Lecture 11 — Probability

DSC 10, Spring 2024



Announcements

e Discussion is this afternoon. Problems are here.
e Lab 3is due tomorrow at 11:59PM.
e Quiz 2 is on Friday in your assigned quiz session.
= You should get an email tomorrow with your seating assignment.
= Bring your ID and a pencil.
= This is a 20 minute paper-based quiz with no aids allowed.
= The quiz covers Lecture 5 through 9 and related labs and homeworks.
= Quiz 2 is more challenging than Quiz 1, and next week's Midterm Exam will be
more challenging than Quiz 2. ~
e Homework 3 is due on Tuesday.
= Problems 1 and 2 only are relevant to Quiz 2.


https://practice.dsc10.com/disc04/index.html

Agenda

We'll cover the basics of probability theory. This is a math lesson; take written notes 9



Probability resources

Probability is a tricky subject. If it doesn't click during lecture or on the assignments, take a
look at the following resources:

o Computational and Inferential Thinking, Chapter 9.5.

e Theory Meets Data, Chapters 1 and 2.

o Khan Academy's unit on Probability.



https://inferentialthinking.com/chapters/09/5/Finding_Probabilities.html
http://stat88.org/textbook/content/Chapter_01/00_The_Basics.html
https://www.khanacademy.org/math/probability/xa88397b6:probability

Probability theory

e Some things in life seem random.
= e.g., flipping a coin or rolling a die "#.
 The probability of seeing "heads" when flipping a fair coinis .
 One interpretation of probability says that if we flipped a coin infinitely many times, then
of the outcomes would be heads.



Terminology

o Experiment: A process or action whose result is random. 3 l/{
= e.g., rolling adie.

= e.g., flipping a coin twice. 6 6
-

o Outcome: The result of an experiment.

= e.g., the possible outcomes of rolling a six-sided die are 1, 2, 3, 4, 5, and 6.
= e.g., the possible outcomes of flipping a coin twice are HH, HT, TH, and TT.
e Event: A set of outcomes.

= e.g., the event that the die lands on a even number is the set of outcomes {2, 4,
6}.

= e.g. the event that the die lands on a 5 is the set of outcomes {5}.

= e.g. the event that there is at least 1 head in 2 flips is the set of outcomes {HH,
HT, TH}.



Terminology

e Probability: A number between O and 1 (equivalently, between 0% and 100%) that
describes the likelihood of an event.
= O: The event never happens.
= 1: The event always happens.
e Notation: If A is an event, P(A) is the probability of that event.



Equally-likely outcomes
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o Example 1: Suppose we flip a fair coin 3 times. What is the probablllty we see exactly 2

heads?
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Concept Check & — Answer at cc.dscl0.com ‘ R \

| have three cards: red, blue, and green. What is the chance that | choose a card at random

and it is green, then- without putting it back — | choose another card at random and it is
red?
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Conditional probabilities
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Concept Check & — Answer at cc.dsc10.com

# of outcomes satisfying both A and B

P(B given A) =
(B given A) # of outcomes satisfying A

| roll a six-sided die and don't tell you what the result is, but | tell you that it is 3 or less. What
is the probability that the result is even? /Z\
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http://cc.dsc10.com/

Probability that two events both happen

e Suppose again that 4 and B are two events, and that all outcomes are equally likely. Then,
the probability that both 4 and B occur is

P(A and B) = # of outcomes satisfying both A and B

total # of outcomes

o Example 2: | roll a fair six-sided die. What is the probability that the roll is 3 or less and
even?
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The multiplication rule \2 1658
e The multiplication rule specifies how to compute the probability of both 4 and B %

happening, even if all outcomes are not equally likely. N Na 8% A
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o Example 2, again: | roll a fair six-sided die. What is the probability that the roll is 3 or less

and even? —‘ C 0\/0\5
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What if 4 isn't affected by 5? & s A % >
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P(A and B) = P(A) -\P(B given A)

o What if knowing that 4 happens doesn't tell you anything about the likelihood of B )()0
happening? -~ \3\5
= Suppose we flip a fair coin three times.
= The probability that the second flip is heads doesn't depend on the result of the \2@
first flip. '
e Then, whatis P(4 and B)?
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e Two events 4 and B are independent if =P(B), or equivalently if

P(A and B) = P(A) - P(B)

o Example 3: Suppose we have a coin that is biased, and flips heads with probability 0.7.
Each flip is independent of all other flips. We flip it 5 times. What's the probability we see
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Probability that an event doesn'thappen C OVY\ ? YY) (\t Y U )@,

e The probability that 4 doesn't happenis1 —
e For example, if the probability it is sunny tomorrow is 0.85, then the probability it is not
sunny tomorrow is 0.15.
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Every time | call my grandma @, the probability that she answers her phone is L L\\d\\\%)

independently for each call. If | call my grandma three times today, what is the chance that |
will talk to her at least once?
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http://cc.dsc10.com/

Probability of either of two events happening

e Suppose again that 4 and B are two events, and that alkoutcomessaresequallyiikeiy. Then,
the probability that either A or B occur is

P(Aor B) = # of outcomes satisfying either A or B

total # of outcomes

o Example 4: | roll a fair six-sided die. What is the probability that the roll is even or at least




The addition rule

e Suppose that if 4 happens, then B doesn't, and if B happens, then 4 doesn't.
= Such events are called mutually exclusive - they have no overlap.
e |[f 4 and B are any two mutually exclusive events, then

P(Aor B) = P(A) + P(B)

o Example 5: Suppose | have two biased coins, coin 4 and coin B. Coin A flips heads with
probability 0.6, and coin B flips heads with probability 0.3. | flip both coins once. What's
ond

the probability | see two different faces?
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Aside: Proof of the addition rule for equally-likely events

You are not required to know how to "prove" anything in this course; you may just find this
interesting.

If A and B are events consisting of equally likely outcomes, and furthermore 4 and B are
mutually exclusive (meaning they have no overlap), then

# of outcomes satisfying either A or B
P(Aor B) =

total # of outcomes

(# of outcomes satisfying A) + (# of outcomes satisfying B)

total # of outcomes

(# of outcomes satisfying A)  (# of outcomes satisfying B)

total # of outcomes total # of outcomes

— P(A) + P(B)



Summary, next time

» Probability describes the likelihood of an event occurring.
o There are several rules for computing probabilities. We looked at many special cases that
involved equally-likely events.
e There are two general rules to be aware of:
= The multiplication rule, which states that for any two events,
P(A and B) = P(Bgiven A) - P(A) .
= The addition rule, which states that for any two mutually exclusive events,
P(Aor B) = P(A) + P(B).
e Next time: Simulations.



