
Topic 3: Parallel and Scalable Data Processing
Part 1: Parallelism Basics

Ch. 12.2, 14.1.1, 14.6, 22.1-22.3, 22.4.1, 22.8 of Cow Book
Ch. 5, 6.1, 6.3, 6.4 of MLSys Book

Rod Albuyeh
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DSC 102
Systems for Scalable Analytics
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Q: Why bother with large-scale data? Why 
does sampling not suffice?
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Large-Scale Data in Astronomy 

High-res. images: ~200 GB per day since 2000 (1PB+)
Astronomers can study complex galactic evolution behaviors
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Large-Scale Data in Genomics 

Precision Medicine is 
becoming a reality

Analyze genomes across 
cohorts and prescribe targeted 

drugs and treatments

~3GB genome per human
~1EB for USA
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Large-Scale Data in E-commerce

Log all user behavior (views, clicks, pauses, searches, etc.)
Recommender systems combine TBs of data from all users and 

movies to deliver a tailored experience
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Large-Scale Data in Computer Vision

10million+ images labeled (20,000 classes) by crowdsourcing
>500GB uncompressed as tensors

Harbinger of deep learning revolution
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“The Unreasonable Effectiveness of Data”

https://ai.googleblog.com/2017/07/revisiting-unreasonable-effectiveness.html

When prediction target 
complexity is high, more 

training data coupled with more 
complex models yield higher 

accuracy as number of training 
examples grows

Bonus remark: What's the difference?...
Last sentence refers to accuracy

Figure refers to precision.
Precision: True positive rate at a given 

score/prediction threshold.
Accuracy: Summary of true positives and true 

negatives.

https://ai.googleblog.com/2017/07/revisiting-unreasonable-effectiveness.html
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Bias-Variance Tradeoff of ML

High Bias: Roughly, model is not rich enough to represent data
High Variance: Model overfits to given data; poor generalization
Large-scale training data lowers variance and raises accuracy!
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Why Large-Scale Data?

❖ Large-scale data is a game changer in data science:
❖ Enables study of granular phenomena in sciences, 

businesses, etc. not possible before
❖ Enables new applications and personalization/customization
❖ Enables more complex ML prediction targets and mitigates 

variance to offer high accuracy
❖ Hardware has kept pace to power the above:

❖ Storage capacity has exploded (PB clusters)
❖ Compute capacity has grown (multi-core, GPUs, etc.)
❖ DRAM capacity has grown (10GBs to TBs)
❖ Cloud computing is “democratizing” access to hardware; SaaS
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“Big Data”

❖ Marketing term; think “Big” as in “Big Oil” or “Big Government” or 
“Big Tech”, not “big building”
❖ Became popular in late 2000s to early 2010s
❖ Wikipedia says: “Data that is so large and complex that 

existing toolkits [read RDBMSs!] are not adequate”
❖ Typical characterization by 3 Vs:

❖ Volume: larger than single-node DRAM
❖ Variety: relations, docs, tweets, multimedia, etc.
❖ Velocity: high generation rate, e.g., sensors, surveillance



Why “Big Data” now? 1. Applications

❖ New “data-driven mentality” in almost all human endeavors:
❖ Web: search, e-commerce, e-mails, social media
❖ Science: satellite imagery, CERN’s LHC, document corpora
❖ Medicine: pharmacogenomics, precision medicine
❖ Logistics: sensors, GPS, “Internet of Things”
❖ Finance: high-throughput trading, monitoring
❖ Humanities: digitized books/literature, social media
❖ Governance: e-voting, targeted campaigns, NSA
❖ …
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Why “Big Data” now? 2. Storage
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To analyze large-scale data, parallel and 
scalable data systems are indispensable!
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Outline

❖ Basics of Parallelism
❖ Task Parallelism; Dask
❖ Single-Node Multi-Core; SIMD; Accelerators

❖ Basics of Scalable Data Access
❖ Paged Access; I/O Costs; Layouts/Access Patterns
❖ Scaling Data Science Operations

❖ Data Parallelism: Parallelism + Scalability
❖ Data-Parallel Data Science Operations
❖ Optimizations and Hybrid Parallelism
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Parallel Data Processing

Central Issue: Workload takes too long for one processor!

Basic Idea: Split up workload across processors and perhaps
also across machines/workers (aka “Divide and Conquer”)

https://medium.com/cracking-the-data-science-interview/divide-and-conquer-algorithms-b135681d08fc
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New Parallelism Concept: Threads

❖ Common in parallel data processing: “threads”
❖ Generalization of process abstraction of OS

❖ A program/process can spawn many threads
❖ Each runs its part of program’s computations simultaneously
❖ All threads share address space (so, data too)

❖ In multi-core CPUs, a thread uses up 1 core
❖ “Hyper-threading”: Virtualizes a core to run 2 threads!
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Multiple Threads in a Process

Great 3 min vid on this topic: https://www.youtube.com/watch?v=4rLW7zg21gI
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New Parallelism Concept: Dataflow

❖ Common in parallel data processing: “Dataflow Graph”: 
❖ A directed graph representation of a program with vertices 

being abstract operations from a restricted set of 
computational primitives:

❖ Extended relational dataflows: RDBMS, Pandas, Modin
❖ Matrix/tensor dataflows: NumPy, PyTorch, TensorFlow

❖ Enables us to reason about data-intensive programs at a higher 
level (logical level?)

❖ Task Graph: Similar but coarse-grained; vertex is a process
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Example Relational Dataflow Graph

Aka Logical Query Plan in the DB systems world

Intermediate data

Operators
from extended
relational 
algebra:
π : Projection
U : Union
⟗ : Join
σ : Select

Input data
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Example Tensor Dataflow Graph

Input data

Operators
from LA/DL tool’s
tensor algebra
MatMul : Matrix 
multiplication
ReLU : Activation 
function

Intermediate data

Aka Neural Computational Graph in the ML systems world
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Example Task Graph

Note: Dask conflates the concepts of Dataflow and Task graphs 
because an “operation” on a Dask DataFrame becomes its 

own separate process/program under the hood!

https://docs.dask.org/en/latest/graphviz.html

❖ More coarse-grained than 
operator-level dataflows

❖ Vertex: A full task/process
❖ Edge: A dependency between 

tasks
❖ Directed Acyclic Graph model 

(DAG) common
❖ Data may not be shown

https://docs.dask.org/en/latest/graphviz.html
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Parallel Data Processing

Key parallelism paradigms in data systems:

Central Issue: Workload takes too long for one processor!

Basic Idea: Split up workload across processors and perhaps
also across machines/workers (aka “Divide and Conquer”)

Within a node:

Across nodes:

Shared Replicated Partitioned

“SIMD”
“Pipelining”

Dataset is:

“Task 
Parallel”
Systems

“Data 
Parallel”
Systems

Note: SIMD = Single Instruction, Multiple Data   ---- Also note: Airflow would require custom job implementation
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Outline

❖ Basics of Parallelism
❖ Task Parallelism; Dask
❖ Single-Node Multi-Core; SIMD; Accelerators

❖ Basics of Scalable Data Access
❖ Paged Access; I/O Costs; Layouts/Access Patterns
❖ Scaling Data Science Operations

❖ Data Parallelism: Parallelism + Scalability
❖ Data-Parallel Data Science Operations
❖ Optimizations and Hybrid Parallelism
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Task Parallelism

Basic Idea: Split up tasks across workers; if there is a common 
dataset that they read, just make copies of it (aka replication)

T1

D

T2 T3

T4 T5

T6

Example:

2) Put T1 on worker 1 (W1), T2 on W2, 
T3 on W3; run all 3 in parallel

This is your PA1 setup! Except, Dask 
Scheduler puts tasks on workers for you.

1) Copy whole D to all workers

Given 3 
workers

3) After T1 ends, run T4 on W1; after T2 ends, 
run T5 on W2; after T3 ends, W3 is idle

4) After T4 & T5 end, run T6 on W1; W2 is idle
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Task Parallelism

❖ Topological sort of tasks in task graph for scheduling
❖ Notion of a “worker” can be at processor/core level, not just at 

node/server level
❖ Thread-level parallelism possible instead of process-level
❖ E.g., Dask: 4 worker nodes x 4 cores = 16 workers total

❖ Main pros of task parallelism:
❖ Simple to understand; easy to implement
❖ Independence of workers => low software complexity

❖ Main cons of task parallelism: 
❖ Data replication across nodes; wastes memory/storage
❖ Idle times possible on workers
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Degree of Parallelism

❖ The largest amount of concurrency possible in the task graph, i.e., 
how many task can be run simultaneously

T1

D

T2 T3

T4 T5

T6

Example:
Given 3 
workers

Degree of parallelism is only 3

So, more than 3 workers is not useful 
for this workload!

Q: How do we quantify the runtime 
performance benefits of task parallelism?

But over time, degree of parallelism 
keeps dropping in this example
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Quantifying Benefit of Parallelism: Speedup

Speedup = 
Completion time given only 1 worker

Completion time given n (>1) workers

Q: But given n workers,
can we get a speedup of n?

It depends!
(On degree of parallelism, task 
dependency graph structure, 
intermediate data sizes, etc.)

Number of workers
1 4 8 12

1

4

8

12

(Linear 
Speedup)

Runtime
Speedup
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Quantifying Benefit of Parallelism: Scaleup

In the above:
• "Task" can refer to a single or series 

of computations, queries, etc.
• "Resources" can refer to # of 

workers, DRAM, storage size, etc.
• "Increase" refers to using multiple 

instances of an initial task and initial 
set of resources.

Scaleup refers to the ability of a system to
retain the same performance ratio of tasks-per-resources

when both the tasks and the resources increase at same rate.

1 4 8 12

1

0.5

Resources (relative size)

Normalized ratio of 
tasks-per-resources

2
(Linear Scaleup)
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Quantifying Benefit of Parallelism

Number of workers

Speedup plot

1 4 8 12

1

4

8

12
Linear 

Speedup

Sublinear
Speedup

Q: Is superlinear speedup/scaleup ever possible?

Resources multiples

Scaleup plot

1 4 8 12

1

0.5

2

Linear Scaleup

Sublinear
Scaleup

Most commonly, scaling does not demonstrate ideal linear behavior.
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Idle Times in Task Parallelism

❖ Due to varying task completion times and varying degrees of 
parallelism in workload, idle workers waste resources

T1

D

T2 T3

T4 T5

T6

Example:
Given 3 
workers

Gantt Chart visualization of schedule:

15
5

10

20
5

10 W1: T1 T1 T4 T6 T6

W2: T2 T5 T5 T5 T5

W3: T3 T3 T3

0 5 10 15 20 25 30 35

Idle times
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Idle Times in Task Parallelism

❖ Due to varying task completion times and varying degrees of 
parallelism in workload, idle workers waste resources

T1

D

T2 T3

T4 T5

T6

Example:
Given 3 
workers

15
5

10

20
5

10

❖ In general, overall workload’s completion 
time on task-parallel setup is always lower 
bounded by the longest path in the task 
graph

❖ Possibility: A task-parallel scheduler can 
“release” a worker if it knows that will be 
idle till the end
❖ Can saves costs in cloud
❖ Implemented as autoscaling in 

Kubernetes, can be custom 
implementation on EC2s or VMs.
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Calculating Task Parallelism Speedup

❖ Due to varying task completion times and varying degrees of 
parallelism in workload, idle workers waste resources

T1

D

T2 T3

T4 T5

T6

Example:
Given 3 
workers

15
5

10

20
5

10

Speedup = 65/35 = 1.9x

Completion time 
with 1 worker

10+5+15+5+
20+10 = 65

Parallel 
completion time

35

Ideal/linear speedup is 3x

Q: Why is it only 1.9x?
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Task Parallelism in Dask

❖ “Dask is a flexible library for parallel computing in Python”
❖ 2 key components:

❖ APIs for data science ops on large data
❖ Dynamic task scheduling on multi-core/multi-node

❖ Design desirables:
❖ Pythonic: Stay within PyData stack (e.g., no JVM)
❖ Familiarity: Retain APIs of NumPy, Pandas, etc.
❖ Scaling Up: Seamlessly exploit all cores
❖ Scaling Out: Easily exploit cluster (needs setup)
❖ Flexibility: Can schedule custom tasks too
❖ Fast?: “Optimized” implementations under APIs

https://docs.dask.org/en/latest/

https://docs.dask.org/en/latest/
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Task Parallelism in Dask

https://docs.dask.org/en/latest/
https://docs.dask.org/en/latest/scheduling.html

https://docs.dask.org/en/latest/
https://docs.dask.org/en/latest/scheduling.html
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Dask’s Workflow

❖ “Lazy Evaluation”:
❖ Ops on data structures are NOT executed immediately
❖ Triggered manually, e.g., compute()
❖ Dataflow graph / task graph is built under the hood

User code 
using their API

Internal dictionary with key-
value pair representation of 

dataflow/task graph



39

❖ Rest of the Dask’s workflow for distributing computations:

“Optimize”
Task Graph

Serialize Task Graph 
(dictionary)

Communicate it 
to Scheduler

Scheduler divvies up 
work for cores/nodes

Each worker 
does its job 
and notifies 
Scheduler

https://docs.dask.org/en/latest/phases-of-computation.html

Dask’s Workflow

https://docs.dask.org/en/latest/phases-of-computation.html
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❖ Rest of the Dask’s workflow for distributing computations:

“Optimize”
Task Graph

Serialize Task Graph 
(dictionary)

Communicate it 
to Scheduler

Scheduler divvies up 
work for cores/nodes

Each worker 
does its job 
and notifies 
Scheduler

Possible Bottlenecks/Issues in Dask

API implementation: 
- Lack of ops coverage
- Memory errors in ops 

due to poor scalability 

Poor/missed
optimizations

Huge task graphs take 
too long to serialize 
and/or communicate

Poor scalability 
of SchedulerMachine/network failures
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Dask: Task-Parallelism Best Practices

https://docs.dask.org/en/latest/best-practices.html

❖ Is Dask even needed? Will single-node in-memory tool suffice?
❖ Data Partition sizes: 

❖ Avoid too few chunks (low degree of par.)
❖ Avoid too many chunks (task graph overhead)
❖ Be mindful of available DRAM
❖ Rough guidelines they give: 

❖ # data chunks ~ 3x-10x # cores, but 
❖ # cores x chunk size must be < machine DRAM, but 
❖ chunk size shouldn’t be too small (~1 GB is OK)

Q: Do you tune any of these when using an RDBMS? :) 

Dask still lacks “physical data independence”!

https://docs.dask.org/en/latest/best-practices.html


42https://docs.dask.org/en/latest/best-practices.html
https://docs.dask.org/en/latest/diagnostics-distributed.html

❖ Use the Diagnostics dashboard:
❖ Monitor # tasks, core/node usage, task completion

❖ Task Graph sizes:
❖ Too large: Bottlenecks

(serialization / communication / scheduling)
❖ Too small: Under-utilization of cores/nodes
❖ Rough guidelines: 

❖ Tune data chunk size to adjust # tasks (see previous point)
❖ Break up a task/computation
❖ Fuse tasks/computations aka “batching”, or in other cases 

break jobs apart into distinct stages. 

Dask: Task-Parallelism Best Practices

https://docs.dask.org/en/latest/best-practices.html
https://docs.dask.org/en/latest/diagnostics-distributed.html
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Execution Optimization Tradeoffs

❖ Be judicious in tuning data chunk sizes
❖ Be judicious in batching vs breaking up tasks

Speedup is a function of the above factors.
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The WRATH of Codd?

Edgar Codd:
Mathematician, former IBM Fellow.
Best known for creating the “relational”
model for representing data.
Following excerpt is from June 1970 :
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Outline

❖ Basics of Parallelism
❖ Task Parallelism; Dask
❖ Single-Node Multi-Core; SIMD; Accelerators

❖ Basics of Scalable Data Access
❖ Paged Access; I/O Costs; Layouts/Access Patterns
❖ Scaling Data Science Operations

❖ Data Parallelism: Parallelism + Scalability
❖ Data-Parallel Data Science Operations
❖ Optimizations and Hybrid Parallelism


