
DSC 102
Systems for Scalable Analytics

1

PA0 Discussion Session: Setting up AWS and Dask

Sai Sree Harsha

• Office hours
• Regular OHs: Wed 10am to 11am
• Extra in PA0 interval: 4pm to 6pm on Apr 20, Apr 21, Apr 24, Apr 25, Apr 27
• Location: Open seating area near CSE 3230

• AWS link
• https://ets-apps.ucsd.edu/individual/DSC102_SP23_A00/

• AWS credentials
• https://ets-apps.ucsd.edu/individual/DSC102_SP23_A00?mode=env

Miscellaneous

Agenda

1. Fundamentals of Dask

2. Demo
a. Setting up AWS
b. Commonly used Dask functions

3. Assignment task and Grading scheme

4. Best Practices and tips for PA0

4

AWS Services

AWS-internal Interconnect

Elastic Compute
Cloud (EC2)

Elastic Block
Storage (EBS)

Machine
Instance 1

Simple Storage Service (S3)
…

Internet You

AWS
Data
Center(s)

Dask: Overview

● Parallel computing framework that scales existing Python ecosystems

np.zeros((10000,10000,10000)) -> OOM!
dask.array.zeros((10000,10000,10000))) -> SUCCESS!

● Breaks up work into tasks and executes them in task parallel manner

● Dask provides APIs (called collections) to create a task graph

● Dask also provides a scheduler that runs the task graph by assigning tasks to workers

 Dask: APIs

Low-level APIs:

• Dask Delayed (Parallel lazy objects)
• Dask Futures (Parallel eager objects)

High-level APIs:

• Dask Array (Parallel NumPy)
• Dask DataFrame (Parallel Pandas)
• Dask Bag (Parallel Dictionary)
• Dask ML (Parallel Scikit-Learn)

DataFrame APIs enough for this
assignment, feel free to check out
other APIs if needed

Dask: DataFrame API

● A Pandas DataFrame needs data to fit entirely in DRAM.

● A Dask DataFrame consists of multiple smaller Pandas DFs called “partitions”.
These partitions reside on the disk.

● Operations on a Dask DF trigger operations on each partition (smaller Pandas
DF) in a way that is mindful of potential parallelism and memory constraints.

● Dask handles staging of partitions between disk and DRAM.

● The number of partitions is often automatically determined based on available
memory and the number of cores, but can also be manually specified.

● Each partition should fit comfortably in memory (DRAM).

Dask: DataFrame API

● Dask operations are evaluated lazily: Dask constructs the logic (called task
graph) of the computation immediately but “evaluates” them only when
necessary.

import dask.dataframe as dd
df = dd.read_csv(“my_huge_file.csv”)
s = df.column.sum()

visualize task graph
s.visualize()

trigger computation to
calculate sum of column
s.compute()

● Use method to trigger computation.compute()

AWS and Dask Demo

Assignment: Dataset Description

Amazon Reviews table

Assignment Task:

Create a new users table using only the reviews table with the following schema:

We will be using Dask library to explore secondary storage aware data access on a

single machine.

 Assignment Approach

Break up the “task” (creating a new users dataframe) into multiple sub-tasks (creating
columns of the users dataframe)

Task 1

DF1 DF2Task 2

Task n

Combine
Specify operations using Dask
DataFrame APIs, which generates
the task graph

Given the task graph, Dask scheduler will take
care of computing them in a task-parallel manner

Grading Scheme

● Run function thrice and take average for getting the runtime measurement

● If accuracy points ≥ 40, runtime evaluation is automated (grading is based on above table)

● If accuracy points < 40, then partial credit based on manual inspection by TAs

Accuracy(80)

• 5 columns
• If all the descriptive stats (mean, std dev, min, and max) rounded to 2 decimal points

match the ground truth with a 1% error margin, then 16 points awarded per column

Runtime(20)

Files and Submission

All files necessary for the assignment are provided in the s3://dsc102-public bucket
• user_reviews.csv – Amazon reviews dataset
• PA0.py – function signature
• results_PA0.json – expected result on the user_reviews.csv dataset

Files used in this discussion session are provided in the s3://dsc102-discussion-demo bucket
• demo_data.csv – small subset of user_reviews.csv used for the demo in this discussion

session
• dask_demo_notebook.ipynb – Jupyter notebook used for the demo in this discussion session

Submit your source code as <YOUR-TEAM-NAME>.py on Canvas.

Your source code must confirm to the function signatures provided to you.

Make sure that your code is writing results to results_PA0.json.

Best Practices for PA0

• Use private GitHub repo if possible for handling code and logs.

• Terminate the AWS instance every time after usage; launch again & read from S3 again next time to save
budget. (Backup your code at regular intervals/before terminating).

• Since the development data set is large, work on a smaller subset first
(you can use the demo_data.csv (3.5 GB) and move to the full dataset user_reviews.csv (28.5 GB) later).

• Some helpful Dask APIs: groupby(), map_partitions(), str.split()

• While performing groupby() aggregations on large no. of groups (millions or more), use split_out to split
output into multiple partitions to avoid memory error. (see this and this for tuning split_out)

• Call .compute() only once in your code (avoid computing intermediate dataframes).

https://examples.dask.org/dataframes/02-groupby.html
https://docs.dask.org/en/latest/generated/dask.dataframe.DataFrame.map_partitions.html
https://docs.dask.org/en/stable/generated/dask.dataframe.Series.str.split.html
https://examples.dask.org/dataframes/02-groupby.html#Many-groups
https://saturncloud.io/docs/troubleshooting/package-support/dask/dask_groupby_aggregations/

Other Helpful Links

• https://tutorial.dask.org/01_dataframe.html

• https://docs.dask.org/en/latest/dataframe-best-practices.html
• https://docs.dask.org/en/latest/dataframe-design.html

• https://examples.dask.org/dataframes/03-from-pandas-to-dask.html
• https://distributed.dask.org/en/latest/memory.html
• https://distributed.dask.org/en/latest/manage-computation.html
• https://docs.dask.org/en/latest/dataframe-indexing.html
• https://docs.dask.org/en/stable/generated/dask.dataframe.DataFrame.reset_in

dex.html

https://tutorial.dask.org/01_dataframe.html
https://docs.dask.org/en/latest/dataframe-best-practices.html
https://docs.dask.org/en/latest/dataframe-design.html
https://examples.dask.org/dataframes/03-from-pandas-to-dask.html
https://distributed.dask.org/en/latest/memory.html
https://distributed.dask.org/en/latest/manage-computation.html
https://docs.dask.org/en/latest/dataframe-indexing.html
https://docs.dask.org/en/stable/generated/dask.dataframe.DataFrame.reset_index.html
https://docs.dask.org/en/stable/generated/dask.dataframe.DataFrame.reset_index.html

Questions

