The New Representation

Learning a New Representation

Deep Networks and Approximation

- Deep networks are also universal approximators.
- May require fewer nodes and/or parameters than single hidden layer.
- I.e., there exist functions which require an exponential number of nodes to approximate with a single hidden layer, but not with several layers.

Challenges

- The deeper the network, the weaker the gradient gets.
- Very non-convex!
- Deeper networks are harder to learn.

DEC 190 Lecture 15 | Part 4

$$
4
$$

From Simple to Complex

- Complex shapes are made of simple patterns
- The human visual system uses this fact
- Line detector \rightarrow shape detector \rightarrow... \rightarrow face detector
- Can we replicate this with a deep NN?

Edge Detector

How do we find vertical edges in an image?

- One solution: convolution with an edge filter.

Vertical Edge Filter

Idea

- Take a patch of the image, same size as filter.
- Perform "dot product" between patch and filter.
- If large, this is a (vertical) edge.
image patch:

Idea

- Move the filter over the entire image, repeat procedure.

0	0	0	0	0	0		
0	0	.9	0	0	.7		
0	0	.9	0	0	.8		
0	0	.8	0	0	.9		
0	0	.7	0	0	0		

Idea

- Move the filter over the entire image, repeat procedure.

0	0	0	0	0	0		
0	0	.9	0	0	.7		
0	0	.9	0	0	.8		
0	0	.8	0	0	.9		
0	0	.7	0	0	0		

Idea

- Move the filter over the entire image, repeat procedure.

0	0	0	0	0	0		
0	0	.9	0	0	.7		
0	0	.9	0	0	.8		
0	0	.8	0	0	.9		
0	0	.7	0	0	0		

Idea

- Move the filter over the entire image, repeat procedure.

0	0	0	0	0	0		
0	0	.9	0	0	.7		
0	0	.9	0	0	.8		
0	0	.8	0	0	.9		
0	0	.7	0	0	0		

Idea

- Move the filter over the entire image, repeat procedure.

0	0	0	0	0	0		
0	0	.9	0	0	.7		
0	0	.9	0	0	.8		
0	0	.8	0	0	.9		
0	0	.7	0	0	0		

Convolution

- The result is the (2d) convolution of the filter with the image.
- Output is also 2-dimensional array.
- Called a response map.

Example: Vertical Filter

Example: Horizontal Filter

More About Filters

- Typically 3×3 or 5×5.
- Variations: different stride, image padding.

3-d Filters

- Black and white images are 2-d arrays.
- But color images are 3-d arrays:
- a.k.a., tensors
$>$ Three color channels: red, green, blue.
$>$ height \times width $\times 3$
- How does convolution work here?

Color Image

3-d Filter

- The filter must also have three channels:
$-3 \times 3 \times 3,5 \times 5 \times 3$, etc.

3-d Filter

3-d Filter

3-d Filter

Convolution with 3-d Filter

- Filter must have same number of channels as image.
> 3 channels if image RGB.
- Result is still a 2-d array.

General Case

- Input "image" has k channels.
- Filter must have k channels as well.

$$
\text { e.g., } 3 \times 3 \times k
$$

- Output is still $2-d$

