Lecture 11 – Probability

DSC 10, Winter 2023

Announcements

- Lab 3 is due tomorrow at 11:59PM.
- Homework 3 is due **Tuesday 2/7 at 11:59PM**.
- The Midterm Project (Restaurants (a) (a) is released and due Tuesday 2/14 at 11:59PM.
 - Partners must follow <u>these partner guidelines</u>. In particular, you must both contribute to all parts of the project and not split up the problems.
 - Still looking for a partner? Use <u>this thread on EdStem</u> to connect with classmates.

Last time: for -loops

- Almost every for -loop in DSC 10 will use the accumulator pattern.
 - This means we initialize a variable, and repeatedly add on to it within a loop.
- Do **not** use for -loops to perform mathematical operations on every element of an array or Series.
 - Instead use DataFrame manipulations and built-in array or Series methods.
- Helpful video : For Loops (and when not to use them) in DSC 10.

Agenda

We'll cover the basics of probability theory. This is a math lesson; take written notes.

Probability resources

Probability is a tricky subject. If it doesn't click during lecture or on the assignments, take a look at the following resources:

- Computational and Inferential Thinking, Chapter 9.5.
- Theory Meets Data, Chapters 1 and 2.
- Khan Academy's unit on Probability.

Probability theory

- Some things in life *seem* random.
 - e.g. flipping a coin or rolling a die
- The **probability** of seeing "heads" when flipping a fair coin is $\frac{1}{2}$.
- One interpretation of probability says that if we flipped a coin infinitely many times, then $\frac{1}{2}$ of the outcomes would be heads.

or action whose result is rapplement

Terminology

- **Experiment**: A process or action whose result is random.
 - e.g., rolling a die.
 - e.g., flipping a coin twice.
- **Outcome**: The result of an experiment.
 - e.g., the possible outcomes of rolling a six-sided die are 1,
 2, 3, 4, 5, and 6.
 - e.g., the possible outcomes of flipping a coin twice are HH, HT, TH, and TT.
- **Event**: A set of outcomes.
 - e.g., the event that the die lands on a even number is the set of outcomes {2, 4, 6}.
 - e.g., the event that the die lands on a 5 is the set of outcomes {5}.

• e.g., the event that there is at least 1 head in 2 flips is the set of outcomes {HH, HT, TH}.

Terminology

- **Probability**: A number between 0 and 1 (equivalently, between 0% and 100%) which describes the likelihood of an event.
 - 0: the event never happens.
 - 1: the event always happens.
- Notation: if A is an event, P(A) is the probability of that event.

Equally-likely outcomes

 If all outcomes in event A are equally likely, then the probability of A is

$$P(A) = \frac{\text{# of outcomes satisfying A}}{\text{total # of outcomes}}$$

Example 1: Suppose we flip a fair coin 3 times. What is the

probability we see exactly 2 heads?

Concept Check <a>- Answer at <a>cc.dsc10.com

I have three cards: red, blue, and green. What is the chance that I choose a card at random and it is green, then – without putting it back – I choose another card at random and it is red?

- A) $\frac{1}{9}$
- B) $\frac{1}{6}$
- C) $\frac{1}{3}$
- D) $\frac{2}{3}$
- E) None of the above.

outcomes

Conditional probabilities

- Two events A and B can both happen. Suppose that we know A has happened, but we don't know if B has.
- If all outcomes are equally likely, then the conditional probability of B given A is:

$$P(B \text{ given A}) = \frac{\text{# of outcomes satisfying both A and B}}{\text{# of outcomes satisfying A}}$$

Intuitively, this is similar to the definition of the regular probability of B, $P(B) = \frac{\text{\# of outcomes satisfying B}}{\text{total \# of outcomes}}$, if you restrict the set of possible total # of outcomes outcomes to be just those in event A.

Concept Check — Answer at **cc.dsc10.com**

$$P(B \text{ given A}) = \frac{\text{# of outcomes satisfying both A and B}}{\text{# of outcomes satisfying A}}$$

I roll a six-sided die and don't tell you what the result is, but I tell you that it is 3 or less. What is the probability that the result is even?

- A) $\frac{1}{2}$
- B) $\frac{1}{3}$
- C) $\frac{1}{4}$
- D) None of the above.

• Suppose again that A and B are two events, and that all outcomes are equally likely. Then, the probability that both A and B occur is

$$P(A \text{ and } B) = \frac{\text{# of outcomes satisfying both A and B}}{\text{total # of outcomes}}$$

• **Example 2:** I roll a fair six-sided die. What is the probability that the roll is 3 or less and even?

The multiplication rule

• The multiplication rule specifies how to compute the probability of both A and B happening, even if all outcomes are not equally likely.

$$P(A \text{ and } B) = P(A) \cdot P(B \text{ given } A)$$

• **Example 2, again:** I roll a fair six-sided die. What is the probability that the roll is 3 or less and even?

A B
$$P(A \text{ and } B) = P(A) * P(B \text{ given})$$

$$= \frac{3}{6} * \frac{1}{3} = \frac{1}{6}$$

What if A isn't affected by в? 🤒

• The multiplication rule states that, for any two events A and B,

$$P(A \text{ and } B) = P(A) \cdot P(B \text{ given } A)$$

- What if knowing that A happens doesn't tell you anything about the likelihood of B happening?
 - Suppose we flip a fair coin three times.
 - The probability that the second flip is heads doesn't depend on the result of the first flip.

• Then, what is P(A and B)?

RGB cavdS
$$P(G, ond R) = P(G, t) +$$

$$= \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} P(R, given G, t)$$

Independent events

• Two events A and B are independent if P(B given A) = P(B), or equivalently if

$$P(A \text{ and } B) = P(A) \cdot P(B)$$

• **Example 3:** Suppose we have a coin that is **biased**, and flips heads with probability 0.7. Each flip is independent of all other flips. We flip it 5 times. What's the probability we see 5 heads in a

Probability that an event *doesn't* happen

- The probability that A **doesn't** happen is 1 P(A).
- For example, if the probability it is sunny tomorrow is 0.85, then the probability it is not sunny tomorrow is 0.15.

P(talk at least once)
$$= 1 - P(NNN) = 1 - \left(\frac{3}{3}\right) = \frac{19}{27}N = 100$$
Concept Check \sim - Answer at **cc.dsc10.com**

Every time I call my grandma e, the probability that she answers her phone is $\frac{1}{3}$, independently for each call. If I call my grandma three times today, what is the chance that I will talk to her at least once?

out come 5

- A) 1/3
 - B) $\frac{2}{3}$
 - C) $\frac{1}{2}$
 - D) 1
 - E) None of the above.

• Suppose again that A and B are two events, and that all outcomes are equally likely. Then, the probability that either A or B occur is

$$P(A \text{ or } B) = \frac{\text{# of outcomes satisfying either A or B}}{\text{total # of outcomes}}$$

• Example 4: I roll a fair six-sided die. What is the probability that

the roll is even or at least 5?

Can't just do
$$P(A) + P(B) because$$

$$A and B overlap$$

$$P(A) = 3/6$$

$$P(B) = 2/6$$
issue:

The addition rule

- Suppose that if A happens, then B doesn't, and if B happens, then A doesn't.
 - Such events are called mutually exclusive they have no overlap.
- If A and B are any two mutually exclusive events, then

$$P(A \text{ or } B) = P(A) + P(B)$$

• **Example 5:** Suppose I have two biased coins, coin A and coin B. Coin A flips heads with probability 0.6, and coin B flips heads with probability 0.3. I flip both coins once. What's the probability I see two different faces?

Hon A AND Ton B O.G & D.7

Ton A AND Hong

Aside: proof of the addition rule for equally-likely events

You are not required to know how to "prove" anything in this course; you may just find this interesting.

If A and B are events consisting of equally likely outcomes, and furthermore A and B are mutually exclusive (meaning they have no overlap), then

$$P(A \text{ or } B) = \frac{\# \text{ of outcomes satisfying either A or B}}{\text{total } \# \text{ of outcomes}}$$

$$= \frac{(\# \text{ of outcomes satisfying A}) \# \text{ of outcomes satisfying B}}{\text{total } \# \text{ of outcomes satisfying B}}$$

$$= \frac{(\# \text{ of outcomes satisfying A})}{\text{total } \# \text{ of outcomes}} + \frac{(\# \text{ of outcomes satisfying B})}{\text{total } \# \text{ of outcomes}}$$

$$= P(A) + P(B)$$

Summary, next time

- Probability describes the likelihood of an event occurring.
- There are several rules for computing probabilities. We looked at many special cases that involved equally-likely events.
- There are two general rules to be aware of:

AND

■ The **multiplication rule**, which states that for any two events, $P(A \text{ and } B) = P(B \text{ given } A) \cdot P(A)$.

- The **addition rule**, which states that for any two **mutually** exclusive events, P(A or B) = P(A) + P(B).
- Next time: simulations.