
Topic 1: Basics of Machine Resources
Part 1: Computer Organization

Ch. 1, 2.1-2.3, 2.12, 4.1, and 5.1-5.5 of CompOrg Book

Rod Albuyeh

1

DSC 102
Systems for Scalable Analytics

DSC 102
Systems for Scalable Analytics

Logistics:

PA0 update

PA group sign ups

“Look under the hood” videos

3

Survey Says...

❖ What do you want to learn from this course?
AWS, Spark, job applicable skills, ambivalent...
v Experience with cluster + cloud computing?
Mostly none.
v Linux + Shell scripting?
Mostly none.
v Anything else you’d like us to know?
Excitement, intimidation, first 8am class

4

Outline

❖ Basics of Computer Organization
❖ Digital Representation of Data
❖ Processors and Memory Hierarchy

❖ Basics of Operating Systems
❖ Process Management: Virtualization; Concurrency
❖ Filesystem and Data Files
❖ Main Memory Management

❖ Persistent Data Storage

5

(REVIEW) Digital Representation of Data

❖ The size and interpretation of a data type depends on PL
❖ A Byte (B; 8 bits) is typically the basic unit of data types
❖ Boolean:

❖ Examples in data sci.: Y/N or T/F responses
❖ Just 1 bit needed but actual size is almost always 1B, i.e., 7

bits are wasted!
❖ Integer:

❖ Examples in data science: # of friends, age, # oflikes
❖ Typically 4 bytes; many variants (short, unsigned, etc.)
❖ Java int can represent -231 to (231 - 1);
❖ C unsigned int can represent 0 to (232 - 1);
❖ Python3 int is effectively unlimited length (PL magic!)

6

(REVIEW) Digital Representation of Data

❖ Given k bits, we can represent 2k unique data items
❖ 3 bytes = 24 bits => 224 items, i.e., 16,777,216 items
❖ Common approximation: 210 (i.e., 1024) ~ 103 (i.e., 1000);

kibibyte (KiB) = 1024 bytes, vs kilobyte (KB) = 1000 bytes

Q: How many unique data items can be represented by 3 bytes?

Q: How many bits are needed to distinguish 97 unique items?

❖ For k unique items, invert the exponent to get
❖ But #bits is an integer! So, we only need
❖ So, we only need the next higher power of 2
❖ So... 7 bits

7

(REVIEW) Digital Representation of Data

1. Given decimal n
if n is power of 2 (say, 2k), put 1 at bit position k; if k=0, stop; else pad

with trailing 0s till position 0
if n is not power of 2, identify the power of 2 just below n (say, 2k);

#bits is then k; put 1 at position k
2. Reset n as n - 2k; return to Steps 1-2
3. Fill remaining positions in between with 0s

7 6 5 4 3 2 1 0 Position/Exponent of 2
128 64 32 16 8 4 2 1 Power of 2Decimal

510

4710

16310

1610

1 0 1
1 0 1 1 1 1

1 10 0 0 0 1 1
1 0 0 0 0

8

Digital Representation of Data

❖ Hexadecimal representation is a common stand-in for binary
representation; more succinct and readable
❖ Base 16 instead of base 2 cuts display length by ~4x
❖ Digits are 0, 1, ... 9, A (1010), B, … F (1510)
❖ Each hexadecimal digit represents 4 bits.

Decimal Binary Hexadecimal

510 1012

4710 10 11112

16310 1010 00112

1610 1 00002

F162
316A
0161

Alternative
notations
0xA3 or A3H

516

9

Digital Representation of Data

Let’s unpack:

Base 10...
0 1 2 3 4 5 6 7 8 9

Base 2...
0 1

Base-16 Hexadecimal...
0 1 2 3 4 5 6 7 8 9 A B C D E F

10 11 12 13 14 15

10

Digital Representation of Data

❖ Float:
❖ Examples in data sci.: salary, scores, model weights
❖ IEEE-754 single-precision format is 4B long; double-precision

format is 8B long. Single precision is ~ 8 decimal digits. Double
precision is ~ 16 decimal digits.

❖ Java and C float is single; Python float is double!

11

Digital Representation of Data

❖ Float:
❖ Standard IEEE format for single (aka binary32):

(Note: Converting decimal reals/fractions to float is NOT on exams)

aka “Mantissa”

12

Digital Representation of Data

❖ Due to representation imprecision issues, floating point
arithmetic (addition and multiplication) is not associative!

❖ In binary32, special encodings recognized:
❖ Exponent 0xFF and fraction 0 is +/- “Infinity”
❖ Exponent 0xFF and fraction <> 0 is “NaN”

13

Digital Representation of Data

❖ More float standards: double-precision (float64; 8B) and half-
precision (float16; 2B); different #bits for exponent, fraction

❖ Float16 is now common for deep learning parameters:
❖ Native support in PyTorch, TensorFlow, etc.; APIs also exist

for weight quantization/rounding post training
❖ NVIDIA Deep Learning SDK support mixed-precision

training; 2-3x speedup with similar accuracy!
❖ New processor hardware (FPGAs, ASICs, etc.) enable arbitrary

precision, even 1-bit (!).

https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html

https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html

14

Digital Representation of Data

❖ Representing Character (char) and String:
❖ Represents letters, numerals, punctuations, etc.
❖ A string is typically just a variable-sized array of char
❖ C char is 1 byte; Java char is 2 bytes; Python does not have a char

type (use str or bytes)
❖ American Standard Code for Information Interchange (ASCII) for

encoding characters; initially 7-bit; later extended to 8-bit (1 byte)
❖ Examples: ‘A’ is 65 (dec), ‘a’ is 97 (dec), ‘@’ is 64 (dec), etc.

❖ Unicode UTF-8 is now most common; subsumes ASCII; 4 bytes for
~1.1 million “code points” incl. many other language scripts, math
symbols ∜, emojis👻, etc.

15

Digital Representation of Data

❖ All digital objects are collections of basic data types (bytes,
integers, floats, and characters)
❖ SQL dates/timestamp: string (w/ known format)
❖ ML feature vector: array of floats (w/ known length)
❖ Neural network weights: set of multi-dimensional arrays

(matrices or tensors) of floats (w/ known dimensions)
❖ Graph: an abstract data type (ADT) with set of vertices (say,

integers) and set of edges (pair of integers)
❖ Program in PL, SQL query: string (w/ grammar)
❖ DRAM addresses: array of bytes (w/ known length)
❖ Instruction in machine code: array of bytes (w/ ISA)
❖ Other data structures or digital objects?

16

Digital Representation of Data

❖ Serialization and Deserialization:
❖ A data structure often needs to be persisted (stored in a file)

or transmitted over a network
❖ Serialization is the process of converting a data structure (or

program objects in general) into a neat sequence of bytes that
can be exactly recovered; deserialization is the reverse, i.e.,
bytes to data structure

❖ Serializing bytes and characters/strings is trivial
❖ 2 alternatives for serializing integers/floats:

❖ As byte stream (aka “binary type” in SQL)
❖ As string, e.g., 4B integer 5 -> 2B string as “5”
❖ String ser. common in data science (CSV, TSV, etc.)

17

Serialization and Deserialization in ML

❖ We often convert a trained model into a format that can be stored
or transmitted. This involves transforming it into a sequence of
bytes that can be written to disk or sent over network (i.e. we
have to serialize it).

❖ Deserialization is the process of converting a serialized model
back to its original data structure so that it can be used for
inference. We load it back into memory for inference or evaluation
purposes.

❖ Can be implemented in various formats, such as JSON, protocol
buffers, or Apache Avro.

❖ We can serialize any other ML related artifacts like transformers,
data, metadata, etc.

18

A Common Serialization Scenario...

19

Review Questions
❖ What is the difference between data and code?
❖ What kind of software is TensorFlow? Linux?
❖ Why do computers use binary numbers?
❖ What is a byte?
❖ How many integers can you represent with 5 bits?
❖ How many bits do you need to represent 5 integers?
❖ What is the hexadecimal representation of 2010?

❖ Why is a floating point standard needed?
❖ Why should a data scientist know about float formats?
❖ What does “lower precision” mean for a float weight in DL?
❖ Why is serialization needed on a computer?
❖ Is code a string? Is a string code?
❖ Is reality a computer simulation? :)

20

Outline

❖ Basics of Computer Organization
❖ Digital Representation of Data
❖ Processors and Memory Hierarchy

❖ Basics of Operating Systems
❖ Process Management: Virtualization; Concurrency
❖ Filesystem and Data Files
❖ Main Memory Management

❖ Persistent Data Storage

21

In class activity

What is 64 in base 2 notation? If you think you might need partial credit, show your work.

() 110001
() 111111
() 1010000
() 1000000
() 1001000

Which of the following is NOT a potential disadvantage of
serializing a machine learning model? If you think you might need partial credit,
explain your justification.

() Increase in the model's size due to the inclusion of architecture and state information.
() Reduced compatibility with different programming languages and versions.
() Loss of interpretability and ability to modify the model's internal workings.
() Risk of privacy breaches due to unauthorized access to the model's data or parameters.
() Increased computational overheads during model inference due to serialization and
deserialization processes.

