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3-d Filter
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General Case

▶ Input “image” has 𝑘
channels.

▶ Filter must have 𝑘
channels as well.
▶ e.g., 3 × 3 × 𝑘

▶ Output is still 2 − 𝑑

4 / 27



Lecture 16 | Part 2

Convolutional Neural Networks
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Convolutional Neural Networks
▶ CNNs are the state-of-the-art for many computer
vision tasks

▶ Idea: use convolution in early layers to create
new feature representation.

▶ But! Filters are learned.
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Input Convolutional Layer

image

filters

response map + ReLU
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Input Convolutional Layer
▶ Input image with one channel (grayscale)

▶ 𝑘1 filters of size ℓ × ℓ × 1

▶ Results in 𝑘1 convolutions, stacked to make
response map.

▶ ReLU (or other nonlinearity) applied entrywise.
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Second Convolutional Layer

prev. layer response map + ReLU

filters

response map + ReLU
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Second Convolutional Layer
▶ Input is a 3-d tensor.

▶ “Stack” of 𝑘1 response maps.

▶ 𝑘2 filters, each a 3-d tensor with 𝑘1 channels.

▶ Output is a 3-d tensor with 𝑘2 channels.
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More Convolutional Layers
▶ May add more convolutional layers.

▶ Last convolutional layer used as input to a
feedforward, fully-connected network.

▶ Need to “flatten” the output tensor.
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Flattening

...
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Full Network

filters

image

filters

response map + ReLU

...
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What is learned?
▶ The filters themselves.

▶ The weights in the feedforward NN used for
prediction.
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Max Pooling

▶ Max pooling is an
important part of
convolutional layers in
practice.

▶ Reduces size of response
map, number of
parameters.
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Example: Image Classification
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Problem

▶ Predict whether image is
of a car or a truck.
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Details
▶ 3-channel 32 × 32 color images

▶ 10,000 training images; 2,000 test1

▶ Cars, trucks in different orientations, scales

▶ Balanced: 50% cars, 50% trucks

1CIFAR-10
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Approach #1: Least Squares
Classifier

▶ Train directly on raw features (grayscale)

▶ Result: 72% train accuracy, 63% test accuracy

▶ Need a better feature representation
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Approach #2: Convolutional Neural
Network

filters

image

filters

response map + ReLU

...
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Architecture
▶ 3 convolutional layers with 32, 64, 64 filters

▶ ReLU, max pooling after first two

▶ Dense layer with 64 hidden neurons, ReLU

▶ Output layer with sigmoid activation

▶ Minimize cross-entropy loss; use dropout
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The Code
model = keras.models.Sequential()

model.add( keras.layers.Conv2D(32, (7, 7), activation='relu', input_shape=(32, 32, 1)))
model.add(keras.layers.MaxPooling2D((2, 2)))

model.add(keras.layers.Conv2D(64, (5, 5), activation='relu'))
model.add(keras.layers.MaxPooling2D((2, 2)))

model.add(keras.layers.Conv2D(64, (3, 3), activation='relu'))

model.add(keras.layers.Flatten())
model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(64, activation='relu'))
model.add(keras.layers.Dense(1, activation='sigmoid'))
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The Code
model.compile(

optimizer=keras.optimizers.RMSprop(),
loss=keras.losses.BinaryCrossentropy(),
metrics=['accuracy']

)

model.fit(
X_train,
y_train,
epochs=30,
validation_data=(X_test, y_test)

)
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Results
▶ 94% train accuracy, 90% test accuracy
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Results

car / car
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Filters

26 / 27



Next Steps
▶ In practice, you might not train your own CNN

▶ Instead, take “pre-trained” convolutional layers
from a much bigger network

▶ Attach untrained fully-connected layer and train

▶ This is transfer learning
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