Lecture 11 - Probability
DSC 10, Winter 2024

Announcements

- Extra practice session is tonight. Problems are here.
- This is the best way to prepare for the next quiz.
- Lab 3 is due tomorrow at 11:59PM.
- Quiz 3 is on Monday in discussion.
- It covers lectures 8 through 11, which includes today.
- Homework 3 is due on Thursday at 11:59PM.

Agenda

We'll cover the basics of probability theory. This is a math lesson; take written notes

Probability resources
Probability is a tricky subject. If it doesn't click during lecture or on the assignments, take a look at the following resources:

- Computational and Inferential Thinking, Chapter 9.5.
- Theory Meets Data, Chapters 1 and 2.
- Khan Academy's unit on Probability.

Probability theory

- Some things in life seem random.
- e.g., flipping a coin or rolling a die.
- The probability of seeing "heads" when flipping a fair coin is $\frac{1}{2}$.
- One interpretation of probability says that if we flipped a coin infinitely many times, then $\frac{1}{2}$ of the outcomes would be heads.
- Experiment: A process or action whose result is random.
- egg., rolling a die.
- e.g., flipping a coin twice.
- Outcome: The result of an experiment.

- e.g., the possible outcomes of rolling a six-sided die are $1,2,3,4,5$, and 6.
- e.g., the possible outcomes of flipping a coin twice are $\underline{H}, \underline{H T}, \underline{T H}$, and IT.
- Event: A set of outcomes.
- e.g., the event that the die lands on a even number is the set of outcomes $\{2,4,6\}$.
- egg., the event that the die lands on a 5 is the set of outcomes $\{5\}$.
- e.g., the event that there is at least 1 head in 2 flips is the set of outcomes $\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}\}$.

Terminology

- Probability: A number between 0 and 1 (equivalently, between 0\% and 100\%) that describes the likelihood of an event.
- 0: The event never happens.
- 1: The event always happens.
- Notation: If A is an event, $P(A)$ is the probability of that event.

0
r

a
$5)$

Concept Check
I have three cards: red, blue, and green. What is the chance that I choose a card at random and it is green, then - without putting it back - I choose another card at
${ }_{-A)}^{\text {random and } i t i s \text { read? }}$ green red

Without multiplication:

$$
\begin{array}{lll}
\text { event } \\
G R & R G & B G \\
G B & B R & P(G R)=\frac{1}{6}
\end{array}
$$

Conditional probabilities

- Two events A and B can both happen. Suppose that we know A has happened, but we don't know if B has.
- If all outcomes are equally likely, then the conditional probability of B given A is:

$$
P(B \text { given } A)=\frac{\# \text { of outcomes satisfying both } A \text { and } B}{\# \text { of outcomes satisfying } A}=f \mathrm{Vaction}
$$

- Intuitively, this is similar to the definition of the regular probability of B, outcomes $P(B)=\frac{\text { \# of outcomes satisfying } B}{\text { total \# of outcomes }}$, if you restrict the set of possible outcomes to be just those in event A.

$$
\begin{aligned}
& \text { that are } \\
& \text { in } B
\end{aligned}
$$

Concept Check $\sqrt{\nabla}$ - Answer at cc.dsc10.com

$$
P(B \text { given } A)=\frac{\# \text { of outcomes satisfying both } A \text { and } B}{\# \text { of outcomes satisfying } A}
$$

I roll a six-sided die and don't tell you what the result is, but I tell you that it is 3 or less. What is the probability that the result is even?
-A) $\frac{1}{2}$

- B) $\frac{1}{3}$
-C) $\frac{1}{4}$
- D) None of the above.

Probability that two events both happen

- Suppose again that A and B are two events, and that all outcomes are equally likely. Then, the probability that both A and B occur is

$$
P(A \text { and } B)=\frac{\# \text { of outcomes satisfying both } A \text { and } B}{\text { total } \# \text { of outcomes }}
$$

- Example 2: I roll a fair six-sided die. What is the probability that the roll is 3 or

What if ${ }_{A}$ isn't affected by ${ }_{B}$?

- The multiplication rule states that, for any two events A and B,

$$
P(A \text { and } B)=P(A) \cdot P(\underbrace{B \text { given } A})
$$

- What if knowing that A happens doesn't tell you anything about the likelihood of B happening?
- Suppose we flip a fair coin three times.
- The probability that the second flip is heads doesn't depend on the result of the first flip.
- Then, what is $P(A$ and $B)$?

$$
\begin{aligned}
& \begin{array}{l}
\text { - Example 3: Suppose we have a coin that is biased, and flips heads with } \\
\text { probability } 0.7 \text {. Each flip is independent of all other flips. We flip it } 5 \text { times. the }
\end{array} \\
& \begin{array}{l}
\text { probability } 0.7 \text {. Each flip is independent of all other flips. We flip it } 5 \text { times. } \\
\text { What's the probability we see } 5 \text { heads in a row? }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =P\left(\text { pt flip }^{H}\right) \cdot P\left(2^{\text {ne }} \text { flip } H\right) \text {. } \\
& \text { - P(} 5^{\text {then }} \text { Hip } \\
& =0.7 \cdot 0.7 \cdot \ldots 0.7 \\
& =(0.7)^{5} \quad(\text { not } 0.7 * 5)
\end{aligned}
$$

Probability that an event doesn't happen

- The probability that A doesn't happen is $1-P(A)$.
- For example, if the probability it is sunny tomorrow is 0.85 , then the probability it is not sunny tomorrow is 0.15 .

Concept Check - Answer at cc.dsc10.com
Every time I call my grandma ; , the probability that she answers her phone is $\frac{1}{3}$, independently for each call. If I call my grandma three times today, what is the chance that I will talk to her at least once?

- A) - $_{\frac{1}{2}}^{2}$ (prob. for one call, but you did 3)
-B) $\frac{2}{3}$
-C) $\frac{1}{2}$

outcomes \rightarrow not $7 / 8$ because not all 8 outcomes

$Y \wedge Y\left\{\begin{array}{l}7 \text { outcomes } \\ \text { include }\end{array}\right.$ equally likely

NNN\}loutome no Y $P(N N N)=\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}=\frac{8}{27}$ how many outcomes? $P P\binom{a+$ least }{ one y }$=1-\frac{8}{27}=\frac{19}{27}$

Probability of either of two events happening

- Suppose again that A and B are two events, and that all outcomes are equally likely. Then, the probability that either A or B occur is

$$
\begin{aligned}
& \text { that } A \text { and } B \text { are two events, and that all outcomes are equally } \\
& \text { probability that either } A \text { or } B \text { occur is } \\
& \qquad P(A \text { or } B)=\frac{\# \text { of outcomes satisfying either } A \text { or } B}{\text { total \# o outcomes }}
\end{aligned} \text { outcomes are }
$$

- Example 4: I roll a fair six-sided die. What is the probability that the roll is even or at least 5?

- Suppose thatift A happens, then B doessnt, and if Bhaponens, then $\frac{4}{6}=\frac{3}{6}+\frac{1}{6}$
- Such events are called mutually exclusive - they have no overlap
- If A and B are any two mutually exclusive events, then special case $\sum^{(A+A \in B)=P(A)+P(B)}<$ only when
- Example 5: Suppose I have two biased coins, coin A and coin B. Coin A flips 10 heads with probability 0.6 , and coin B flips heads with probability 0.3 . I flip both OVC (lap coins once. What's the probability I see two different faces?

$$
\begin{aligned}
& =P\left(\begin{array}{ll}
H \text { for } & \\
A & \text { and } \\
B
\end{array}\right)+P\binom{\text { for }}{A} \text { and } f_{0}, ~(H) \\
& \begin{array}{l}
=P(H \text { for } A) * P(T \text { for } B)+P\left(T f_{0}\right) \times P\left(\alpha_{B}+\right. \\
=0.6 * 0.7+0.4 * 0.3
\end{array}
\end{aligned}
$$

Aside: Proof of the addition rule for equally-likely events
You are not required to know how to "prove" anything in this course; you may just find this interesting.
If A and B are events consisting of equally likely outcomes, and furthermore A and B are mutually exclusive (meaning they have no overlap), then

Summary, next time

- Probability describes the likelihood of an event occurring.
- There are several rules for computing probabilities. We looked at many special cases that involved equally-likely events.
- There are two general rules to be aware of:
- The multiplication rule, which states that for any two events, $P(A$ and $B)=P(B$ given $A) \cdot P(A)$.
- The addition rule, which states that for any two mutually exclusive events, $P(A$ or $B)=P(A)+P(B)$.
- Next time: Simulations.

