
Topic 1: Basics of Machine Resources
Part 1: Computer Organization

Ch. 1, 2.1-2.3, 2.12, 4.1, and 5.1-5.5 of CompOrg Book

Rod Albuyeh

1

DSC 102
Systems for Scalable Analytics



2

Outline

❖ Basics of Computer Organization
❖ Digital Representation of Data
❖ Processors and Memory Hierarchy 

❖ Basics of Operating Systems
❖ Process Management: Virtualization; Concurrency
❖ Filesystem and Data Files
❖ Main Memory Management

❖ Persistent Data Storage



3

Basics of Processors

❖ Processor: Hardware to orchestrate and execute instructions to 
manipulate data as specified by a program
❖ Examples: CPU, GPU, FPGA, TPU, embedded, etc.

❖ Instruction Set Architecture (ISA): The vocabulary of commands of a 
processor

Program in PL

Compile/Interpret

Program in Assembly Language

Assemble

Machine code tied to ISA

Run on processor



4

Abstract Computer Parts and Data

Processor

Bus

Control 
Unit

Arithmetic
& Logic

Unit

Caches

Dynamic Random 
Access Memory 

(DRAM)

Input 
Devices

Output 
Devices

Secondary Storage 
(e.g., Magnetic hard 

disk, Flash SSD, etc.)

Store; Retrieve

Store; Retrieve

Input; Output; Retrieve

Retrieve;
Process

Registers



5

Basics of Processors

❖ Most common approach: load-store architecture
❖ Registers: Tiny local memory (“scratch space”) on proc. into 

which instructions and data are copied
❖ ISA specifies bit length/format of machine code commands
❖ ISA has several commands to manipulate register contents

Q: How does a processor execute machine code?



6

Basics of Processors

❖ Types of ISA commands to manipulate register contents:
❖ Memory access: load (copy bytes from DRAM address to 

register); store (reverse)
❖ Arithmetic & logic on data items in registers: 

add/multiply/etc.; bitwise ops; compare, etc.
❖ Control flow (branch, call, etc.)

❖ Caches: Small local memory to buffer instructions/data

This might help give better intuition: https://www.youtube.com/watch?v=cNN_tTXABUA

Q: How does a processor execute machine code?

https://www.youtube.com/watch?v=cNN_tTXABUA


7

Processor Performance

❖ Modern CPUs can run millions of instructions per second!
❖ ISA influences #clock cycles each instruction needs
❖ CPU’s clock rate lets us convert that to runtime (ns)

❖ Alas, most programs do not keep CPU always busy
❖ Memory access commands stall the processor; Arithmetic & Logic 

Unit and Control Unit are idle during memory-register transfer
❖ Worse, data may not be in DRAM—wait for disk I/O!
❖ So, actual execution runtime of program may be orders of 

magnitude higher than what clock rate calculation suggests

Q: How fast can a processor process a program?

Key Principle: Optimizing access to main memory and use of 
processor cache is critical for processor performance!



8

Memory/Storage Hierarchy

Flash Storage10
5 –

10
6

CPU

Main 
Memory

Magnetic Hard Disk Drive (HDD)

A 
 C

  C
  E

  S
  S

    
   C

  Y
  C

  L
  E

  S
  

10
7 –

10
8

10
10

Cache
Price

Capacity

Ac
ce

ss
 Sp

ee
d

Tape

Non-Volatile RAM

~GB/s

~10GB/s

~100GB/s ~MBs
~$2/MB

~10GBs
~$3/GB

~TBs
~$100/TB

~PBs; ~$10/TB

~10TBs
~$20/TB~200MB/s

~50MB/s



9

Memory/Storage Hierarchy

❖ Typical desktop computer today ($700):
❖ 1 TB magnetic hard disk (SATA HDD); 32 GB DRAM
❖ 3.4 GHz CPU; 4 cores; 8MB cache

❖ High-end enterprise rack server for RDBMSs ($8,000):
❖ 12 TB Persistent memory; 6 TB DRAM
❖ 3.8 GHz CPU; 28-core per proc.; 38MB cache

❖ Renting on Amazon Web Services (AWS):
❖ EC2 m5.large: 2-core, 8GiB: $0.115 / hour
❖ EC2 m5.24xlarge: 96-core, 384 GiB, $5.53 per hour
❖ EBS general SSD: $0.12 per GB-month
❖ S3 store / read: $0.023 / 0.05-0.09 per GB-month



10

Key Principle: Locality of Reference

❖ Locality of Reference: Many programs tend to access memory 
locations in a somewhat predictable manner
❖ Spatial: Nearby locations will be accessed soon
❖ Temporal: Same locations accessed again soon

❖ Locality can be exploited to reduce runtimes using caching
and/or prefetching across all levels in the hierarchy

Carefully handling/optimizing access to main memory and use of 
processor cache is critical for processor performance!

Due to OOM access latency differences across memory hierarchy, 
optimizing access to lower levels and careful use of higher levels is 

critical for overall system performance!



11

Concepts of Memory Management

❖ Caching: Buffering a copy of bytes (instructions and/or data) 
from a lower level at a higher level to exploit locality

❖ Prefetching: Preemptively retrieving bytes (typically data) from 
addresses not explicitly asked yet by program

❖ Spill/Miss/Fault: Data needed for program is not yet available 
at a higher level; need to get it from lower level
❖ Register Spill (register to cache); Cache Miss (cache to 

main memory); “Page” Fault (main memory to disk)
❖ Hit: Data needed is already available at higher level
❖ Cache Replacement Policy: When new data needs to be 

loaded to higher level, which old data to evict to make room? 
Many policies exist with different properties



12

Memory Hierarchy in Action

Q: What does this program do when run with ‘python’?
(Assume tmp.csv is in current working directory)

import pandas as pd
df = pd.read_csv(‘tmp.csv’,header=None)
s = df.sum().sum()
print(s)

1,2,3
4,5,6

tmp.py

tmp.csv



13

Memory Hierarchy in Action

Bus

CU* ALU**

Caches

DRAM

Disk

Store; Retrieve

Store; Retrieve

Retrieve;
Process

Registers

CPU

Rough sequence of events when program is executed
[*] CU: Control Unit, [**] ALU: Arithmetic Logic Unit

tmp.csvtmp.py

Commands interpreted

Arithmetic done within CPU

Monitor

‘21’

I/O for Display I/O for code I/O for data

‘21’

‘21’



14

Locality of Reference for Data

❖ Data Layout:
❖ The order in which data items of a complex data structure or 

an abstract data type (ADT) are laid out in memory/disk
❖ Data Access Pattern (of a program on a data object):

❖ The order in which a program has to access items of a 
complex data structure in memory

❖ Hardware Efficiency (of a program):
❖ How close actual execution runtime is to best possible 

runtime given the CPU clock rate and ISA
❖ Improved with careful data layout of all data objects used by 

a program based on its data access patterns
❖ Key Principle: Raise cache hits; reduce memory stalls!



15

Locality of Reference in Data Science

❖ Common example: matrix multiplication (>1m cells each)
❖ Suppose data layout in DRAM is in row-major order

for i = 1 to n
for j = 1 to m

for k = 1 to p
C[i][j] += A[i][k] * B[k][j]

❖ Not too hardware-efficient
❖ Prefetching+caching means full 

row based on innermost loop is 
brought to CPU cache

❖ A[i][.] Hits but B[k][j] Misses
❖ So each * op is a stall! :(

CachesDRAM A[1;] A[2;] A[3;] … B[1;] B[2;] …



16

Locality of Reference in Data Science

❖ Common example: matrix multiplication (>1m cells each)
❖ Suppose data layout in DRAM is in row-major order

❖ Logically equivalent computation 
but different order of ops!

❖ C[i][.] and B[k][.] Hits
❖ A[i][k] also Hit (unaffected by j)
❖ Orders of magnitude fewer stalls!
❖ Lot more hardware-efficient

for i = 1 to n
for k = 1 to p

for j = 1 to m
C[i][j] += A[i][k] * B[k][j]

CachesDRAM A[1;] A[2;] A[3;] … B[1;] B[2;] …



17

Locality of Reference in Data Science

❖ Common example: matrix multiplication (>1m cells each)
❖ Suppose data layout in DRAM is in row-major order

for i = 1 to n
for j = 1 to m

for k = 1 to p
C[i][j] += A[i][k] * B[k][j]

for i = 1 to n
for k = 1 to p

for j = 1 to m
C[i][j] += A[i][k] * B[k][j]

Rewrite

❖ Although the math is the same 
and gives the same results 
(“logically equivalent”), the 
physical properties of program 
execution are vastly different

❖ Commonly used in compiler 
optimization and later on, also in 
query optimization



18

Locality of Reference in Data Science

❖ Decades of optimized hardware-efficient libraries exist for 
matrix/tensor arithmetic (linear algebra) that reduce memory stalls
and increase parallelism (more on parallelism later) for you
❖ Multi-core CPUs: BLAS/LAPACK (C), Eigen (C++), la4j 

(Java), NumPy/SciPy (Python; can wrap BLAS)
❖ GPUs: cuBLAS, cuSPARSE, cuDNN, cuDF, cuGraph

If interested, some benchmark empirical comparisons:

https://medium.com/datathings/benchmarking-blas-libraries-b57fb1c6dc7

https://github.com/andre-wojtowicz/blas-benchmarks

https://eigen.tuxfamily.org/index.php?title=Benchmark

Q: Would you like to write ML code in a cache-aware manner? :)

❖ Matrices/tensors are ubiquitous in statistics/ML/DL programs

https://medium.com/datathings/benchmarking-blas-libraries-b57fb1c6dc7
https://github.com/andre-wojtowicz/blas-benchmarks
https://eigen.tuxfamily.org/index.php?title=Benchmark


19

Memory Hierarchy in PA0

Bus

DRAM

Disk

CPU

❖ Pandas DataFrame needs data to fit entirely in DRAM
❖ Dask DataFrame automatically manages Disk vs DRAM for you

❖ Full data sits on Disk, brought to DRAM upon compute()
❖ Dask stages out computations using Pandas

❖ Tradeoff: Dask may throw memory configuration issues. :)



20

Review Questions

❖ What is an ISA?
❖ What are the three main kinds of commands in an ISA?
❖ Why do CPUs have both registers and caches?
❖ Why is it typically impossible for data processing programs to 

achieve 100% processor utilization?
❖ Which of these layers in the memory hierarchy is the costliest: 

CPU cache, DRAM, flash disks, or magnetic hard disks?
❖ Which of the above layers is the slowest for data access?
❖ What is spatial locality of reference? Briefly describe a simple 

program that exhibits that.
❖ Why does data layout matter for a program’s hardware efficiency?
❖ Which is more important for optimizing a program’s hardware 

efficiency: data layout or data access pattern?



21

Outline

❖ Basics of Computer Organization
❖ Digital Representation of Data
❖ Processors and Memory Hierarchy 

❖ Basics of Operating Systems (OS)
❖ Process Management: Virtualization; Concurrency
❖ Filesystem and Data Files
❖ Main Memory Management

❖ Persistent Data Storage


