Lecture 11 – Probability

DSC 10, Fall 2024

Announcements

- Discussion is **today**. New policies starting in two weeks:
 - You must take and upload a photo with your ID for credit. No sign-in sheet option.
 - Submissions will close at 11:59PM the day of discussion and we won't accept your photo outside of this.
- Quiz 2 is on **Wednesday** in your assigned quiz session.
 - Same time as Quiz 1, but new seats. You should get an email tomorrow with your seating assignment.
 - The quiz covers Lecture 5 through 10 and related labs and homeworks.
- Lab 3 is due **Thursday**. Homework 3 is due on **Sunday**.
 - Do as much of these assignments as possible before the quiz.

Agenda

We'll cover the basics of probability theory. This is a math lesson; take written notes .

Probability resources

Probability is a tricky subject. If it doesn't click during lecture or on the assignments, take a look at the following resources:

- Computational and Inferential Thinking, Chapter 9.5.
- Theory Meets Data, Chapters 1 and 2.
- Khan Academy's unit on Probability.

Probability theory

- Some things in life seem random.
 - e.g., flipping a coin or rolling a die 🐼.
- The **probability** of seeing "heads" when flipping a fair coin is $\frac{1}{2}$.
- One interpretation of probability says that if we flipped a coin infinitely many times, then $\frac{1}{2}$ of the outcomes would be heads.

Terminology

- Experiment: A process or action whose result is random.
 - e.g., rolling a die.
 - e.g., flipping a coin twice.
- Outcome: The result of an experiment.
 - e.g., the possible outcomes of rolling a six-sided die are 1, 2, 3, 4, 5,
 and 6.
 - e.g., the possible outcomes of flipping a coin twice are HH, HT, TH, and TT.
- Event: A set of outcomes.
 - e.g., the event that the die lands on a even number is the set of outcomes {2, 4, 6}.
 - e.g., the event that the die lands on a 5 is the set of outcomes {5}.
 - e.g., the event that there is at least 1 head in 2 flips is the set of outcomes {HH, HT, TH}.

Terminology

- **Probability**: A number between 0 and 1 (equivalently, between 0% and 100%) that describes the likelihood of an event.
 - 0: The event never happens.
 - 1: The event always happens.
- Notation: If A is an event, P(A) is the probability of that event.

Equally-likely outcomes

ullet If all of the possible outcomes are equally likely, then the probability of A is

$$P(A) = \frac{\# \text{ of outcomes satisfying } A}{\text{total } \# \text{ of outcomes}}$$

• **Example 1**: Suppose we flip a fair coin 3 times. What is the probability we see

exactly 2 heads?

HHHHTTTTH

TTH

HTTH

HTTT

HHTT

Concept Check ✓ – Answer at <u>cc.dsc10.com</u>

I have three cards: red, blue, and green. What is the chance that I choose a card at random and it is green, then - without putting it back - I choose another card at

random and it is red?

- A) $\frac{1}{9}$
- B) $\frac{1}{6}$
 - C) $\frac{1}{3}$

• D) $\frac{2}{3}$ • E) None of the above.

Conditional probabilities

- Two events A and B can both happen. Suppose that we know A has happened, but we don't know if B has.
- If all outcomes are equally likely, then the conditional probability of B given A is:

$$P(B \text{ given } A) = \frac{\# \text{ of outcomes satisfying both } A \text{ and } B}{\# \text{ of outcomes satisfying } A}$$

• Intuitively, this is similar to the definition of the regular probability of B, $P(B) = \frac{\# \text{ of outcomes satisfying } B}{\text{total } \# \text{ of outcomes}}, \text{ if you restrict the set of possible outcomes to be}$

to how A to how A to ker up

Concept Check ✓ – Answer at cc.dsc10.com

$$P(B \text{ given } A) = \frac{\text{\# of outcomes satisfying both } A \text{ and } B}{\text{\# of outcomes satisfying } A}$$

I roll a six-sided die and don't tell you what the result is, but I tell you that it is 3 or less. What is the probability that the result is even?

- A) $\frac{1}{2}$
- B) $\frac{1}{3}$
- C) $\frac{1}{4}$

• D) None of the above.

>

Pleven giver

3

Probability that two events both happen

• Suppose again that A and B are two events, and that all outcomes are equally likely. Then, the probability that both A and B occur is

$$P(A \text{ and } B) = \frac{\# \text{ of outcomes satisfying both } A \text{ and } B}{\text{total } \# \text{ of outcomes}}$$

• Example 2: I roll a fair six-sided die. What is the probability that the roll is 3 or

make B happer

• The multiplication rule specifies how to compute the probability of both A and B happening, even if all outcomes are not equally likely.

$$P(A \text{ and } B) = P(A) \cdot P(B \text{ given } A)$$

happened

• **Example 2, again**: I roll a fair six-sided die. What is the probability that the roll is 3 or less and even?

What if A isn't affected by B?

$$P(A \text{ and } B) = P(A) \cdot P(B \text{ given } A)$$

- What if knowing that A happens doesn't tell you anything about the likelihood of B happening?
 - Suppose we flip a fair coin three times.
 - The probability that the second flip is heads doesn't depend on the result of the first flip.
- Then, what is P(A and B)?

 $P(A \text{ and } B) = P(A) \circ P(B)$

irrelevant

J=x to E

When A and B are independent, and =

Independent events

ullet Two events A and B are independent if $P(B ext{ given } A) = P(B)$, or equivalently

$$P(A \text{ and } B) = P(A) \cdot P(B)$$

• **Example 3**: Suppose we have a coin that is **biased**, and flips heads with probability 0.7. Each flip is independent of all other flips. We flip it 5 times.

What's the probability we see 5 heads in a row?

Probability that an event *doesn't* happen

- The probability that A doesn't happen is 1 P(A).
- For example, if the probability it is sunny tomorrow is 0.85, then the probability it is not sunny tomorrow is 0.15.

Concept Check ✓ – Answer at <u>cc.dsc10.com</u>

Every time I call my grandma \odot , the probability that she answers her phone is $\frac{1}{3}$, independently for each call. If I call my grandma three times today, what is the

chance that I will talk to her at least once?

- E) None of the above.

outcomes? 8 likely? NO

T(YNN)=P(Y) XP(N)xP(N)
utus mas? & independent

Probability of either of two events happening
$$\frac{3}{6} + \frac{2}{6} = \frac{5}{6}$$

• Suppose again that A and B are two events, and that all outcomes are equally likely. Then, the probability that either A or B occur is

$$P(A \text{ or } B) = \frac{\# \text{ of outcomes satisfying either } A \text{ or } B}{\text{total } \# \text{ of outcomes}}$$

• Example 4: I roll a fair six-sided die. What is the probability that the roll is even or at 4 east 5?

- ullet Suppose that if A happens, then B doesn't, and if B happens, then A doesn't.
 - Such events are called mutually exclusive they have no overlap
- $\bullet \ \ \mbox{If } A \mbox{ and } B \mbox{ are any two mutually exclusive events, then}$

$$P(A \text{ or } B) = P(A) + P(B)$$
 $O Y = +$ Whin

• **Example 5**: Suppose I have two biased coins, coin A and coin B. Coin A flips heads with probability 0.6, and coin B flips heads with probability 0.3. If lip the both coins once. What's the probability I see two different faces?

application: cases that don't overlap
case 1:
$$A \Rightarrow H$$
, $B \Rightarrow T$ $P(\text{case 1})$ or case 2)
case 2: $A \Rightarrow T$, $B \Rightarrow H$ $= P(\text{case 1}) + P(\text{case 2})$
 $P(\text{case i}) = P(A \text{ is } H \text{ and} H) \Rightarrow P(B \text{ is } T) = 0.6 \Rightarrow 0.7$

Aside: Proof of the addition rule for equally-likely events

You are not required to know how to "prove" anything in this course; you may just find this interesting.

If A and B are events consisting of equally likely outcomes, and furthermore A and B are mutually exclusive (meaning they have no overlap), then

$$P(A \text{ or } B) = \frac{\# \text{ of outcomes satisfying either } A \text{ or } B}{\text{total } \# \text{ of outcomes}}$$

$$= \frac{(\# \text{ of outcomes satisfying } A) + (\# \text{ of outcomes satisfying } B)}{\text{total } \# \text{ of outcomes}}$$

$$= \frac{(\# \text{ of outcomes satisfying } A)}{\text{total } \# \text{ of outcomes}} + \frac{(\# \text{ of outcomes satisfying } B)}{\text{total } \# \text{ of outcomes}}$$

$$= P(A) + P(B)$$

Summary, next time

- Probability describes the likelihood of an event occurring.
- There are several rules for computing probabilities. We looked at many special cases that involved equally-likely events.
- There are two general rules to be aware of:
 - The **multiplication rule**, which states that for any two events, $P(A \text{ and } B) = P(B \text{ given } A) \cdot P(A)$.
 - The **addition rule**, which states that for any two **mutually exclusive** events, P(A or B) = P(A) + P(B).
- Next time: Simulations.