UCSan Diego

DSC 102
Systems for Scalable Analytics

Rod Albuyeh

Topic 3: Parallel and Scalable Data Processing
Part 1: Parallelism Basics

Outline

Basics of Parallelism

Task Parallelism; Dask
=P > Single-Node Multi-Core; SIMD; Accelerators

Basics of Scalable Data Access
Paged Access; I/O Costs; Layouts/Access Patterns
Scaling Data Science Operations

Data Parallelism: Parallelism + Scalability
Data-Parallel Data Science Operations
Optimizations and Hybrid Parallelism

Multi-core CPUs

Modern machines often have multiple processors and multiple
cores per processor; hierarchy of shared caches

OS Scheduler now controls what cores/processors assigned to
what processes/threads when

Processor 0 Processor 1
Core 0 Core 1 Core 2 Core 3
CPU CPU CPU CPU
lL1 Cache] |L1 Cachel ||.1 Cachel |L1 Cachel
=3 ¥
e Controller;
f L2 Cache L2 Cache
- imcluding
Display;
DMI and 'y 'y
Misc: 1/0 7
« | b, - System Bus o System Memory
; i

Single-Instruction Multiple-Data

Single-Instruction Multiple-Data (SIMD): A fundamental form of
parallel processing in which different chunks of data are processed by
the “same” set of instructions shared by multiple processing units (PUs)

Aka “vectorized” instruction processing (vs “scalar”)
Data science workloads are very amenable to SIMD
Note: no “master” scheduler in this scenario

Example for SIMD in data science:
SIMD Instruction Pool

Scalar Operation SIMD Operation of
T\ Vector Length 4
Ad + EBE = BG
5 = A B |G
D?) Ay + Bv = Cy Av . B, . Cv
v -
© O A, B, c
e 0 Al + |B| = |cC
(DU 5 2 z z A, B Cm
>
Aw] + [By] = (G Intel® Architecture currently has SIMD
N operations of vector length 4, 8, 16

SIMD Generalizations

Single-Instruction Multiple Thread (SIMT): Generalizes notion
of SIMD to different threads concurrently doing so

Each thread may be assigned a core or a whole PU

Single-Program Multiple Data (SPMD): A higher level of
abstraction generalizing SIMD operations or programs

Under the hood, may use multiple processes or threads
Each chunk of data processed by one core/PU
Applicable to any CPU, not just vectorized PUs

Most common form of parallel programming

In this case, work is distributed from a central scheduler or
orchestrator.

“Data Parallel” Multi-core Execution

Processor 0 Processor 1
Core 0 Core 1 Core 2 Core 3
CPU CPU CPU CPU
L1 D1 L1 D2 L1 D3 L1 D4
L2 Cache D1 L2 Cache D3
D2 D4
| | D1
' System Bus System Memory D2
D3
D4

Quantifying Efficiency: Speedup

Q: How do we quantify the runtime performance benefits
of multi-core parallelism?

As with task parallelism, we measure the speedup:

Completion time given only 1 core

Speedup =
Completion time given n (>1) core

In data science computations, an often useful surrogate for
completion time is the instruction throughput FLOP/s, i.e., number
of floating point operations per second

Modern data processing programs, especially deep learning (DL)
may have billions of FLOPs aka GFLOPS!

Amdahl’'s Law

Q: But given n cores, can we get a speedup of n?
It depends! (Just like it did with task parallelism)

Amdahl’s Law: Formula to upper bound possible speedup

A program has 2 parts: one that benefits from multi-core parallelism
and one that does not

Non-parallel part could be for control, memory stalls, traversing a
linked list...

1 core: N cores:
Tyes + Tho n(1 + f)
Tyes —Tyes/n Speedup = _
Tho — Tho Tyes/n + Tho n+f

Denote Tyes/Tno =f

Amdahl’'s Law

parallelizable f
s G m—
.

H—/
serial s

1 core

If 50% of the execution
time is sequential, the
maximum speedup is 2,
no matter how many
cores you use

3 cores

4 cores

Amdahl’'s Law

20 +—————————— T e —
=T T Speedup =
18 /,/’
Parallel portion
16 // 50% n(1 + f)
// 75%
14 —— 90%
—— 95% n+f
12
o
§ 10 +-——+——"———7———pp——F——1——t—— — — e
:’g)_) ‘/_/.,-—-"‘"“‘ f= Tyes/Tno
8
6 : Parallel portion =
/.
4 - 2 < [UPTOTE TYTTET Syt s e e T T T e e f/ (1 + f)
, 4
0

1024
2048
4096
8192
16384
32768
65536

Number of processors 10

Hardware Trends on Parallelism

Multi-core processors grew rapidly in early 2000s but hit physical limits
due to packing efficiency and power issues

Moore's Law: The number of transistors in a dense integrated circuit doubles
about every two years. Has not held up due to physical limits of
miniaturization, increasing costs, and emergence of alternative innovations.

Dennard Scaling: As transistors get smaller, their power density stays
constant, so that the power use stays in proportion with area. Has not held
up because transistors have become so small that their power consumption
has started to increase again, and accordingly, heat.

End of “Moore’s Law” and end of “Dennard Scaling”.

11

Hardware Trends on Parallelism

Multi-core processors grew rapidly in early 2000s but hit physical
limits due to packing efficiency and power issues.

.

: Takeaway from hardware

10° trends: it is hard for

105 . : general-purpose CPUs to

Ny L :Fﬁllﬁaﬂce{ sustain FLOP-heavy
Frequency programs like deep nets

10° Motivated the rise of

102 I e “accelerators” for some

- Number of classes of programs

10°

1975 1980 1985 1990 1995 2000 2005 2010 2015 12

Hardware Accelerators: GPUs

Graphics Processing Unit (GPU): Tailored for matrix/tensor ops
Basic idea: use tons of ALUs; massive data parallelism (SIMD on
steroids); Titan X offers ~11 TFLOP/s!

Popularized by NVIDIA in early 2000s for video games, graphics,
video/multimedia, cryptomining; now ubiquitous in deep learning

CUDA released in 2007; later wrapper APIs on top: CuDNN,
CuSparse, CuDF (RapidsAl), etc.

=
AW || AW =

Control
=
ALU ALU
H

I
I
I
I
=) (]
I
I
I

Cache E:
|

L)
N/

I
o
I |
==
|
[
[
==

|
I
|
|
|
I
|
I

DRAM DRAM

13
CPU GPU

GPUs on the Market

GPU Performance (FP32, single precision floating point)

Titan, RTX
16000 - Quadro-RTX-8000 350
Quadro GV100
Tesla V100
14000 - f
GTX Titan V]
RTX 2080 Ti FE 300
Tesla P40 RTX 2080 Ti
120007 ' Quadrg GP100 l
G |
Radeo Liquid
FBB o
RTX 2080 FE
10000 - GTX Titan X (Pascal) RTX 2080 Super
o~ Q Tesla,P100 .
a Tesla M60 4 RTX 2080 m
a Tes|g K80 . 2
W ” Radeon RX Vega 56 RTX 2070 Super L ©
GTX Zitan Z .) ’ 200
¢ 8000 o GTX 1080 GTX 1070 Ti Tedfh T4 2
O RTX 2070 FE o
o Xeon Phi 7290F QuadroRTX 4000 @)
L : : =
@) Tesla M40 RTX 2070
GTX Titan X (Maxwell)
6000 1 GTX,690 GTX980Ti /o oo RTX 2060 Super L 150
i I 3 RTX.2060
GTX Titan Black Tes2 P4 -
Tesld K40 GTX 980 i
Tesla K10 dex s , GTX gso Ti
4000 | : i GTX"1660
Tesla K20 GTX 780 GTX.970 Xeon Platinum 8180
GTX460 TP GTX670 oy 769 GTX.960 CTrg 0
2000 _GTX 660 Ti ' Tesﬁ Ma_GTX 2050 Ti i9-7980XE
GTX295 GTX580 GIX560Ti crffees ST Is0T @ an 8050
9800 GTX GTSI250 GTS|450 GTX 550 Ti GTX@50 Ti cTis50 GTX950 Tegra X2 GT 1030
30 Grxls60 GTg650 i7-6850K 50
8800.GTX o0 o §?€ 3§$ Gg 9505 %Ig(28 G40 GTE40 CP40 Teggn X1 el Iris Pluggraphics 650
01 SB08 G5 9508 GT ez G138 o620 61938 Intel UHD Graphics 630
GT 130 GT 330
2006 2008 2010 2012 2014 2016 2018 2020

Year
14

Empirical GPU FLOP/s per dollar

—— Our data (2x every 2.46 years) /’
—-=—= Moore's law slope (2x every 2.00 years) /’
13 H=== Huang's law slope (2x every 1.08 years) /’
Bio anchors report slope (2x every 2.50 years) /’
-== empirical CPU slope (2x every 2.32 years) /’
12 - @ Top FLOPs/dollar GPUs (2x every 2.95 years) .,“
ML GPUs (2x every 2.07 years) e
©
o
©
o
o
2
o
S
L
o
—
(@]
ke
7 -
o0 -l SN A L S L gt
o0 0¥ o 0> gy A\ 20" 0> 1 20
20 20 20 20 20 20 20 20 20 20

15

Other Hardware Accelerators

Tensor Processing Unit (TPU): Even more specialized tensor
ops in DL inference; ~45 TFLOP/s!

An “application-specific integrated circuit” (ASIC) created by
Google in mid 2010s; used for AlphaGo!

Field-Programmable Gate Array (FPGA): Configurable for any
class of programs; ~0.5-3 TFLOP/s

Cheaper; new h/w-s/w stacks for ML/DL; Azure/AWS support

Comparing Modern Parallel Hardware

ASICs
Multi- P

Peak FLOPS/s Moderate High High Very High
Power) .
oA High Very High Very Low Low-Very Low
Cost Low High Very High Highest
Generality / : . :
Flexibility Highest Medium Very High Lowest
“Fitness” for Potential exists
: 3 : L :
DL Training? Poor Fit est Fit ow Fit but yet unrealized
AT o Moderate Moderate Good Fit Best Fit
DL Inference?
AL A All All AWS, Azure AWS, GCP

Support

17

httns:/wvww embedded com/leveraaina-fnaas-for-deen-learnina/

https://www.embedded.com/leveraging-fpgas-for-deep-learning/

Review Questions

1.
2.
3.
4.
5.

Briefly explain 3 benefits of large-scale data in Data Science.
What is a dataflow graph? Give an example from a data system.
How does a task graph differ from a dataflow graph?

Briefly explain 1 benefit and 1 drawback of task parallelism.
What is the lower bound on completion time when running a task
graph in a task-parallel manner?

What is the degree of parallelism of a task graph?

Is linear speedup always possible with task parallelism?

What is SIMD? Why is “vectorized” data processing critical?
What is the point of Amdahl’s Law?

O Briefly 1 pro and 1 con of TPU vs GPU.

—‘@.00.\‘.@

18

Outline

Basics of Parallelism
Task Parallelism; Dask
Single-Node Multi-Core; SIMD; Accelerators

=P <> Basics of Scalable Data Access

Paged Access; I/O Costs; Layouts/Access Patterns
Scaling Data Science Operations

Data Parallelism: Parallelism + Scalability
Data-Parallel Data Science Operations
Optimizations and Hybrid Parallelism

19

