FALL 22 FINAL

Problem 6

In this question, we'll explore the relationship between the ages and incomes of credit card applicants.

(y) in some (x)

Problem 6.1

The credit card company that owns the data in apps, BruinCard, has decided not to give us access the entire apps DataFrame, but instead just a sample of apps called small_apps. We'll start by using the information in small_apps to compute the regression line that predicts (ne age) if an applicant given their income.

For an applicant with an income that is $\frac{8}{3}$ standard deviations above the mean income, we predict their age to be $\frac{4}{5}$ standard deviations above the mean age. What is the correlation coefficient, r, between incomes and ages in small_apps? Give your answer as a **fully simplified fraction**.

Problem 6.2 $\begin{array}{c} = 4.3 \\ 5.8 \\ \hline \end{array}$ $\begin{array}{c} \chi_{su} = 4.3 \\ \hline \chi_{su} = 4.3 \\ \hline \end{array}$ $\begin{array}{c} \chi_{su} = 4.3 \\ \hline \chi_{su} = 4.3 \\ \hline \end{array}$

Now, we want to predict the income of an applicant given their age. We will again use the information in $\frac{small_apps}{small_apps}$ to find the regression line. The regression line predicts that an applicant whose age is $\frac{4}{5}$ standard deviations above the mean age has an income that is s standard deviations above the mean income. What is the value of s? Give your answer as a

y=income

x= age

age

7 x = 4 5

OSK for Lod = rx x su Prudicted = rx x su 4 = 6/25 +05 +5

Problem 11 FALL 23 FINAL

On Reddit, Yutian read that 22% of all online transactions are fraudulent. She decides to test the following hypotheses:

- Null Hypothesis: The proportion of online transactions that are fraudulent s 0.22.
- Alternative Hypothesis: The proportion of online transactions that are fraudulent is not 0.22.

To test her hypotheses, she decides to create a **95%** confidence interval for the proportion of online transactions that are fraudulent using the Central Limit Theorem.

Unfortunately, she doesn't have access to the entire txn DataFrame; rather, she has access to a simple random sample of txn of size n. In her sample, the proportion of transactions that are fraudulent is 0.2 (or equivalently, $\frac{1}{5}$).

Like human by dy temp

Problem 11.1

95%

The width of Yutian's confidence interval is of the form

has SRS of six n in sample, 0,2 are fraudulent

where n is the size of her sample and c is some positive integer. What is the value of c? Give your answer as an integer.

Hint: Use the fact that in a collection of 0s and 1s, if the proportion of values that are 1 is p, the standard deviation of the collection is $\sqrt{p(1-p)}$.

$$\frac{4 * \frac{SD \text{ of sample}}{1500} = 4 * \sqrt{0.2 * 0.8}}{\sqrt{n}} = \frac{4 * 0.4}{\sqrt{n}}$$

$$= 1.6 = \frac{8/5}{\sqrt{n}} = \frac{8}{500} \quad C = 8$$

Problem 11.2

There is a positive integer J such that:

- ullet If n < J, Yutian will fail to reject her null hypothesis at the ${f 0.05}$ significance level.
- If n>J, Yutian will reject her null hypothesis at the **0.05** significance level.

What is the value of J? Give your answer as an integer.

0.2+2·2/07 51n 40.02 40.11n 40