UCSan Diego

DSC 102
Systems for Scalable Analytics

Rod Albuyeh

Topic 3: Parallel and Scalable Data Processing
Part 1: Parallelism Basics

Ch.12.2,14.1.1, 14.6, 22.1-22.3, 22.4.1, 22.8 of Cow Book
Ch. 5, 6.1, 6.3, 6.4 of MLSys Book

Q: Why bother with large-scale data? Why
does sampling not suffice?

Large-Scale Data in Astronomy

.& ‘ S D s S Data Surveys Instruments Collaboration Results Education The Future Contact

This is Data Release 16. Search www.sdss.org

The Sloan Digital Sky Survey: Mapping the Universe

The Sloan Digital Sky Survey has created the most detailed three-dimensional maps
of the Universe ever made, with deep multi-color images of one third of the sky, and
spectra for more than three million astronomical objects. Learn and explore all
phases and surveys—past, present, and future—of the SDSS.

High-res. images: ~200 GB per day since 2000 (1PB+)
Astronomers can study complex galactic evolution behaviors *

S
-
P
=]
=]
<
[
o

O

36

Scan: 2343

7
&

37.50

Charrel:

|
(I BRI R

il il

PHITH T 1l DELEREE i
3;. M EE Ol ,_ i i H___. :___.m i
o M LI IR R SRR I _:u_
-ojll E. IR :,_m i E: FER ,;_-__E
N} o 1 E 1] Ef__;_“._.,: IR TIRL
0.4@@-1,‘,1&@— m -— = E__,m._m _-ﬁ i EL M.-mgim::;m.

W AR
E_==___EE_,EE:;s_.2_@____ 1] __E___:._ B

.ol ,,_..,_WE_M 1110 m_. \:., W I anyg g onany
5 w _g i:-:-— ZEEm-. -_ -E =_ _a:_-_ - 1y q-; w-_:i

== EE LIk I8

i 1 il T
10:_:. RTRRRR T R Tl P ::

PV ik samd of SesddIE LIR X &R & SR8 Jisd R
Wi IMEETE I T YT N m

Wi i idd) AR i 0 i 0 i i .
oLl m= =_ i ‘_Am._za_u :__ %f

Hii _E_
il _;_ 5

| gy

Large-Scale Data in Genomics

UNDERSTANDING PRECISION MEDICINE

In precision medicine, patients with tumors that share the same
genetic change receive the drug that targets that change, no
matter the type of cancer.

@

Precision Medicine is
becoming a reality

Analyze genomes across
cohorts and prescribe targeted
drugs and treatments

~3GB genome per human
~1EB for USA

NETFLIX ORIGINAL

STRANGER THINGS

95% Match 2017 2 Seasons |4KUltraHD | |5.1

When a young boy vanishes, a small town uncovers
a mystery involving secret experiments, terrifying
supernatural forces and one strange little girl.

Winona Ryder, David Harbour, Matthew Modine
TV Shows, TV Sci-Fi & Fantasy, Teen TV Shows

Popular on Netflix

Recently Watched

. w ‘,‘h. d Sy
& Z \ - T
'\

CLUB:x

CUERVOS f Pll lEI(b, ’_

O

Large-Scale Data in E-commerce

Everything is a Recommendation

T v mtaien

Over 80% of what
people watch

m_m!:';ﬁ ;“_: . comes from 0L.1r
recommendations
—odley - fiiit i
O N2

Recommendations
are driven by
Machine Learning

i
JSrTel
achs e]

NETFLIX

Log all user behavior (views, clicks, pauses, searches, etc.)

Recommender systems combine TBs of data from all users and
movies to deliver a tailored experience

Large-Scale Data in Computer Vision

10million+ images labeled (20,000 classes) by crowdsourcing
>500GB uncompressed as tensors
Harbinger of deep learning revolution

“The Unreasonable Effectiveness of Data”

40
When prediction target

complexity is high, more

30 training data coupled with more

T complex models yield higher
% 20 accuracy as number of training
§ examples grows
&

10

Bonus remark: What's the difference?...

@—@ Fine-tuning Last sentence refers to accuracy

®—e No Fine-tuning | _Flg.ure refers.tcl) precision.
Precision: True positive rate at a given
- . score/prediction threshold.
10 30 100 300 Accuracy: Summary of true positives and true
Number of examples (in millions) — negatives.

10
https://ai.googleblog.com/2017/07/revisiting-unreasonable-effectiveness.html

https://ai.googleblog.com/2017/07/revisiting-unreasonable-effectiveness.html

Bias-Variance Tradeoff of ML

A High Bias High Variance

Error

Validation Error

Training Error

Model Complexity

High Bias: Roughly, model is not rich enough to represent data
High Variance: Model overfits to given data; poor generalization
Large-scale training data lowers variance and raises accuracy!

Why Large-Scale Data?

Large-scale data is a game changer in data science:

Enables study of granular phenomena in sciences,
businesses, etc. not possible before

Enables new applications and personalization/customization

Enables more complex ML prediction targets and mitigates
variance to offer high accuracy

Hardware has kept pace to power the above:
Storage capacity has exploded (PB clusters)
Compute capacity has grown (multi-core, GPUs, etc.)
DRAM capacity has grown (10GBs to TBs)
Cloud computing is “democratizing” access to hardware; SaaS

12

‘Big Data”

Marketing term; think “Big” as in “Big Qil” or “Big Government” or
“Big Tech”, not “big building”
Became popular in late 2000s to early 2010s

Wikipedia says: “Data that is so large and complex that
existing toolkits [read RDBMSs!] are not adequate”

Typical characterization by 3 Vs:
Volume: larger than single-node DRAM
Variety: relations, docs, tweets, multimedia, etc.

Velocity: high generation rate, e.g., sensors, surveillance

13

Why “Big Data” now? 1. Applications

New “data-driven mentality” in almost all human endeavors:
Web: search, e-commerce, e-mails, social media

Science: satellite imagery, CERN’s LHC, document corpora
Medicine: pharmacogenomics, precision medicine
Logistics: sensors, GPS, “Internet of Things”

Finance: high-throughput trading, monitoring

Humanities: digitized books/literature, social media

Governance: e-voting, targeted campaigns, NSA

14

Why “Big Data” now? 2. Storage

Worldwide Byte Shipments by Storage Media Type

NVM-Other

B optical
- Tape

15

To analyze large-scale data, parallel and
scalable data systems are indispensable!

16

Outline

=P <+ Basics of Parallelism

Task Parallelism; Dask
Single-Node Multi-Core; SIMD; Accelerators

Basics of Scalable Data Access
Paged Access; I/O Costs; Layouts/Access Patterns
Scaling Data Science Operations

Data Parallelism: Parallelism + Scalability
Data-Parallel Data Science Operations
Optimizations and Hybrid Parallelism

17

Parallel Data Processing

Central Issue: Workload takes too long for one processor!

Basic Idea: Split up workload across processors and perhaps
also across machines/workers (aka “Divide and Conquer”)

Subproblem Subproblem

split / merge split / merge
Compute Compute Compute Compute
Subproblem Subproblem _ Subproblem _/ Subproblem

https://medium.com/cracking-the-data-science-interview/divide-and-conquer-algorithms-b135681d08fc

18

New Parallelism Concept: Threads

Common in parallel data processing: “threads”
Generalization of process abstraction of OS

A program/process can spawn many threads
Each runs its part of program’s computations simultaneously
All threads share address space (so, data too)

In multi-core CPUs, a thread uses up 1 core

“Hyper-threading”: Virtualizes a core to run 2 threads!

19

Multiple Threads in a Process

code

data

files

registers

stack

thread — ;

code data files
registers ||| registers ||| registers
stack stack stack

single-threaded process

?

?

multithreaded process

Great 3 min vid on this topic: https://www.youtube.com/watch?v=4rLW7zg21gl 2°

;4—— thread

New Parallelism Concept: Dataflow

Common in parallel data processing: “Dataflow Graph”:

A directed graph representation of a program with vertices
being abstract operations from a restricted set of
computational primitives:

Extended relational dataflows: RDBMS, Pandas, Modin
Matrix/tensor dataflows: NumPy, PyTorch, TensorFlow

Enables us to reason about data-intensive programs at a higher
level (logical level?)

Task Graph: Similar but coarse-grained; vertex is a process

21

Example Relational Dataflow Graph

m(o(R)UST) Operators

from extended
relational

\ algebra

Intermediate data o / : Projection
> Union
> :Join
° ° o :Select

Input data T

Aka Logical Query Plan in the DB systems world

22

Example Tensor Dataflow Graph

ReLU (W X + b)
Operators
(RelU) from LA/DL tool’s
Intermediate data 1 \ tensor algebra
Caddn)- MatMul : Matrix
multiplication
(MatMul) P

ReLU : Activation

function
Input data (\A{ b

Aka Neural Computational Graph in the ML systems world

23

Example Task Graph

More coarse-grained than
operator-level dataflows

Vertex: A full task/process

Edge: A dependency between
tasks

Directed Acyclic Graph model
(DAG) common

Data may not be shown

Note: Dask conflates the concepts of Dataflow and Task graphs
because an “operation” on a Dask DataFrame becomes its
own separate process/program under the hood!

https://docs.dask.orag/en/latest/graphviz.html 24

https://docs.dask.org/en/latest/graphviz.html

Parallel Data Processing

Central Issue: Workload takes too long for one processor!

Basic Idea: Split up workload across processors and perhaps
also across machines/workers (aka “Divide and Conquer”)

Key parallelism paradigms in data systems:

Dataset is: Shared Replicated Partitioned
i . “Task “Data
n SIMD
Within a node: ” g
Iitni “Pipelining” Parallel Parallel
Systems Systems
Across nodes: Airflow [% DASK Squllg

25
Note: SIMD = Single Instruction, Multiple Data ---- Also note: Airflow would require custom job implementation

Outline

Basics of Parallelism
=P <+ Task Parallelism; Dask

Single-Node Multi-Core; SIMD; Accelerators

Basics of Scalable Data Access
Paged Access; I/O Costs; Layouts/Access Patterns
Scaling Data Science Operations

Data Parallelism: Parallelism + Scalability
Data-Parallel Data Science Operations
Optimizations and Hybrid Parallelism

26

Task Parallelism

Basic Idea: Split up tasks across workers; if there is a common
dataset that they read, just make copies of it (aka replication)

Example: This is your PA1 setup! Except, Dask

Given 3 Scheduler puts tasks on workers for you.
workers
4) After T4 & TS end, run T6 on W1; W2 is idle
@ 3) After T1 ends, run T4 on W1; after T2 ends,

run T5 on W2; after T3 ends, W3 IS idle

2) Put T1 on worker 1 (W1), T2 on W2,
T3 on W3; run all 3 in parallel

\

D 1) Copy whole D to all workers

27

Task Parallelism

Topological sort of tasks in task graph for scheduling

Notion of a “worker” can be at processor/core level, not just at
node/server level

Thread-level parallelism possible instead of process-level

E.g., Dask: 4 worker nodes x 4 cores = 16 workers total
Main pros of task parallelism:

Simple to understand; easy to implement

Independence of workers => low software complexity
Main cons of task parallelism:

Data replication across nodes; wastes memory/storage

Idle times possible on workers

28

Degree of Parallelism

The largest amount of concurrency possible in the task graph, i.e.,
how many task can be run simultaneously

Example: Q: How do we quantify the runtime
Given 3 performance benefits of task parallelism?
workers

But over time, degree of parallelism
@ keeps dropping in this example
1
|

1
@ @ Degree of parallelism is only 3
T2
- So, more than 3 workers is not useful
\ for this workload!
D

29

Quantifying Benefit of Parallelism: Speedup

Completion time given only 1 worker

Speedup =
Completion time given n (>1) workers

Runtime

Q: But given n workers, Speedup

12
can we get a speedup of n?

It depends! °

(On degree of parallelism, task 4
dependency graph structure,

intermediate data sizes, etc.) 1

1 4 8 12
Number of workers -0

Quantifying Benefit of Parallelism: Scaleup

Scaleup refers to the ability of a system to
retain the same performance ratio of tasks-per-resources
when both the tasks and the resources increase at same rate.

Normalized ratio of

In the above:
_ _ tasks-per-resources
« "Task" can refer to a single or series
of computations, queries, etc. Z

n n L I
e "Resources" can refer to # of (Linear Scaleup)

workers, DRAM, storage size, etc.

* "Increase" refers to using multiple 0.5
instances of an initial task and initial
set of resources.

1

1 4 8 12
Resources (relative size)

31

Quantifying Benefit of Parallelism

Speedup plot Scaleup plot
12 E 2
Linear :
8 Speedup : Linear Scaleup
: 1
4 : m
. , 0.5 Scaleup
Sublinear '
1 Speedup
1 4 8 12 1 4 8 12
Number of workers Resources multiples

Most commonly, scaling does not demonstrate ideal linear behavior.

Q: Is superlinear speedup/scaleup ever possible? -

|ldle Times In Task Parallelism

Due to varying task completion times and varying degrees of
parallelism in workload, idle workers waste resources

Example: Gantt Chart visualization of schedule:

Given 3
10 workers Wi T1 T1 T4 T6 T6
W2: T2 T5 |75 T5 \T5
G, G
S W3: T3 T3 T3 |
| | 15
G2
0
\ Idle times
D

33

|ldle Times In Task Parallelism

Due to varying task completion times and varying degrees of
parallelism in workload, idle workers waste resources

Example: In general, overall workload’s completion
Given 3 time on task-parallel setup is always lower
10 @ workers bounded by the longest path in the task
graph
Possibility: A task-parallel scheduler can
5 20 “release” a worker if it knows that will be
I 15 idle till the end
@1 @ @ Can saves costs in cloud
d Implemented as autoscaling in
\\ / Kubernetes, can be custom
D implementation on EC2s or VMs.

Calculating Task Parallelism Speedup

Due to varying task completion times and varying degrees of
parallelism in workload, idle workers waste resources

Example:
Given 3 Completion time 10+5+15+5+
10 workers with 1 worker ~ 20+10 = 65

Parallel 35
completion time

6}
¢

15 Speedup = 65/35 = 1.9x

[T,
®10@ |ldeal/linear speedup is 3x
\D Q: Why is it only 1.9x?

35

Task Parallelism in Dask

“Dask is a flexible library for parallel computing in Python”
2 key components:
APls for data science ops on large data
Dynamic task scheduling on multi-core/multi-node
Design desirables:
Pythonic: Stay within PyData stack (e.g., no JVM)
Familiarity: Retain APIs of NumPy, Pandas, etc.
Scaling Up: Seamlessly exploit all cores
Scaling Out: Easily exploit cluster (needs setup)
Flexibility: Can schedule custom tasks too
Fast?: “Optimized” implementations under APls

36
https://docs.dask.org/en/latest/

https://docs.dask.org/en/latest/

Task Parallelism in Dask

Collections > Task Graph - Schedulers
(create task graphs) P (execute task graphs)
Dask Array
Dask DataFrame Single-machine
(threads, processes,
synchronous)
Dask Bag
Distributed
Dask Delayed
Futures
Collections Task Graph Schedulers
array synchronous
) s %—D — . threaded
dad B S— = =
\[nultlprocessmg
dataframe S —
distributed
https://docs.dask.org/en/latest/ 37

https://docs.dask.org/en/latest/scheduling.html

https://docs.dask.org/en/latest/
https://docs.dask.org/en/latest/scheduling.html

Dask’s Workflow

“Lazy Evaluation”:
Ops on data structures are NOT executed immediately
Triggered manually, e.g., compute()
Dataflow graph / task graph is built under the hood

def inc(i):
return 1 + 1

def add(a, b):

return a + b d = {'x": 1{
. 'yv': (inc, 'x'),

X =1
y = inc(x)
z = add(y, 10) " ’
Internal dictionary with key-
User code y y @

value pair representation of

using their AP dataflow/task graph

Dask’s Workflow

Rest of the Dask’s workflow for distributing computations:

. Optimize” _ Serialize Task Graph
@ Task Graph (dictionary)

l

Communicate it
to Scheduler

O |

Each worker

10 y

. does its job Scheduler divvies up
and notifies work for cores/nodes
Scheduler

39
https://docs.dask.org/en/latest/phases-of-computation.html

https://docs.dask.org/en/latest/phases-of-computation.html

Possible Bottlenecks/Issues in Dask

Rest of the Dask’s workflow for distributing computations:

z

/l\ _ “Optimize” _ Serialize Task Graph
_Task Graph (limkimin i)
API implementation: Poor/missed Huge task graphs _take
- Lack of ops coverage optimizations d too long to serlgllze
- Memory errors in ops and/or communicate
due to poor scalability (O Scrreauret
j/ Each worker l
. does its job Scheduler divvies up
and notifies work_for cores/nodes
Scheduler Poor scalability

Machine/network failures of Scheduler

40

Dask: Task-Parallelism Best Practices

Is Dask even needed? Will single-node in-memory tool suffice?
Data Partition sizes:

Avoid too few chunks (low degree of par.)

Avoid too many chunks (task graph overhead)

Be mindful of available DRAM

Rough guidelines they give:
data chunks ~ 3x-10x # cores, but
cores x chunk size must be < machine DRAM, but
chunk size shouldn’t be too small (~1 GB is OK)

Q: Do you tune any of these when using an RDBMS? :)

Dask still lacks “physical data independence”!

41
https://docs.dask.org/en/latest/best-practices.html

https://docs.dask.org/en/latest/best-practices.html

Dask: Task-Parallelism Best Practices

Use the Diagnostics dashboard:
Monitor # tasks, core/node usage, task completion
Task Graph sizes:
Too large: Bottlenecks
(serialization / communication / scheduling)
Too small: Under-utilization of cores/nodes
Rough guidelines:
Tune data chunk size to adjust # tasks (see previous point)
Break up a task/computation

Fuse tasks/computations aka “batching”, or in other cases
break jobs apart into distinct stages.

https://docs.dask.org/en/latest/best-practices.html 42
https://docs.dask.org/en/latest/diagnostics-distributed.html

https://docs.dask.org/en/latest/best-practices.html
https://docs.dask.org/en/latest/diagnostics-distributed.html

Execution Optimization Tradeoffs

Be judicious in tuning data chunk sizes
Be judicious in batching vs breaking up tasks

Speedup is a function of the above factors.

43

The WRATH of Codd?

Edgar Codd:

Mathematician, former IBM Fellow.
Best known for creating the “relational”
model for representing data.

Following excerpt is from June 1970 :

Information Retrieval

A Relational Model of Data for
Large Shared Data Banks

E. F. Copbp
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from

having to know how the data is organized in the machine (the

infernal representation). A prompting service which supplies
such information is not a satisfactory solution. Activities of users

Arun Kumar
% ©@TweetAtAKK

<rant>

PSA for people building "scalable" ML/data sci.
systems: TAKE A DB SYSTEMS IMPL. CLASS & get
at least a PASS grade! -

It is 2021. It is ATROCIOUS how data scientists are
still forced to tune low-level stuff like chunk sizes,

loading, deg. of parallelism, etc. =
</rant>

Information Retrieval

A Relational Model of Data for
Large Shared Data Banks

E. F. Copp
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having to know how the data is organized in the machine (the
internal representation). A prompting service which supplies
such information is not a satisfactory solution. Activities of users
at terminals and most application programs should remain
unaffected when the internal representation of data is changed
and even when some aspects of the external representation
are changed. Changes in data representation will often be
needed as a result of changes in query, update, and report
E8fic and natural growth in the types of stored information.

45

10:46 AM - Feb 2, 2021 - Twitter Web App

Outline

Basics of Parallelism

Task Parallelism; Dask
=P > Single-Node Multi-Core; SIMD; Accelerators

Basics of Scalable Data Access
Paged Access; I/O Costs; Layouts/Access Patterns
Scaling Data Science Operations

Data Parallelism: Parallelism + Scalability
Data-Parallel Data Science Operations
Optimizations and Hybrid Parallelism

46

