Lecture 11 — Probability

DSC 10, Spring 2024



Announcements

e Discussion is this afternoon. Problems are here.
e Lab 3is due tomorrow at 11:59PM.
e Quiz 2 is on Friday in your assigned quiz session.
= You should get an email tomorrow with your seating assignment.
= Bring your ID and a pencil.
= This is a 20 minute paper-based quiz with no aids allowed.
= The quiz covers Lecture 5 through 9 and related labs and homeworks.
= Quiz 2 is more challenging than Quiz 1, and next week's Midterm Exam will be
more challenging than Quiz 2. ~
e Homework 3 is due on Tuesday.

= Problems 1 and 2 only are relevant to Quiz 2.


https://practice.dsc10.com/disc04/index.html

Agenda

We'll cover the basics of probability theory. This is a math lesson; take written notes 9



Probability resources

Probability is a tricky subject. If it doesn't click during lecture or on the assignments, take a
look at the following resources:

o Computational and Inferential Thinking, Chapter 9.5.

e Theory Meets Data, Chapters 1 and 2.

o Khan Academy's unit on Probability.



https://inferentialthinking.com/chapters/09/5/Finding_Probabilities.html
http://stat88.org/textbook/content/Chapter_01/00_The_Basics.html
https://www.khanacademy.org/math/probability/xa88397b6:probability

Probability theory

e Some things in life seem random.
= e.g., flipping a coin or rolling a die "#.
 The probability of seeing "heads" when flipping a fair coinis .
 One interpretation of probability says that if we flipped a coin infinitely many times, then
of the outcomes would be heads.
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o Experiment: A process or action whose result is random.
= e.g., rolling adie. 5 A
= e.g., flipping a coin twice. S

e Outcome: The result of an experiment. L

= e.g., the possible outcomes of rolling a six-sided die are 1, 2, 3, 4, 5, and 6.

= e.g., the possible outcomes of flipping a coin twice are HH, HT, TH, and TT.
e Event: A set of outcomes.
= e.g., the event that the die lands on a even number is the set of outcomes {2, 4,
6}.
= e.g. the event that the die lands on a 5 is the set of outcomes {5}.
= e.g. the event that there is at least 1 head in 2 flips is the set of outcomes {HH,
HT, TH}.



Terminology

e Probability: A number between O and 1 (equivalently, between 0% and 100%) that
describes the likelihood of an event.
= O: The event never happens.
= 1: The event always happens.
e Notation: If A is an event, P(A) is the probability of that event.
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Concept Check & — Answer at cc.dsc10.com

| have three cards: red, blue, and green. What is the chance that | choose a card at random

and it is green, thn — without putting it back —) choose another card at random and it is
red?
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http://cc.dsc10.com/
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e Two events 4 and B can both happen. Suppose that we know 4 has happened, but we
don't know if B has.
e [f all outcomes are equally likely, then the conditional probability of B given A is:
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Concept Check & — Answer at cc.dsc10.com

# of outcomes satisfying both A and B

P(Bgiven A) =
(\-;glven ) # of outcomes satisfying A

| roll a six-sided die and don't tell you what the result is, but | tell you that it is 3 or less. What
is the probability that the result is even?
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http://cc.dsc10.com/

Probability that two events both happen

e Suppose again that 4 and B are two events, and that all outcomes are equally likely. Then,
the probability that both 4 and B occur is

P(A and B) = # of outcomes satisfying both A and B

total # of outcomes

o Example 2: | roll a fair six-sided die. What is the probability that the roll is 3 or less and

even?




The multiplication rule
e The multiplication rule specifies how to compute the probability of both 4 and B w\(\
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e The multiplication rule states that, for any two events 4 and B,

P(A and B) = P(A) - P(Bgiven A)
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o What if knowing that 4 happens doesn't tell you anythihg about the likelihood of B 92/ Q H\Q 4
happening?

= Suppose we flip a fair coin three times.
= The probability that the second flip is heads doesn't depend on the result of the

first flip. \]
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e Two events 4 and B are independent |f) (B élven A))=P ‘}‘r equivalently if

P(A and B) = P(4) - P(B)

o Example 3: Suppose we have a coin that is biased, and flips heads with probability 0.7.
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Probability that an event doesn’t happen OD W] Pw ﬂt

e The probability that 4 doesn't happenis1 —
e For example, if the probability it is sunny tomorrow is 0.85, then the probability it is not
sunny tomorrow is 0.15.



Concept Check & — Answer at cc.dsc10.com

Every time | call my grandma @, the probability that she answers her phoneis :,
independently for each call. If | call my grandma three times today, what is the chance that |

will talk to her at least once? dll /’ﬁo]‘/ l,

o L |

.\g\j Mmur+ be 213 0u+<,orvas ase, ]
3 N 73

. Q)! N

.E)\ ml be | NY N § 8 oubomag ‘

. ne of the above. -

, A AND.. 3" :‘(
P(ﬂ@‘r answes on 7 Call AND ... 2 A ) 3

7 - _
not ¥ )‘—’-"“ " L /A
P( answer O Al /> ‘%)
3 )
_ never = ~/ff-> = [-& =
/V COV\W\}Q/ 0\4- s QonQ VD{V\“">"— iPF O ywern l (3 27 T


http://cc.dsc10.com/

Probability of either of two events happening ‘ B

e Suppose again that 4 and B are two events, and that-alFoutcomes arerequallyslikely: Then,
the probability that either A or B occur is

P(Aor B) = # of outcomes satisfying either A or B

total # of outcomes

o Example 4: | roll a fair six-sided die. What is the probability that the roll is even or at least
57
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The addition rule

e Suppose that if 4 happens, then B doesn't, and if B happens, then 4 doesn't.
= Such events are called mutually exclusive - they have no overlap.
e |[f 4 and B are any two mutually exclusive events, then

P(Aor B) = P(A) + P(B)

o Example 5: Suppose | have two biased coins, coin 4 and coin B. Coin A flips heads with
probability 0.6, and coin B flips heads with probability 0.3. | flip both coins once. What's
the probability | see two different faces?
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Aside: Proof of the addition rule for equally-likely events

You are not required to know how to "prove" anything in this course; you may just find this
interesting.

If A and B are events consisting of equally likely outcomes, and furthermore 4 and B are
mutually exclusive (meaning they have no overlap), then

# of outcomes satisfying either A or B
P(Aor B) =

total # of outcomes

(# of outcomes satisfying A) + (# of outcomes satisfying B)

total # of outcomes

(# of outcomes satisfying A)  (# of outcomes satisfying B)

total # of outcomes total # of outcomes

— P(A) + P(B)



Summary, next time

» Probability describes the likelihood of an event occurring.
o There are several rules for computing probabilities. We looked at many special cases that
involved equally-likely events.
e There are two general rules to be aware of:
= The multiplication rule, which states that for any two events,
P(A and B) = P(Bgiven A) - P(A) .
= The addition rule, which states that for any two mutually exclusive events,
P(Aor B) = P(A) + P(B).
e Next time: Simulations.



