Lecture 11 - Probability

DSC 10, Winter 2023

Announcements

- Lab 3 is due tomorrow at 11:59PM.
- Homework 3 is due Tuesday 2/7 at 11:59PM.
- The Midterm Project (Restaurants Ω) is released and due Tuesday 2/14 at 11:59PM.
- Partners must follow these partner guidelines. In particular, you must both contribute to all parts of the project and not split up the problems.
- Still looking for a partner? Use this thread on EdStem to connect with classmates.

Last time: for -loops

- Almost every for -loop in DSC 10 will use the accumulator pattern.
- This means we initialize a variable, and repeatedly add on to it within a loop.
- The variable could be an integer, an array, or even a string (as in Homework 3, Question 4: Wordle $\square \square \square \square \square$).
- Do not use for -loops to perform mathematical operations on every element of an array or Series.
- Instead use DataFrame manipulations and built-in array or Series methods.
- Helpful video 㩆: For Loops (and when not to use them) in DSC 10.

Agenda

We'll cover the basics of probability theory. This is a math lesson; take written notes.

Probability resources
Probability is a tricky subject. If it doesn't click during lecture or on the assignments, take a look at the following resources:

- Computational and Inferential Thinking, Chapter 9.5.
- Theory Meets Data, Chapters 1 and 2.
- Khan Academy's unit on Probability.

Probability theory

- Some things in life seem random.
- e.g. flipping a coin or rolling a die
- The probability of seeing "heads" when flipping a fair coin is $\frac{1}{2}$.
- One interpretation of probability says that if we flipped a coin infinitely many times, then $\frac{1}{2}$ of the outcomes would be heads.

Terminology

- Experiment: A process or action whose result is random.
- e.g., rolling a die.
- e.g., flipping a coin twice.
- Outcome: The result of an experiment.
- e.g., the possible outcomes of rolling a six-sided die are 1 , $2,3,4,5$, and 6 .
- e.g., the possible outcomes of flipping a coin twice are HH, HT, TH, and TT.
- Event: A set of outcomes.
- e.g., the event that the die lands on a even number is the set of outcomes $\{2,4,6\}$.
- e.g., the event that the die lands on a 5 is the set of outcomes \{5\}.
- e.g., the event that there is at least 1 head in 2 flips is the set of outcomes $\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}\}$.

Terminology

- Probability: A number between 0 and 1 (equivalently, between 0% and 100%) which describes the likelihood of an event.
- 0 : the event never happens.
- 1: the event always happens.
- Notation: if A is an event, $\mathrm{P}(\mathrm{A})$ is the probability of that event.

Equally-likely outcomes

- If all outcomes in event A are equally likely, then the probability of A is
\#good outcomes
- Example 1: Suppose we f ipa affair coin 3 times. What is the out tomes 8 probability we see exactly 2 heads?

I have three cards: red, blue, and green. What is the chance that I choose a card at random and it is green, then - without putting it back - I choose another card at random and it is red?

Conditional probabilities

- Two events A and B can both happen. Suppose that we know A has happened, but we don't know if в has.
- If all outcomes are equally likely, then the conditional probability of B given A is:

given A

- Intuitively, this is similar to the definition of the regular probability of $\mathrm{B}, \mathrm{P}(\mathrm{B})=\frac{\# \text { of outcomes satisying } \mathrm{B}}{\text { total } \# \text { of outcomes }}$, if you restrict the set of possible \ K $\cap O w_{i n}$ outcomes to be just those in event A.
that $\mathbb{A}_{1)}$
happered

Concept Check \square

- Answer at cc.dsc10.com
\qquad I roll a six-sided die and don't tell you what the result is, but I tell you that it is 3 or less. What is the probability that the result is even?

$$
=\frac{1}{3}
$$

Probability that two events both happen

- Suppose again that A and в are two events, and that all outcomes are equally likely. Then, the probability that both A and B occur is

$$
P(A \text { and } B)=\frac{\# \text { of outcomes satisfying both A and B }}{\text { total \# of outcomes }}
$$

- Example 2: I roll a fair six-sided die. What is the probability that the roll is 3 or less and even?

The multiplication rule

- The multiplication rule specifies how to compute the probability of both A and B happening, even if all outcomes are not equally likely.
$P(A$ and $B)=P(A) \cdot P(B$ given $A)$
- Example 2, again: I roll a fair six-sided die. What is the probability that the roll is 3 or less and even?

$$
\begin{aligned}
A(A \text { and } B) & =P(A) * P(B \text { given } \\
& =\frac{3}{6} * \frac{1}{3}=\frac{1}{6}
\end{aligned}
$$

What if A_{A} isn't affected by ${ }_{\mathrm{B}}$?

- The multiplication rule states that, for any two events A and B ,

$$
P(A \text { and } B)=P(A) P P(B \text { given } A) \text { Gond. prob. }
$$

- What if knowing that a happens doesn't tell you anything about the likelihood of в happening?
- Suppose we flip a fair coin three times.
- The probability that the second flip is heads doesn't depend on the result of the first flip.
- Then, what is $\mathrm{P}(\mathrm{A}$ and B$)$?

$$
\begin{aligned}
& =\frac{1}{3} * \frac{1}{2}=\frac{1}{6} \quad P\left({\underset{2}{ }}_{R^{\infty}} \text { given } \underset{1^{*}}{G}\right)
\end{aligned}
$$

Independent events

- Two events A and B are independent if $\underline{P(B \text { given } A)=P(B) \text {, or }}$ equivalently if

$$
\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B})
$$

- Example 3: Suppose we have a coin that is biased, and flips heads with probability 0.7. Each flip is independent of all other flips. We flip it 5 times. What's the probability we see 5 heads in a

$$
\begin{aligned}
& P\left(15+H \text { AND } 2^{\text {nd }} H \text { AND }, \ldots A N D 5^{\text {rh }} H\right) \\
& =\underbrace{=P\left(1^{54} H\right)}_{0.7} \times \underbrace{P\left(2^{\text {nd }} H\right) * \ldots * P\left(S^{\text {th }} H\right)}_{0.7}
\end{aligned}
$$

Probability that an event doesn'thappen

- The probability that A doesn't happen is $1-\mathrm{P}(\mathrm{A})$.
- For example, if the probability it is sunny tomorrow is 0.85 , then the probability it is not sunny tomorrow is 0.15 .

P(talk at least once)

Every time I call my grandma , the probability that she answers her phone is $\frac{1}{3}$, independently for each call. If I call my grandma three times today, what is the chance that I will talk to her at least once?

Probability of either of two events happening

- Suppose again that А and в are two events, and that all outcomes are equally likely. Then, the probability that either A or B occur is

$$
P(A \text { or } B)=\frac{\# \text { of outcomes satisfying either } A \text { or } B}{\text { total } \# \text { of outcomes }}
$$

- Example 4: I roll a fair six-sided die. What is the probability that the roll is even or at least 5 ?

cant just do $P(A)+P(B)$ because A and B overlap

$$
\begin{aligned}
& P(A)=3 / 6 \\
& P(B)=2 / 6>5 / 6 \\
& \text { douse cisunt } 6
\end{aligned}
$$

The addition rule

- Suppose that if A happens, then B doesn't, and if B happens, then A doesn't.
- Such events are called mutually exclusive - they have no overlap.
- If A and B are any two mutually exclusive events, then

$$
\mathrm{P}(\mathrm{~A} \text { or } \mathrm{B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})
$$

- Example 5: Suppose I have two biased coins, coin A and coin B. Coin A flips heads with probability 0.6 , and coin B flips heads with probability 0.3 . I flip both coins once. What's the probability I see two different faces?

Aside: proof of the addition rule for equally-likely events
You are not required to know how to "prove" anything in this course; you may just find this interesting.
If A and B are events consisting of equally likely outcomes, and furthermore A and B are mutually exclusive (meaning they have no overlap), then

Summary, next time

- Probability describes the likelihood of an event occurring.
- There are several rules for computing probabilities. We looked at many special cases that involved equally-likely events.
- There are two general rules to be aware of:
- The multiplication rule, which states that for any two events, $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{B}$ given A$) \cdot \mathrm{P}(\mathrm{A})$.
- The addition rule, which states that for any two mutually exclusive events, $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$.
- Next time: simulations.

