
San Diego Apartments

Today, we’ll explore data on 800 different apartments available for rent in San Diego. Each
row in the DataFrame apts corresponds to an individual apartment. The DataFrame is
indexed by "Apartment ID" (int), which is a unique identifier for the apartment. The
columns of apts are as follows:

• "Rent" (int): The monthly rent for the apartment, in dollars.

• "Bed" (str): The number of bedrooms in the apartment. Values are "Studio",
"One", "Two", and "Three".

• "Bath" (str): The number of bathrooms in the apartment. Values are "One", "One
and a half", "Two", "Two and a half", and "Three".

• "Laundry" (bool): If the apartment comes with an in-unit washer and dryer.

• "Sqft" (int): The area of the apartment, in square feet.

• "Neighborhood" (str): The neighborhood in which the apartment is located.

• "Complex" (str): The complex the apartment is a part of.

• "Lease Term" (str): The duration of the apartment’s lease. Values are "1 month",
"6 months", and "1 year".

The first few rows of apts are shown below, though apts has many more rows than pictured,
800 in total. The data in apts is only a sample from the much larger population of all San
Diego apartments.

Throughout this exam, assume that we have already run import babypandas as bpd and
import numpy as np.



Question 15 (8 pts)

Imagine a DataFrame constructed from apts called bedrooms, which has one row for each
bedroom in an apartment in apts. More specifically, a one bedroom apartment in apts will
appear as one row in bedrooms, a two bedroom apartment in apts will appear as two rows
in bedrooms, and a three bedroom apartment in apts will appear as three rows in bedrooms.
Studio apartments will not appear in bedrooms at all.

The "Apartment ID" column of bedrooms contains the "Apartment ID" of the apartment
in apts. Notice that this is not the index of bedrooms since these values are no longer
unique. The "Cost" column of bedrooms contains the rent of the apartment divided by the
number of bedrooms. All rows of bedrooms with a shared "Apartment ID" should therefore
have the same value in the "Cost" column.

a) (3 pts) Recall that apts has 800 rows. How many rows does bedrooms have?

800

More than 800.

Less than 800.

Not enough information.

b) (5 pts) Suppose no studio is defined as follows. (Remember, we previously converted
the "Beds" column to integers.)

no_studio = apts[apts.get("Bed") != 0]

Which of the following statements evaluates to the same value as the expression below?

bedrooms.get("Cost").mean()

Select all that apply.

no studio.get("Rent").mean()

no studio.get("Rent").sum() / apts.get("Bed").sum()

(no studio.get("Rent") / no studio.get("Bed")).mean()

(no studio.get("Rent") / no studio.get("Bed").sum()).sum()

no studio.get("Rent").mean() / no studio.get("Bed").mean()

None of these.

18





PID:

Question 9 (20 pts)

For each expression below, determine the data type of the output and the value of the
expression, if possible. Write the data type in the left box and the value in the right box.
If there is not enough information to determine the expression’s value, write “Unknown” in
the right box.

a) (4 pts) apts.get("Rent").iloc[43] * 4 / 2

type: value:

b) (4 pts) apts.get("Neighborhood").iloc[2][-3]

type: value:

c) (4 pts) (apts.get("Laundry") + 5).max()

type: value:

d) (4 pts) apts.get("Complex").str.contains("Verde")

type: value:

e) (4 pts) apts.get("Sqft").median() > 1000

type: value:

11



Question 10 (28 pts)

We want to use the data in apts to test the following hypotheses:

• Null Hypothesis: The rents of the apartments in UTC and the rents of the apartments
in other neighborhoods come from the same distribution.

• Alternative Hypothesis: The rents of the apartments in UTC are higher than the
rents of the apartments in other neighborhoods on average.

While we could answer this question with a permutation test, in this problem we will explore
another way to test these hypotheses. Since this is a question of whether two samples
come from the same unknown population distribution, we need to construct a “population”
to sample from. We will construct our “population” in the same way as we would for a
permutation test, except we will draw our sample differently. Instead of shuffling, we will
draw our two samples with replacement from the constructed “population.” We will use
as our test statistic the difference in means between the two samples (in the order UTC
minus elsewhere).

a) (13 pts) Suppose the data in apts, which has 800 rows, includes 85 apartments in UTC.
Fill in the blanks below so that p val evaluates to the p-value for this hypothesis test,
which we test according to the strategy outlined above.

diffs = np.array([])

for i in np.arange(10000):

utc_sample_mean = __(a)__

elsewhere_sample_mean = __(b)__

diffs = np.append(diffs, utc_sample_mean - elsewhere_sample_mean)

observed_utc_mean = __(c)__

observed_elsewhere_mean = __(d)__

observed_diff = observed_utc_mean - observed_elsewhere_mean

p_val = np.count_nonzero(diffs __(e)__ observed_diff) / 10000

a:

b:

c:

d:

e: > >= < <= == !=

12


