
Lecture 16 | Part 1

Convolutions

1 / 27

+ +

2 / 27

3-d Filter

3 / 27

3-d Filter

3 / 27

3-d Filter

3 / 27

General Case

▶ Input “image” has 𝑘
channels.

▶ Filter must have 𝑘
channels as well.
▶ e.g., 3 × 3 × 𝑘

▶ Output is still 2 − 𝑑

4 / 27

Lecture 16 | Part 2

Convolutional Neural Networks

5 / 27

Convolutional Neural Networks
▶ CNNs are the state-of-the-art for many computer
vision tasks

▶ Idea: use convolution in early layers to create
new feature representation.

▶ But! Filters are learned.

6 / 27

Input Convolutional Layer

image

filters

response map + ReLU

7 / 27

Input Convolutional Layer
▶ Input image with one channel (grayscale)

▶ 𝑘1 filters of size ℓ × ℓ × 1

▶ Results in 𝑘1 convolutions, stacked to make
response map.

▶ ReLU (or other nonlinearity) applied entrywise.

8 / 27

Second Convolutional Layer

prev. layer response map + ReLU

filters

response map + ReLU

9 / 27

Second Convolutional Layer
▶ Input is a 3-d tensor.

▶ “Stack” of 𝑘1 response maps.

▶ 𝑘2 filters, each a 3-d tensor with 𝑘1 channels.

▶ Output is a 3-d tensor with 𝑘2 channels.

10 / 27

More Convolutional Layers
▶ May add more convolutional layers.

▶ Last convolutional layer used as input to a
feedforward, fully-connected network.

▶ Need to “flatten” the output tensor.

11 / 27

Flattening

...

12 / 27

Full Network

filters

image

filters

response map + ReLU

...

13 / 27

What is learned?
▶ The filters themselves.

▶ The weights in the feedforward NN used for
prediction.

14 / 27

Max Pooling

▶ Max pooling is an
important part of
convolutional layers in
practice.

▶ Reduces size of response
map, number of
parameters.

15 / 27

Lecture 16 | Part 3

Example: Image Classification

16 / 27

Problem

▶ Predict whether image is
of a car or a truck.

17 / 27

Problem

▶ Predict whether image is
of a car or a truck.

17 / 27

Problem

▶ Predict whether image is
of a car or a truck.

17 / 27

Problem

▶ Predict whether image is
of a car or a truck.

17 / 27

Problem

▶ Predict whether image is
of a car or a truck.

17 / 27

Problem

▶ Predict whether image is
of a car or a truck.

17 / 27

Problem

▶ Predict whether image is
of a car or a truck.

17 / 27

Problem

▶ Predict whether image is
of a car or a truck.

17 / 27

Problem

▶ Predict whether image is
of a car or a truck.

17 / 27

Problem

▶ Predict whether image is
of a car or a truck.

17 / 27

Details
▶ 3-channel 32 × 32 color images

▶ 10,000 training images; 2,000 test1

▶ Cars, trucks in different orientations, scales

▶ Balanced: 50% cars, 50% trucks

1CIFAR-10
18 / 27

Approach #1: Least Squares
Classifier

▶ Train directly on raw features (grayscale)

▶ Result: 72% train accuracy, 63% test accuracy

▶ Need a better feature representation

19 / 27

Approach #2: Convolutional Neural
Network

filters

image

filters

response map + ReLU

...

20 / 27

Architecture
▶ 3 convolutional layers with 32, 64, 64 filters

▶ ReLU, max pooling after first two

▶ Dense layer with 64 hidden neurons, ReLU

▶ Output layer with sigmoid activation

▶ Minimize cross-entropy loss; use dropout
21 / 27

The Code
model = keras.models.Sequential()

model.add(keras.layers.Conv2D(32, (7, 7), activation='relu', input_shape=(32, 32, 1)))
model.add(keras.layers.MaxPooling2D((2, 2)))

model.add(keras.layers.Conv2D(64, (5, 5), activation='relu'))
model.add(keras.layers.MaxPooling2D((2, 2)))

model.add(keras.layers.Conv2D(64, (3, 3), activation='relu'))

model.add(keras.layers.Flatten())
model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(64, activation='relu'))
model.add(keras.layers.Dense(1, activation='sigmoid'))

22 / 27

The Code
model.compile(

optimizer=keras.optimizers.RMSprop(),
loss=keras.losses.BinaryCrossentropy(),
metrics=['accuracy']

)

model.fit(
X_train,
y_train,
epochs=30,
validation_data=(X_test, y_test)

)

23 / 27

Results
▶ 94% train accuracy, 90% test accuracy

24 / 27

Results

car / car

25 / 27

Results

truck / car

25 / 27

Results

truck / truck

25 / 27

Results

truck / truck

25 / 27

Results

truck / truck

25 / 27

Results

truck / truck

25 / 27

Results

truck / truck

25 / 27

Results

car / car

25 / 27

Results

truck / truck

25 / 27

Results

truck / truck

25 / 27

Results

truck / truck

25 / 27

Results

truck / truck

25 / 27

Results

car / car

25 / 27

Results

car / truck

25 / 27

Results

truck / car

25 / 27

Results

car / car

25 / 27

Results

truck / truck

25 / 27

Results

car / car

25 / 27

Results

car / car

25 / 27

Results

car / car

25 / 27

Filters

26 / 27

Next Steps
▶ In practice, you might not train your own CNN

▶ Instead, take “pre-trained” convolutional layers
from a much bigger network

▶ Attach untrained fully-connected layer and train

▶ This is transfer learning

27 / 27

