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Multi-core CPUs

Modern machines often have multiple processors and multiple
cores per processor; hierarchy of shared caches

OS Scheduler now controls what cores/processors assigned to
what processes/threads when
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Single-Instruction Multiple-Data

Single-Instruction Multiple-Data (SIMD): A fundamental form of
parallel processing in which different chunks of data are processed by
the “same” set of instructions shared by multiple processing units (PUs)

Aka “vectorized” instruction processing (vs “scalar”)
Data science workloads are very amenable to SIMD
Note: no “master” scheduler in this scenario

Example for SIMD in data science:
SIMD Instruction Pool
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SIMD Generalizations

Single-Instruction Multiple Thread (SIMT): Generalizes notion
of SIMD to different threads concurrently doing so

Each thread may be assigned a core or a whole PU

Single-Program Multiple Data (SPMD): A higher level of
abstraction generalizing SIMD operations or programs

Under the hood, may use multiple processes or threads
Each chunk of data processed by one core/PU
Applicable to any CPU, not just vectorized PUs

Most common form of parallel programming

In this case, work is distributed from a central scheduler or
orchestrator.



“Data Parallel” Multi-core Execution
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Quantifying Efficiency: Speedup

Q: How do we quantify the runtime performance benefits
of multi-core parallelism?

As with task parallelism, we measure the speedup:

Completion time given only 1 core

Speedup =
Completion time given n (>1) core

In data science computations, an often useful surrogate for
completion time is the instruction throughput FLOP/s, i.e., number
of floating point operations per second

Modern data processing programs, especially deep learning (DL)
may have billions of FLOPs aka GFLOPS!



Amdahl’'s Law

Q: But given n cores, can we get a speedup of n?
It depends! (Just like it did with task parallelism)

Amdahl’s Law: Formula to upper bound possible speedup

A program has 2 parts: one that benefits from multi-core parallelism
and one that does not

Non-parallel part could be for control, memory stalls, traversing a
linked list...

1 core: N cores:
Tyes + Tho n(1 + f)
Tyes —Tyes/n Speedup = _
Tho — Tho Tyes/n + Tho n+f

Denote Tyes/Tno =f



Amdahl’'s Law
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Hardware Trends on Parallelism

Multi-core processors grew rapidly in early 2000s but hit physical limits
due to packing efficiency and power issues

Moore's Law: The number of transistors in a dense integrated circuit doubles
about every two years. Has not held up due to physical limits of
miniaturization, increasing costs, and emergence of alternative innovations.

Dennard Scaling: As transistors get smaller, their power density stays
constant, so that the power use stays in proportion with area. Has not held
up because transistors have become so small that their power consumption
has started to increase again, and accordingly, heat.

End of “Moore’s Law” and end of “Dennard Scaling”.
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Hardware Trends on Parallelism

Multi-core processors grew rapidly in early 2000s but hit physical
limits due to packing efficiency and power issues.
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Hardware Accelerators: GPUs

Graphics Processing Unit (GPU): Tailored for matrix/tensor ops
Basic idea: use tons of ALUs; massive data parallelism (SIMD on
steroids); Titan X offers ~11 TFLOP/s!

Popularized by NVIDIA in early 2000s for video games, graphics,
video/multimedia, cryptomining; now ubiquitous in deep learning

CUDA released in 2007; later wrapper APIs on top: CuDNN,
CuSparse, CuDF (RapidsAl), etc.
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GPUs on the Market

GPU Performance (FP32, single precision floating point)
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Empirical GPU FLOP/s per dollar
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Other Hardware Accelerators

Tensor Processing Unit (TPU): Even more specialized tensor
ops in DL inference; ~45 TFLOP/s!

An “application-specific integrated circuit” (ASIC) created by
Google in mid 2010s; used for AlphaGo!

Field-Programmable Gate Array (FPGA): Configurable for any
class of programs; ~0.5-3 TFLOP/s

Cheaper; new h/w-s/w stacks for ML/DL; Azure/AWS support




Comparing Modern Parallel Hardware
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Review Questions

1.
2.
3.
4.
5.

Briefly explain 3 benefits of large-scale data in Data Science.
What is a dataflow graph? Give an example from a data system.
How does a task graph differ from a dataflow graph?

Briefly explain 1 benefit and 1 drawback of task parallelism.
What is the lower bound on completion time when running a task
graph in a task-parallel manner?

What is the degree of parallelism of a task graph?

Is linear speedup always possible with task parallelism?

What is SIMD? Why is “vectorized” data processing critical?
What is the point of Amdahl’s Law?

O Briefly 1 pro and 1 con of TPU vs GPU.
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