
DSC 102: Systems for Scalable Analytics

Programming Assignment 1

1 Introduction

In this assignment, you will be using Dask library to explore task parallelism on multiple cores across different
machines. You will be performing feature explorations, data consistency checks, and computing several descriptive
statistics about the data to build intuitions for feature engineering for the next assignment.

2 Dataset Description

You are provided with the Amazon Reviews dataset with the reviews and products tables as CSV files. The schemas
are provided in Table 1. The goal for the final assignment is to predict user’s star rating. Thus, “overall” is our
label.

(A) Column

name
Column description Example

reviewerID ID of the reviewer A32DT10X9WS4D0

asin ID of the product B003VX9DJM

reviewerName name of the reviewer Slade

helpful
helpfulness rating of

the review
[0, 0]

reviewText text of the review
this was a gift for my friend

who loves touch lamps.

overall rating of the product 1

summary summary of the review broken piece

unixReviewTime summary of the review 1397174400

reviewTime time of the review (raw) 04 11, 2014

(B) Column

name
Column description Example

asin ID of the product 143561

salesRank sales rank information {'Movies & TV': 376041}

imUrl url of the product image
http://g-ecx.images-amazon.com

/31mC.jpg

categories list of categories the product [['Movies & TV', 'Movies']]

title name of the product
Everyday Italian (with Giada de

Laurentiis)

description description of the product 3Pack DVD set - Italian Classics

price price in US dollars 12.99

related

related products (also bought,

also viewed, bought together,

buy after viewing)

{'also_viewed': ['B0036FO6SI',

'000014357X’],'buy_after_viewing

': ['B0036FO6SI', 'B000KL8ODE']}

brand brand name 1

Table 1: (A) Reviews table and (B) Products table

3 Tasks

You will compute several descriptive statistics for both reviews and products table as follows:

Q1. Get percentage of missing values for all columns in the reviews table and the products table

Q2. Find pearson correlation value between the price and ratings

Q3. Get mean, standard deviation, median, min, and max for the price column in the products table

Q4. Get number of products for each super-category (the first entry in the “categories” column in the products
table).

Q5. Check (Return 1 or 0) if there are any dangling references to the product ids from the reviews table to
products table. Return 1 if there are dangling references.

1

Q6. Check (1 or 0) if there is any dangling reference between product ids in the related column and “asin” of
the product table. Return 1 if there are dangling references.

A code stub with function signature for this task has been provided to you. The input to the function is the
reviews CSV file and the products CSV file. The output is a json file (saved as results PA1.json). The
schema has been shared with you (OutputSchema PA1.json). You will write your answers to each sub-task as
values. **Do not modify any keys of the json file**. We will time the execution of the function PA1.

We have shared with you the “development” dataset and our accuracy results. Our code’s runtime on 4 nodes and
1 node are roughly 170s and 720s respectively. You can use this to validate your results and debug your code. The
final evaluation will happen on separate held-out test sets. The runtime and the speedup numbers will be different
for the held-out test set.

4 Deliverables

Submit your source code as <YOUR-TEAM-ID>.py on Canvas. Your source code must confirm to the function
signatures provided to you. Make sure that your code is writing results to results PA1.json.

5 Setup

1. You will be launching 5 EC2 Spot instances, where you will create one instance for setting up the client (jupyter
notebook server) and scheduler, and four instances for running workers.

Client (Jupyter
Notebook server) Scheduler

Worker
Node 1

Worker
Node 2

Worker
Node 3

Worker
Node 4

Node 0

2. Follow the getting started guide given in PA0 for launching EC2 instances. When you are launching, as before,
in the Network Settings tab leave “allow SSH traffic from” checked and set to ‘Anywhere 0.0.0.0/0’. This will
allow you to ssh into each of the machines. In the top right of the “Launch an instance” page, you can select your
desired number of instances. Note that all fo these instances will share the same name but have distinct instance
IDs. You will have to decide which one is the master/head node and which ones are worker nodes. Keep track of
which instance ID corresponds to which.

3. Once the EC2 instances are launched, go to the security group of the instances (under “Security” in the bottom
panel) and click the link for your security group. It will start with ‘sg.’ Click “edit inbound rules” then “add rule.”
Add one rule (under “Inbound Rules”) as follows: A rule with type “All TCP”, and source as “Custom” with the
security group id listed in the search pane (it will look something like “sg- ”. This rule will allow workers
and scheduler to communicate with each other. See Figure 1.

4. In this step, you will start the jupyter notebook server on the client, 1 scheduler process, and 4 worker processes.

a. Change permission of the ssh keyfile to make sure your private key file isn’t publicly viewable: chmod 400

<keyfilename>.pem. Linux and Mac users in particular will need the chmod.

b. SSH into one of the nodes using command: ssh -i ‘‘dask-key.pem" ubuntu@<ip-address-of-EC2-instance>.
Activate the dask environment with command: source dask env/bin/activate. Start jupyter notebook server
on one terminal with: jupyter notebook --port=8888 and start the scheduler on another terminal with com-
mand: dask-scheduler --host 0.0.0.0 This will run the scheduler on port 8786 and dashboard on port 8787.

2

Figure 1

<address-of-scheduler> is given at tcp://172.31.31.176:8786 in the Figure 2 below.

Figure 2

c. Open a new terminal and SSH to jupyter notebook using: ssh -i ‘‘dask-key.pem" ubuntu@<ip-address-of-
EC2-instance> -L 8000:localhost:8888. ‘-L’ will port forward any connection to port 8000 on the local ma-
chine to port 8888 on <ip-address-of-EC2-instance>. Type in jupyter notebook list to get the token/password
for the jupyter notebook. Open your browser and go to localhost:8000 and paste the token. You can write your code
here using jupyter notebook. To see dashboard on localhost port 8001 use command: ssh -i ‘‘dask-key.pem"

ubuntu@<ip-address-of-EC2-instance> -L 8001:localhost:8787.

d. SSH into other 4 nodes and activate the dask environment. Start workers with command: dask-worker

<address-of-scheduler>:8786 --nworkers 4. <address-of-scheduler> was displayed with command
dask-scheduler --host 0.0.0.0. nworkers option will make sure that all the cores of the machine are used. In

3

the scheduler terminal screen, you will be able to see the connected workers.

5. The data and files are available from the s3 bucket (s3://dsc102-public). This contains the function signature
(PA1.py), datasets (user reviews.csv and products.csv), schema of expected output (OutputSchema PA1.json), and
the expected result on the development dataset (results PA1.json). Make sure that data is available in the same
path where scheduler and workers are running. Refer to step 5 given in the getting started guide of PA0 for more
details.

6. Open the dashboard and click on “Workers” to double check if all workers are connected and you are now ready
to code up.

7. Terminate EC2 instances once you are done.

6 Workflow Guidance

Once you are comfortable launching your cluster and are confident that you are able to take advantage of all
the workers on each node, you do not have to do all of your prototyping on the cluster. You can go back to a single
instance, prototype your code, then scale back up to a cluster to yield runtime performance benefits.. The decision
of how to proceed here is based on pareto efficiency, where the trade-off is between convenience, performance, and
cost.

4

	Introduction
	Dataset Description
	Tasks
	Deliverables
	Setup
	Workflow Guidance

