
Topic 3: Parallel and Scalable Data Processing
Part 1: Parallelism Basics

Rod Albuyeh

1

DSC 102
Systems for Scalable Analytics



2

Outline

❖ Basics of Parallelism
❖ Task Parallelism; Dask
❖ Single-Node Multi-Core; SIMD; Accelerators

❖ Basics of Scalable Data Access
❖ Paged Access; I/O Costs; Layouts/Access Patterns
❖ Scaling Data Science Operations

❖ Data Parallelism: Parallelism + Scalability
❖ Data-Parallel Data Science Operations
❖ Optimizations and Hybrid Parallelism



3

Multi-core CPUs

❖ Modern machines often have multiple processors and multiple 
cores per processor; hierarchy of shared caches

❖ OS Scheduler now controls what cores/processors assigned to 
what processes/threads when



4

Single-Instruction Multiple-Data

❖ Single-Instruction Multiple-Data (SIMD): A fundamental form of 
parallel processing in which different chunks of data are processed by 
the “same” set of instructions shared by multiple processing units (PUs)

❖ Aka “vectorized” instruction processing (vs “scalar”)
❖ Data science workloads are very amenable to SIMD
❖ Note: no “master” scheduler in this scenario 

Example for SIMD in data science:



5

SIMD Generalizations

❖ Single-Instruction Multiple Thread (SIMT): Generalizes notion 
of SIMD to different threads concurrently doing so
❖ Each thread may be assigned a core or a whole PU

❖ Single-Program Multiple Data (SPMD): A higher level of 
abstraction generalizing SIMD operations or programs
❖ Under the hood, may use multiple processes or threads
❖ Each chunk of data processed by one core/PU
❖ Applicable to any CPU, not just vectorized PUs
❖ Most common form of parallel programming
❖ In this case, work is distributed from a central scheduler or 

orchestrator.



6

“Data Parallel” Multi-core Execution

D1
D2
D3
D4

D3
D4

D1
D2

D4D3D2D1



7

Quantifying Efficiency: Speedup

❖ As with task parallelism, we measure the speedup: 

Q: How do we quantify the runtime performance benefits 
of multi-core parallelism?

Speedup = 
Completion time given only 1 core

Completion time given n (>1) core

❖ In data science computations, an often useful surrogate for 
completion time is the instruction throughput FLOP/s, i.e., number 
of floating point operations per second

❖ Modern data processing programs, especially deep learning (DL) 
may have billions of FLOPs aka GFLOPs!



8

Amdahl’s Law

❖ Amdahl’s Law: Formula to upper bound possible speedup
❖ A program has 2 parts: one that benefits from multi-core parallelism 

and one that does not
❖ Non-parallel part could be for control, memory stalls, traversing a 

linked list...

Q: But given n cores, can we get a speedup of n?

It depends! (Just like it did with task parallelism)

Tno

Tyes
1 core:

Speedup = 

n cores:

Tno

Tyes/n Tyes + Tno

Tyes/n + Tno
=

n(1 + f)

n + f

Denote Tyes/Tno = f



9

Amdahl’s Law



10

Amdahl’s Law

Speedup = 

n(1 + f)

n + f

f = Tyes/Tno

Parallel portion =
f / (1 + f)



11

Hardware Trends on Parallelism 

❖ Multi-core processors grew rapidly in early 2000s but hit physical limits 
due to packing efficiency and power issues

Moore's Law: The number of transistors in a dense integrated circuit doubles 
about every two years. Has not held up due to physical limits of 
miniaturization, increasing costs, and emergence of alternative innovations.

Dennard Scaling: As transistors get smaller, their power density stays 
constant, so that the power use stays in proportion with area. Has not held 
up because transistors have become so small that their power consumption 
has started to increase again, and accordingly, heat. 

❖ End of “Moore’s Law” and end of “Dennard Scaling”.



12

Hardware Trends on Parallelism 

❖ Multi-core processors grew rapidly in early 2000s but hit physical 
limits due to packing efficiency and power issues.

❖ Takeaway from hardware 
trends: it is hard for 
general-purpose CPUs to 
sustain FLOP-heavy 
programs like deep nets

❖ Motivated the rise of 
“accelerators” for some 
classes of programs



13

Hardware Accelerators: GPUs
❖ Graphics Processing Unit (GPU): Tailored for matrix/tensor ops
❖ Basic idea: use tons of ALUs; massive data parallelism (SIMD on 

steroids); Titan X offers ~11 TFLOP/s!
❖ Popularized by NVIDIA in early 2000s for video games, graphics, 

video/multimedia, cryptomining; now ubiquitous in deep learning
❖ CUDA released in 2007; later wrapper APIs on top: CuDNN, 

CuSparse, CuDF (RapidsAI), etc.



14

GPUs on the Market



15

Empirical GPU FLOP/s per dollar



16

Other Hardware Accelerators

❖ Tensor Processing Unit (TPU): Even more specialized tensor 
ops in DL inference; ~45 TFLOP/s!
❖ An “application-specific integrated circuit” (ASIC) created by 

Google in mid 2010s; used for AlphaGo!
❖ Field-Programmable Gate Array (FPGA): Configurable for any 

class of programs; ~0.5-3 TFLOP/s
❖ Cheaper; new h/w-s/w stacks for ML/DL; Azure/AWS support



17

Comparing Modern Parallel Hardware

Multi-core CPU GPU FPGA ASICs 
(e.g., TPUs)

Peak FLOPS/s Moderate High High Very High

Power 
Consumption High Very High Very Low Low-Very Low

Cost Low High Very High Highest

Generality / 
Flexibility Highest Medium Very High Lowest

“Fitness” for 
DL Training? Poor Fit Best Fit Low Fit Potential exists 

but yet unrealized

“Fitness” for 
DL Inference? Moderate Moderate Good Fit Best Fit

Cloud Vendor 
Support All All AWS, Azure AWS, GCP

https://www.embedded.com/leveraging-fpgas-for-deep-learning/

https://www.embedded.com/leveraging-fpgas-for-deep-learning/


18

Review Questions

1. Briefly explain 3 benefits of large-scale data in Data Science.
2. What is a dataflow graph? Give an example from a data system.
3. How does a task graph differ from a dataflow graph?
4. Briefly explain 1 benefit and 1 drawback of task parallelism.
5. What is the lower bound on completion time when running a task 

graph in a task-parallel manner?
6. What is the degree of parallelism of a task graph?
7. Is linear speedup always possible with task parallelism?
8. What is SIMD? Why is “vectorized” data processing critical?
9. What is the point of Amdahl’s Law?
10. Briefly 1 pro and 1 con of TPU vs GPU.



19

Outline

❖ Basics of Parallelism
❖ Task Parallelism; Dask
❖ Single-Node Multi-Core; SIMD; Accelerators

❖ Basics of Scalable Data Access
❖ Paged Access; I/O Costs; Layouts/Access Patterns
❖ Scaling Data Science Operations

❖ Data Parallelism: Parallelism + Scalability
❖ Data-Parallel Data Science Operations
❖ Optimizations and Hybrid Parallelism


