
Topic 1: Basics of Machine Resources
Part 2: Operating Systems

Ch. 2, 4.1-4.2, 6, 7, 13, 14.1, 18.1, 21, 22, 26, 36, 37, 39, and 
40.1-40.2 of Comet Book

Rod Albuyeh

1

DSC 102
Systems for Scalable Analytics



PA0 Released!

❖ If you did not declare a PA group already, you will be assigned 
to an individual group. 

❖ Two students have mentioned issues accessing AWS portal,
anybody else? Look again.

❖ UTF-8 vs. ASCII friendly group names, group names with 
potential delimiters 

❖ Let’s glance over the release...



3

Memory Hierarchy in PA0

Bus

DRAM

Disk

CPU

❖ Pandas DataFrame needs data to fit entirely in DRAM
❖ Dask DataFrame automatically manages Disk vs DRAM for you

❖ Full data sits on Disk, brought to DRAM upon compute()
❖ Dask stages out computations using Pandas

❖ Tradeoff: Dask may throw memory configuration issues. :)



4

Outline

❖ Basics of Computer Organization
❖ Digital Representation of Data
❖ Processors and Memory Hierarchy 

❖ Basics of Operating Systems (OS)
❖ Process Management: Virtualization; Concurrency
❖ Filesystem and Data Files
❖ Main Memory Management

❖ Persistent Data Storage



5

Q: What is an OS? Why do we need it?



6



7

Role of an OS in a Computer

❖ An OS is a large set of interrelated programs that make it easier
for applications and user-written programs
to use computer hardware effectively, efficiently, and securely

❖ Without OS, computer users must speak machine code!
❖ 2 key principles in OS (any system) design & implementation:

❖ Modularity: Divide system into functionally cohesive 
components that each do their jobs well
❖ Orchestra example: Consider a conductor orchestrating 

different sections
❖ Abstraction: Layers of functionalities from low-level (close to 

hardware) to high level (close to user)
❖ Car example: A pedal to transmission to engine to wheels



8

Role of an OS in a Computer

APIs/Interface of Application Software

APIs of OS aka “System Calls”

Hardware-specific code parts of OS

“Application Software” notion is now more complex due to multiple 
tiers of abstraction; “Platform Software” or “Software Framework” 

is a new tier between “Application” and OS



9

Key Components of OS

“System Call” APIs

Process 
Management

Main Memory
Management Filesystems Device 

DriversNetworkingKernel 
Components

❖ Kernel: The core of an OS with modules to abstract the hardware 
and APIs for programs to use

❖ Auxiliary parts of OS include shell/terminal, file browser for 
usability, extra programs installed by I/O devices, etc.

Functionality

Virtualize
processor;
“Process”

abstraction;
Concurrency

Virtualize
Main Memory

Virtualize
disks; “File”
abstraction;
Persistence

Talk to
other I/O
devices

Commun.
over

network

Hardware device-specific programs

Hardware



10

Outline

❖ Basics of Computer Organization
❖ Digital Representation of Data
❖ Processors and Memory Hierarchy 

❖ Basics of Operating Systems (OS)
❖ Process Management: Virtualization; Concurrency
❖ Filesystem and Data Files
❖ Main Memory Management

❖ Persistent Data Storage

You will face myriad 
and new data types

Compute hardware 
is evolving fast

You will need to use new 
methods on evolving data file 

formats on clusters / cloud

Storage hardware 
are evolving fast



11

The Abstraction of a Process

❖ Process: A running program, the central abstraction in OS
❖ Started by OS when a program is executed by user
❖ OS keeps inventory of “alive” processes (Process List) and 

handles apportioning of hardware among processes

Q: Why bother knowing process management in Data Science?

❖ A query is a program that becomes a process
❖ A data system typically abstracts away process management 

because user specifies the queries / processes in system’s API

❖ But in the cloud era, things are up in the air! Will help to know a bit 
how data-intensive computations are handled under the hood.



12

The Abstraction of a Process

❖ High-level steps OS takes to get a process going:
1. Create a process (get Process ID; add to Process List)
2. Assign part of DRAM to process, aka its Address Space
3. Load code and static data (if applicable) to that space
4. Set up the inputs needed to run program’s main()
5. Update process’ State to Ready
6. When process is scheduled (Running), OS temporarily hands 

off control to process to run the show!
7. Eventually, process finishes or run Destroy



13

Virtualization of Hardware Resources

❖ OS has mechanisms and policies to regain control
❖ Virtualization:

❖ Each hardware resource is treated as a virtual entity that OS 
can divide up and share among processes in a controlled way

❖ Limited Direct Execution:
❖ OS mechanism to time-share CPU and preempt a process to 

run a different one, aka “context switch”
❖ A Scheduling policy tells OS what time-sharing to use
❖ Processes also must transfer control to OS for “privileged” 

operations (e.g., I/O); System Calls API

Q: But is it not risky/foolish for OS to hand off control of 
hardware to a process (random user-written program)?!



14

❖ Virtualization of processor enables process isolation, i.e., each 
process given an “illusion” that it alone runs

Virtualization of Processors

Physical 
Processor

OS’s virtualized CPU abstraction

PID1 PID2 PID3 …

OS Scheduling

❖ Inter-process communication possible in System Calls API
❖ Later: Generalize to Thread abstraction for concurrency



15

Process Management by OS

❖ OS keeps moving processes between 3 states:

❖ Gantt Chart: A viz. to 
show what process runs 
when (on processor)

❖ Sometimes, if a process gets “stuck” and OS did not schedule 
something else, system hangs; need to reboot!

P1 Idle P2 P1 P2 …

Time



16

Scheduling Policies/Algorithms

❖ Schedule: Record of what process runs on each CPU & when
❖ Policy controls how OS time-shares CPUs among processes
❖ Key terms for a process (aka job):

❖ Arrival Time: Time when process gets created
❖ Job Length: Duration of time needed for process
❖ Start Time: Times when process first starts on processor
❖ Completion Time: Time when process finishes/killed
❖ Response Time = [Start Time] – [Arrival Time]
❖ Turnaround Time = [Completion Time] – [Arrival Time]

❖ Workload: Set of processes, arrival times, and job lengths that 
OS Scheduler has to handle



17

Scheduling Policies/Algorithms

❖ In general, OS may not know all Arrival Times and Job Lengths 
beforehand! But preemption is possible

❖ Key Principle: Inherent tension in scheduling between overall 
workload performance and allocation fairness 
❖ Performance metric is usually Average Turnaround Time
❖ Fairness: Many metrics exist (e.g., Jain’s fairness index)



18

Scheduling Policies/Algorithms

❖ 100s of scheduling policies studied!
We will be overviewing some well-known ones: 

FIFO (First-In-First-Out)
SJF (Shortest Job First)
SCTF (Shortest Completion Time First)
Round Robin
Random, etc.

❖ Different criteria for ranking; preemptive vs not
❖ Complex “multi-level feedback queue” schedulers
❖ ML-based schedulers are “hot” nowadays!



19

Scheduling Policy: FIFO

❖ First-In-First-Out aka First-Come-First-Served (FCFS)
❖ Ranking criterion: Arrival Time; no preemption allowed

P1 P2 P2 P2 P2 P3

0 10 20 30 40 50 60 70 80
Time

Example: P1, P2, P3 of lengths 10,40,10 units arrive closely in that order 

Process Arrival
t1

Start
t2

Completion
t3

Response
t4 = t2-t1

Turnaround 
t5 = t3-t1

P1 0 0 10 0 10
P2 0 10 50 10 50
P3 0 50 60 50 60

Avg: 20 40

❖ Main con: Short jobs may wait a lot, aka “Convoy Effect”



20

Scheduling Policy: SJF

❖ Shortest Job First
❖ Ranking criterion: Job Length; no preemption allowed

P1 P3 P2 P2 P2 P2

0 10 20 30 40 50 60 70 80
Time

Example: P1, P2, P3 of lengths 10,40,10 units arrive closely in that order 

Process Arrival
t1

Start
t2

Completion
t3

Response
t4 = t2-t1

Turnaround 
t5 = t3-t1

P1 0 0 10 0 10
P2 0 20 60 20 60
P3 0 10 20 10 20

Avg: 10 30

❖ Main con: Not all Job lengths might be unknown beforehand.

(FIFO Avg: 20 and 40)



21

Scheduling Policy: SCTF

❖ Shortest Completion Time First
❖ Jobs might not all arrive at same time; preemption possible

P2 P1 P2 P3 P2 P2 P2

0 10 20 25 35 45 55 60 70 80

Time

Example: P1, P2, P3 of lengths 10,40,10 units arrive at different times

Process Arrival
t1

Start
t2

Completion
t3

Response
t4 = t2-t1

Turnaround 
t5 = t3-t1

P1 10 10 20 0 10
P2 0 0 60 0 60
P3 25 25 35 0 10

Avg: 0 26.7

P1 arrives; switch P3 arrives; switch

(SJF Avg: 10 and 30)

❖ Main con same as SJF: Job lengths might be unknown beforehand.



22

Scheduling Policy: Round Robin

❖ In Round Robin job lengths need not be known
❖ Fixed time quantum given to each job; cycle through jobs

Example: P1, P2, P3 of lengths 10,40,10 units arrive closely in that order

Process Arrival
t1

Start
t2

Completion
t3

Response
t4 = t2-t1

Turnaround 
t5 = t3-t1

P1 0 0 20 0 20
P2 0 5 60 5 60
P3 0 10 30 10 30

Avg: 5 36.7(SJF Avg: 10 & 30; SCTF Avg: 0 & 26.7)

❖ RR is often very fair, but Avg Turnaround Time goes up!

P1 P2 P3 P1 P2 P3 P2 P2 P2 P2 P2 P2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Quantum is 5 Time



23

Concurrency

❖ Modern computers often have multiple processors and multiple 
cores per processor

❖ Concurrency: Multiple processors/cores run different/same set 
of instructions simultaneously on different/shared data

❖ New levels of shared caches are added



24

Concurrency

❖ Multiprocessing: Different processes run on different cores (or 
entire CPUs) simultaneously

❖ Thread: Generalization of OS’s Process abstraction 
❖ A program spawns many threads; each run parts of the 

program’s computations simultaneously
❖ Multithreading: Same core used by many threads

❖ Issues in dealing with 
multithreaded programs 
that write shared data:
❖ Cache coherence
❖ Locking; deadlocks
❖ Complex scheduling 



25

Concurrency

❖ Scheduling for multiprocessing/multicore is more complex
❖ Load Balancing: Ensuring different cores/proc. are kept roughly 

equally busy, i.e., reduce idle times
❖ Multi-queue multiprocessor scheduling (MQMS) is common

❖ Each processor/core has its own job queue
❖ OS moves jobs across queues based on load
❖ Example Gantt chart for MQMS:

CPU 1: P1 P1 P3 P3 P3 P3 P1 P1 P1

CPU 2: P2 P2 P2 P1 P1 P2 P2 P3 P3

0 10 20 30 40 50 60 70 80



26

Concurrency in Data Science

❖ Thankfully, most data-intensive computations in data science do 
not need concurrent writes on shared data! Although we often 
need concurrent reads. 
❖ Concurrent low-level ops abstracted away by libraries/APIs
❖ Partitioning / replication of data simplifies concurrency

❖ Later topic (Parallelism Paradigms) will cover parallelism in depth:
❖ Multi-core, multi-node, etc.
❖ Task parallelism, Partitioned data parallelism, etc.



27

Review Questions

1. Briefly explain two differences between DRAM and disk.
2. Why is it important to align data access pattern and data layout?
3. What is the purpose of an OS?
4. Why is the design of an OS so modular?
5. Why does an OS need to use a scheduling policy?
6. Which quantity captures latency of a process starting: Response 

Time or Turnaround Time?
7. What gives rise to different scheduling policies?
8. Which scheduling policy is the fairest among the ones we covered?
9. What is the Convoy Effect? Which sched. policy has that issue?



28

Outline

❖ Basics of Computer Organization
❖ Digital Representation of Data
❖ Processors and Memory Hierarchy 

❖ Basics of Operating Systems (OS)
❖ Process Management: Virtualization; Concurrency
❖ Filesystem and Data Files
❖ Main Memory Management

❖ Persistent Data Storage



29

Q: What is a file?



30

Abstractions: File and Directory

❖ File: A persistent sequence of bytes that stores a logically 
coherent digital object for an application
❖ File Format: An application-specific standard that dictates 

how to interpret and process a file’s bytes
❖ 1000s of file formats exist (e.g., TXT, DOC, GIF, MPEG); 

varying data models/types, domain-specific, etc.
❖ Metadata: Summary or organizing info. about file content (aka 

payload) stored with file itself; format-dependent
❖ Directory: A cataloging structure with a list of references to files 

and/or (recursively) other directories
❖ Typically treated as a special kind of file.
❖ Sub-dir., Parent dir., Root dir.



31

Q: Are files stored contiguously on disk? 



32

Filesystem

❖ Filesystem: The part of OS that helps programs create, 
manage, and delete files on disk (secondary storage)

❖ Roughly split into logical level and physical level
❖ Logical level exposes file and directory abstractions and 

offers System Call APIs for file handling
❖ Physical level works with disk firmware and moves bytes 

to/from disk to DRAM



33

Filesystem

❖ Dozens of filesystems exist, e.g., ext2, ext3, NTFS, etc.
❖ Differ on 

q how they layer file and directory abstractions as bytes, 
what metadata is stored, etc.

q how data integrity/reliability is assured, support for 
editing/resizing, compression/encryption, etc.

❖ Some can work with (can be “mounted” by) multiple OSs.



34

Virtualization of File on Disk

❖ OS abstracts a file on disk as a virtual object for processes
❖ File Descriptor: An OS-assigned positive integer 

identifier/reference for a file’s virtual object that a process can use
❖ 0/1/2 reserved for STDIN/STDOUT/STDERR
❖ File Handle: A PL’s abstraction on top of a file descriptor (fd)



35

System Call API for File Handling:

❖ open(): Create a file; assign fd; optionally overwrite
❖ read(): Copy file’s bytes on disk to in-mem. buffer
❖ write(): Copy bytes from in-mem. buffer to file on disk
❖ fsync(): “Flush” (force write) “dirty” data to disk
❖ close(): Free up the fd and other OS state info on it
❖ lseek(): Position offset in file’s fd (for random read/write later)
❖ Dozens more (rename, mkdir, chmod, etc.)

API of OS called “System Calls”



36

Q: What is a database? How is it different 
from just a bunch of files?



37

Files Vs Databases: Data Model

❖ Database: An organized collection of interrelated data
❖ Data Model: An abstract model to define organization of 

data in a formal (mathematically precise) way
❖ E.g., Relations, XML, Matrices, DataFrames

❖ Every database is just an abstraction on top of data files!
❖ Logical level: Data model for higher-level reasoning
❖ Physical level: How bytes are layered on top of files
❖ All data systems (RDBMSs, Dask, Spark, PyTorch, etc.) are 

application/platform software that use OS System Call API 
for handling data files



38

Data as File: Structured

❖ Structured Data: A form of data with regular substructure

Relation Relational Database

❖ Most RDBMSs and Spark 
serialize a relation as binary
file(s), often compressed



39

Aside: Relational File Formats

❖ Different RDBMSs and Spark/HDFS-based tools serialize 
relation/tabular data in different binary formats, often compressed 
❖ One file per relation; row vs columnar (e.g., ORC, Parquet) vs 

hybrid formats
❖ RDBMS vendor-specific vs open Apache
❖ Parquet becoming especially popular

Ad: Take CSE 132C for more on relational file formats
Row-oriented Columnar



40

Q: Suppose you have a dataset of 10,000 columns and 
only want to select 10 columns. Which format should you 
use? What do you gain from your selection?



41

Data as File: Structured

❖ Structured Data: A form of data with regular substructure

DataFrame

Matrix

Tensor

❖ Typically serialized as 
restricted ASCII text file 
(TSV, CSV, etc.)

❖ Matrix/tensor as binary too
❖ Can layer on Relations too!



42

Data as File: Structured

❖ Structured Data: A form of data with regular substructure

Sequence
(Includes 

Time-series)

❖ Can layer on Relations, Matrices, or DataFrames, or be treated as 
first-class data model

❖ Inherits flexibility in file formats (text, binary, etc.)



43

Comparing Structured Data Models

Q: What is the difference between Relation, Matrix, and DataFrame?

❖ Ordering: Matrix and DataFrame have row/col numbers; Relation 
is orderless on both axes!

❖ Schema Flexibility: Matrix cells are numbers. Relation tuples 
conform to pre-defined schema. DataFrame has no pre-defined 
schema but all rows/cols can have names; col cells can be mixed 
types!

❖ Transpose: Supported by Matrix & DataFrame, not Relation
If interested in reading more:

https://towardsdatascience.com/preventing-the-death-of-the-dataframe-8bca1c0f83c8

https://towardsdatascience.com/preventing-the-death-of-the-dataframe-8bca1c0f83c8


44

Data as File: Semistructured

❖ Semistructured Data: A form of data with less regular / more 
flexible substructure than structured data

Tree-Structured ❖ Typically serialized as 
restricted ASCII text file 
(extensions XML, JSON, 
YML, etc.)

❖ Some data systems also 
offer binary file formats

❖ Can layer on Relations 
too



45

Data as File: Semistructured

❖ Semistructured Data: A form of data with less regular / more 
flexible substructure than structured data

Graph-Structured

❖ Typically serialized with JSON or similar textual formats
❖ Some data systems also offer binary file formats
❖ Again, can layer on Relations too



46

Data Files on Data “Lakes”

❖ Data “Lake”: Loose coupling of data file format for storage and 
data/query processing stack (vs RDBMS’s tight coupling)
❖ JSON for raw data; Parquet processed is common

Vision paper on the future of data lakes: http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
ETL: Extract, Transform, Load

http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf


47

Data Lake File Format Tradeoffs
❖ Pros and cons of Parquet vs text-based files (CSV, JSON, etc.):

❖ Less storage: Parquet stores in compressed form; can be much 
smaller (even 10x); less I/O to read

❖ Column pruning: Enables app to read only columns needed to 
DRAM; even less I/O now!

❖ Schema on file: Rich metadata, stats inside format itself
❖ Complex types: Can store them in a column
❖ Human-readability: Cannot open with text apps directly
❖ Mutability: Parquet is immutable/read-only; no in-place edits
❖ Decompression/Deserialization overhead: Depends on 

application tool
❖ Adoption in practice: CSV/JSON support more pervasive but 

Parquet is catching up, especially in enterprise “big data” situations



48

Data Lake File Format Tradeoffs

https://databricks.com/glossary/what-is-parquet

Hypothetical but realistic query performance

https://databricks.com/glossary/what-is-parquet


49

Data as File: Other Common Formats

❖ Machine Perception data layer on tensors and/or time-series
❖ Myriad binary formats, typically with (lossy) compression, e.g., 

WAV for audio, MP4 for video, etc.

❖ Text File (aka plaintext): Human-readable ASCII characters
❖ Docs/Multimodal File: Myriad app-specific rich binary formats



50

Outline

❖ Basics of Computer Organization
❖ Digital Representation of Data
❖ Processors and Memory Hierarchy 

❖ Basics of Operating Systems (OS)
❖ Process Management: Virtualization; Concurrency
❖ Filesystem and Data Files
❖ Main Memory Management

❖ Persistent Data Storage


