Lecture 26 – Final Review DSC 10, Winter 2024 #### **Announcements** - Lab 7 is due tomorrow at 11:59PM. - The Final Exam is this Saturday 3/16 from 7-10PM. - All sections will take the exam in Catalyst 0125. Seating assignments will be released Friday. - Collaborative study session on Friday 3/15 from 5-8PM in Solis 104. - If at least 75% of the class fills out both <u>SETs</u> and the DSC 10-specific <u>End-of-Quarter Survey</u>, then the entire class will have 1% of extra credit added to their overall grade. We value your feedback! ## Agenda - We'll work through selected problems from the Fall 2023 Final Exam. - We won't write any code, since you can't run code during the exam. Instead, we'll try to think like the computer ourselves. - These annotated slides will be posted after lecture is over, as will the solutions to the entire exam. - Try the problems with us! Access the exam here. Make sure to read the data info sheet at the top before starting. Aaron wants to explore the discrepancy in fraud rates between "discover" transactions and "mastercard" transactions. To do so, he creates the DataFrame ds mc, which only contains the rows in txn corresponding to "mastercard" or "discover" transactions. After he creates ds mc, Aaron groups ds mc on the "card" column using two different aggregation methods. The relevant columns in the resulting DataFrames are shown below. Aaron decides to perform a test of the following pair of hypotheses: - Null Hypothesis: The proportion of fraudulent "mastercard" transactions is the same as the proportion of fraudulent "discover" transactions. - Alternative Hypothesis: The proportion of fraudulent "mastercard" transactions is less than the proportion of fraudulent "discover" transactions. As his test statistic, Aaron chooses the difference in proportion of transactions that are fraudulent, in the order "mastercard" minus "discover". ds_mc.groupby("card").sum() ds_mc.groupby("card").count() is_fraud is fraud #### Problem 6.1 plum I test discover 160 mastercard 4000 card discover 2000 mastercard 40000 What type of statistical test is Aaron performing? Standard hypothesis test ## Permutation test #### Problem 6.2 What is the value of the observed statistic? Give your answer either as an exact decimal or simplified fraction. $$\frac{4000}{40,000} - \frac{160}{200}$$ $\frac{1}{50} - \frac{4}{50} = \frac{1}{50} = \frac{1}{50}$ The empirical distribution of Aaron's chosen test statistic is shown below. #### Problem 6.5 Which of the following is closest to the p-value of Aaron's new test? reject null in favor alternative Aaron now decides to test a slightly different pair of hypotheses. - Null Hypothesis: The proportion of fraudulent "mastercard" transactions is the same as the proportion of fraudulent "discover" transactions. - Alternative Hypothesis: The proportion of fraudulent "mastercard" transactions is greater than the proportion of fraudulent "discover" transactions. He uses the same test statistic as before. sositive various indicate alt Null & AH The DataFrame ten_txns, displayed in its entirety below, contains a simple random sample of 10 rows from txn. | | is_fraud | amount | method | card | lifetime | browser | Problem 9.1 | |----------------|----------|--------|--------|------------|---------------|-----------------------|--| | transaction_id | | | | | | | Suppose we randomly select one transaction from ten_txns | | 3169166 | True | 100.00 | credit | visa | 532601.00 | chrome 63.0 | What is the probability that the selected transaction is mad | | 3093921 | False | 100.00 | debit | mastercard | 173276.00 | mobile safari 10.0 | with a "card" of "mastercard" or a "method" of "debit"? | | 3137058 | False | 100.00 | debit | visa | 120000.00 | chrome 63.0 | # with card: masternal # with card: masternal # transactions | | 3063164 | False | 100.00 | debit | visa | 141342.00 | mobile safari 11.0 | Dr Wornad = ausi C | | 3051461 | False | 75.00 | credit | visa | 153871.00 | ie 11.0 for desktop | # francachons | | 3171154 | False | 25.00 | debit | visa | 182654.00 | mobile safari generic | <u> </u> | | 3222420 | False | 25.00 | credit | visa | 50199.00 | safari generic | 10 | | 3226397 | False | 22.96 | debit | mastercard | 122352.00 | safari generic | and the state of t | | 3073572 | False | 9.33 | credit | mastercard | 66703.00 | mobile safari 11.6 | + H with the thodist | | 3253371 | False | 5.00 | debit | visa | 3007.00 | chrome 64.0 | mas kicard debit | | | | | | | | | # transactions | | | | | 1.4.5 | rad | ned | verlan | = ' | | | | | VV - | 1-1-1 | act (| 2 ve/ 19/ | 3+6=1 | | | | | 5 | 5 M Dall | | | 10 | | | | | • | 3+6 | -2 | 7 | 10 | | | | | | 11 | $\overline{}$ | - TO | - | | | | | | ٠ ر | / | | | The DataFrame ten_txns, displayed in its entirety below, contains a simple random sample of 10 rows from txn. | | is_fraud | amount | method | card | lifetime | browser | Problem 9.2 | |---------------------|----------|--------|-------------------|------------|-----------------------|-----------------------|--| | transaction_id | | | | | | | Suppose we randomly select two transactions from | | 3169166 | True | 100.00 | credit | visa | 532 601.00 | chrome 63.0 | "ten_txns", without replacement, and learn that peither of the | | 3093921 | False | 100.00 | de bit | mastercard | 173276.00 | mobile safari 10.0 | selected transactions is for an amount of 100 dollars. Given this information, what is the probability that: | | 3137058 | False | 100.00 | de bit | visa | 120000.00 | chrome 63.0 | the first transaction is made with a "card" of "visa" and | | ვე ნ3164 | False | 100.00 | debit | viea | 141342.00 | mobile safari 11.0 | a "method" of "debit",and | | 3051461 | False | 75.00 | credit | visa | 153871.00 | ie 11.0 for desktop | the second transaction is made with a "card" of "visa" | | 3171154 | False | 25.00 | debit | visa | 182654.00 | mobile safari generic | and a "method" of "credit"? | | 3222420 | False | 25.00 | credit | visa | 50199.00 | safari generic | 46 | | 3226397 | False | 22.96 | debit | mastercard | 122352.00 | safari generic | | | 3073572 | False | 9.33 | credit | mastercard | 66703.00 | mobile safari 11.0 | P(A and B) | | 3253371 | False | 5.00 | debit | visa | 3007.00 | chrome 64.0 | | | | 2 | 8 | <u> </u> | 2 | _ | tip | = P(A) * P(Bgiven A) | | 3 | 16 | . 5 | | 15 | | cancel | before multiplying | | | | | | | | Work | with small #5 | On Reddit, Yutian read that 22% of all online transactions are fraudulent. She decides to test the following hypotheses: - Null Hypothesis: The proportion of online transactions that are fraudulent is 0.22. - Alternative Hypothesis: The proportion of online transactions that are fraudulent is not 0.22. To test her hypotheses, she decides to create a 95% confidence interval for the proportion of online transactions that are fraudulent using the Central Limit Theorem. Unfortunately, she doesn't have access to the entire txn DataFrame; rather, she has access to a simple random sample of txn of size n. In her sample, the proportion of transactions that are frauduler t is 0.2 (or equivalent y #### Problem 11.1 The width of Yutian's confidence interval is of the form where n is the size of her sample and c is some positive integer What is the value of c? Give your answer as an integer. Hint: Use the fact that in a collection of 0s and 1s, if the proportion of values that are 1 is p, the standard deviation of the $+\infty$ collection is $\sqrt{p(1-p)}$. ane an On Reddit, Yutian read that 22% of all online transactions are fraudulent. She decides to test the following hypotheses: - **Null Hypothesis**: The proportion of online transactions that are fraudulent is **0.22**. - Alternative Hypothesis: The proportion of online transactions that are fraudulent is not 0.22. param $\pm \chi$ To test her hypotheses, she decides to create a 95% confidence interval for the proportion of online transactions that are fraudulent using the Central Limit Theorem. Unfortunately, she doesn't have access to the entire txn DataFrame; rather, she has access to a simple random sample of txn of size n. In her sample, the proportion of transactions that are fraudulent is **0.2** (or equivalently, $\frac{1}{\epsilon}$). #### Problem 11.2 There is a positive integer J such that: • If n < J, Yutian will fail to reject her null hypothesis at the **0.05** significance level. If n > J, Yutian will reject her null hypothesis at the **0.05** significance level. **0.22** owts. de introduced I What is the value of J? Give your answer as an integer. $|V_{0}| = \frac{2}{5\sqrt{n}}$ What should not be to make $\frac{1}{20} = \frac{2}{\sqrt{h}}$ $\sqrt{0.18}$ nake N > 1600 0-18 0-02 0-22 n<1600 On Reddit, Keenan also read that 22% of all online transactions are fraudulent. He decides to test the following hypotheses at the **0.16 significance level**: - Null Hypothesis: The proportion of online transactions that are fraudulent is 0.22. - Alternative Hypothesis: The proportion of online transactions that are fraudulent is not 0.22. Keenan has access to a simple random sample of txn of size **500**. In his sample, the proportion of transactions that are fraudulent is **0.23**. Below is an incomplete implementation of the function reject_null, which creates a bootstrap-based confidence interval and returns True if the conclusion of Keenan's test is to reject the null hypothesis, and False if the conclusion is to <a href="failto:fail ``` def reject_null(): fraud_counts = np.array([]) for i in np.arange(10000): fraud_count = np.random.multinomial(500, _(a)__)[0] fraud_counts = np.append(fraud_counts, fraud_count) L = np.percentile(fraud_counts, _(b)__) R = np.percentile(fraud_counts, _(c)__) if _(d)__ < L or _(d)__ > R: # Return True if we REJECT the null. return True else: # Return False if we FAIL to reject the null. return False ``` Fill in the blanks so that reject_null works as intended. Hint: Your answer to (d) should be an integer greater than 50. translation Letween F Proportion Ashley doesn't have access to the entire txn DataFrame; instead, she has access to a simple random sample of 400 rows of txn. She draws two histograms, each of which depicts the distribution of the "amount" column in her sample, using different bins. Unfortunately, DataHub is being finicky and so two of the bars in Histogram A are deleted after it is created. #### Problem 13.1 In Histogram A, which of the following bins contains approximately 60 transactions? - 0 [30, 60) - \circ [90, 120) - \circ [120, 150) - 0 [180, 210) #### Problem 13.2 Let w, x, y, and z be the heights of bars W, X, Y, and Z, respectively. For instance, y is about 0.01. Which of the following expressions gives the height of the bar corresponding to the [60, 90) bin in Histogram A? $$\bigcirc (y+z)-(w+x)$$ $$\bigcirc (w+x)-(y+z)$$ $$\bigcirc rac{3}{2}(y+z)-(w+x)$$ $$(y+z)-\frac{3}{2}(w+x)$$ $$0.3(y+z)-2(w+x)$$ $$02(y+z)-3(w+x)$$ None of the above. As mentioned in the previous problem, Ashley has sample of 400 rows of txn. Coincidentally, in Ashley's sample of 400 transactions, the mean and standard deviation of the "amount" column both come out to 70 dollars. #### Problem 14.1 Fill in the blank: "According to Chebyshev's inequality, at most 25 transactions in Ashley's sample are above ____ dollars; the rest must be below ____ dollars." What goes in the blank? Give your answer as an **integer**. Both blanks are filled in with the same number. As mentioned in the previous problem, Ashley has sample of 400 rows of txn. Coincidentally, in Ashley's sample of 400 transactions, the mean and standard deviation of the "amount" column both come out to 70 dollars. #### Problem 14.3 The predicted lifetime spending, in **dollars**, of a card with a transaction amount of 280 dollars is of the form $f \cdot c$, where f is a fraction. What is the value of f? Give your answer as a simplified fraction. As mentioned in the previous problem, Ashley has sample of 400 rows of txn. Coincidentally, in Ashley's sample of 400 transactions, the mean and standard deviation of the "amount" column both come out to 70 dollars. #### Problem 14.4 Suppose the intercept of the regression line, when both transaction amounts and lifetime spending are measured in **dollars**, is 40. What is the value of c? Give your answer as an integer. #### Problem 1.1 Nate's favorite number is 5. He calls a number "lucky" if it's greater than 500 or if it contains a 5 anywhere in its representation. For example, 1000.04 and 5.23 are both lucky numbers. Complete the implementation of the function check_lucky, which takes in a number as a float and returns true if it is lucky and False otherwise. Then, add a column named "is_lucky" to txn that contains True for lucky transaction amounts and False for all other transaction amounts, and save the resulting DataFrame to the variable lucky. ``` def check_lucky(x): return __(a)__ luck = txn.assign(is_lucky = __(b)__) ``` - 1. What goes in blank (a)? - 2. What goes in blank (b)? #### Problem 1.2 Fill in the blanks below so that lucky_prop evaluates to the proportion of fraudulent "visa" card transactions whose transaction amounts are lucky. ``` visa_fraud = __(a)__ lucky_prop = visa_fraud.__(b)_.mean() ``` - 1. What goes in blank (a)? - 2. What goes in blank (b)? #### Problem 1.3 Fill in the blanks below so that lucky_prop is one value in the Series many_props. ``` many_props = luck.groupby(__(a)__).mean().get(__(b)__) ``` - 1. What goes in blank (a)? - 2. What goes in blank (b)? Consider the DataFrame combo, defined below. ``` combo = txn.groupby(["is_fraud", "method", "card"]).mean() ``` #### Problem 2.1 What is the maximum possible value of combo.shape[0]? Give your answer as an integer. As a senior suffering from senioritis, Weiyue has plenty of time on his hands. 1,000 times, he repeats the following process, creating 1,000 confidence intervals: - 1. Collect a simple random sample of 100 rows from txn. - 2. Resample from his sample 10,000 times, computing the mean transaction amount in each resample. - 3. Create a 95% confidence interval by taking the middle 95% of resample means. He then computes the width of each confidence interval by subtracting its left endpoint from its right endpoint; e.g. if [2,5] is a confidence interval, its width is 3. This gives him 1,000 widths. Let M be the mean of these 1,000 widths. #### Problem 10.1 Select the true statement below. - About 950 of Weiyue's intervals will contain the mean transaction amount of all transactions ever. - O About 950 of Weiyue's intervals will contain the mean transaction amount of all transactions in txn. - About 950 of Weiyue's intervals will contain the mean transaction amount of all transactions in the first random sample of 100 rows of txn Weiyue took. - $^{\circ}$ About 950 of Weiyue's intervals will contain M.