
Topic 3: Parallel and Scalable Data Processing
Part 2: Scalable Data Access

Rod Albuyeh

1

DSC 102
Systems for Scalable Analytics

2

Outline

❖ Basics of Parallelism
❖ Task Parallelism; Dask
❖ Single-Node Multi-Core; SIMD; Accelerators

❖ Basics of Scalable Data Access
❖ Paged Access; I/O Costs; Layouts/Access Patterns
❖ Scaling Data Science Operations

❖ Data Parallelism: Parallelism + Scalability
❖ Data-Parallel Data Science Operations
❖ Optimizations and Hybrid Parallelism

3

Recap: Memory Hierarchy

Flash Storage10
5 –

10
6

CPU

Main
Memory

Magnetic Hard Disk Drive (HDD)

A
 C

 C
 E

 S
 S

 C

 Y
 C

 L
 E

 S

10
7 –

10
8

10
10

Cache
Price

Capacity

Ac
ce

ss
 Sp

ee
d

Tape

Non-Volatile RAM

~GB/s

~10GB/s

~100GB/s ~MBs
~$2/MB

~10GBs
~$3/GB

~TBs
~$100/TB

~PBs; ~$10/TB

~10TBs
~$20/TB~200MB/s

~50MB/s

4

Memory Hierarchy in Action

Bus

CU ALU

Caches

DRAM

Disk

Store; Retrieve

Store; Retrieve

Retrieve;
Process

Registers

CPU

Rough sequence of events when program is executed

tmp.csvtmp.py

Commands interpreted

Arithmetic done within CPU

Monitor

‘21’

I/O for Display I/O for code I/O for data

‘21’

‘21’

Q: What if this does
not fit in DRAM?

5

Scale of Datasets in Practice

https://www.kdnuggets.com/2020/07/poll-largest-dataset-analyzed-results.html

N = 562
62% industry

https://www.kdnuggets.com/2020/07/poll-largest-dataset-analyzed-results.html

6

How much DRAM might a machine
have?

Common DRAM configs:

• Average Laptop: 16GB

• t2.xlarge EC2 instance: 16GB (at $0.19/hour)

• 2023 MacBook Pro: 32GB-96GB

• Consumer Deep Learning / Gaming PC: 128GB ($288 fixed)

• r7g.metal EC2 instance: 512GB (at $3.43/hour)

• hpc6id.32xlarge EC2 instance: 1024GB (at $5.70/hour)

Less common: u-24tb1.112xlarge: 24TB (at $218.40/hour)

7

Scalable Data Access

4 key regimes of scalability / staging reads:
❖ Single-node disk: Paged access from file on local disk
❖ Remote read: Paged access from disk(s) over a network
❖ Distributed memory: Data fits on a cluster’s total DRAM
❖ Distributed disk: Use entire memory hierarchy of cluster

Central Issue: Large data file does not fit entirely in DRAM
Basic Idea: Divide-and-conquer again.
“Split” a data file (virtually or physically)

and stage reads of its pages from disk to DRAM;
vice versa for writes

8

Outline

❖ Basics of Parallelism
❖ Task Parallelism; Dask
❖ Single-Node Multi-Core; SIMD; Accelerators

❖ Basics of Scalable Data Access
❖ Paged Access; I/O Costs; Layouts/Access Patterns
❖ Scaling Data Science Operations

❖ Data Parallelism: Parallelism + Scalability
❖ Data-Parallel Data Science Operations
❖ Optimizations and Hybrid Parallelism

9

Paged Data Access to DRAM

Disk

Page in an
occupied frame

Free frames
OS Cache
in DRAM

F1P1 F1P2 F1P3 F2P1 F2P2 …

Basic Idea: “Split” data file (virtually or physically)
and stage reads of its pages from disk to DRAM (vice versa for writes)

❖ Recall that files are
already virtually split
and stored as pages
on both disk and
DRAM

F1P1

F1P2

F2P1 F2P2

F1P3

F3P1F5P7 F3P5

10

Page Management in DRAM Cache

❖ Caching: Retaining pages read from disk in DRAM
❖ Eviction: Removing a page frame’s content in DRAM
❖ Spilling: Writing out pages from DRAM to disk

❖ If a page in DRAM is “dirty” (i.e., some bytes were written but
not backed up on disk), eviction requires a spill.

❖ The set of DRAM-resident pages typically changes over the
lifetime of a process

❖ Cache Replacement Policy: The algorithm that chooses which
page frame(s) to evict when a new page has to be cached but the
OS cache in DRAM is full
❖ Popular policies include Least Recently Used, Most Recently

Used, etc. (more shortly)

11

Quantifying I/O: Disk, Network

❖ Page reads/writes to/from DRAM from/to disk incur latency
❖ Disk I/O Cost: Abstract counting of number of page I/Os; can

map to bytes given page size

❖ Sometimes, programs read/write data over network
❖ Communication/Network I/O Cost: Abstract counting of number

of pages/bytes sent/received over network
❖ I/O cost is abstract; mapping to latency is hardware-specific

Example: Suppose a data file is 40GB; page size is 4KB
I/O cost to read file = 10 million page I/Os

Disk with I/O throughput: 800 MB/s

Network with speed: 200 MB/s

40GB/800MBps = 50s

40GB/200MBps = 200s

12

Scaling to (Local) Disk

Basic Idea: Split data file (virtually or physically)
and stage reads of its pages from disk to DRAM (vice versa for writes)

Disk

OS Cache
in DRAM

…

Process wants to read file’s pages
one after another, then discard:
aka “filescan” access pattern

P1 P2 P3 P4 P5 P6

Read P1
Read P2
Read P3
Read P4
Read P5
Read P6

Cache is
full!
Cache
Repl.
needed

Evict P1Evict P2
Suppose OS Cache has only 4 frames; initially empty

Total I/O cost: 6
…P1 P2 P3 P4 P5 P6

13

❖ In general, scalable programs stage access to pages of file on
disk and efficiently use available DRAM
❖ Recall that typically DRAM size << Disk size

❖ Modern DRAM sizes can be 10s of GBs; so we read a
“chunk”/“block” of file at a time (say, 1000s of pages)
❖ On magnetic hard disks, such chunking leads to more

sequential I/Os, raising throughput and lowering latency!
❖ Similarly, write a chunk of dirtied pages at a time

Scaling to (Local) Disk

14

Generic Cache Replacement Policies

❖ Cache Replacement Policy: Algorithm to decide which page frame(s) to
evict to make space
❖ Typical frame ranking criteria:

Ø recency of use
Ø frequency of use
Ø number of processes reading it

❖ Typical optimization goal: Reduce total page I/O costs
❖ A few well-known policies:

❖ Least Recently Used (LRU): Evict page that was used longest ago
❖ Most Recently Used (MRU): (Opposite of LRU)
❖ ML-based caching policies are “hot” nowadays!

Q: What to do if number of page frames is too few for file?

Ad: Take CSE 132C for more on cache replacement policies

15

Data Layouts and Access Patterns

❖ Recall that data layouts and data access patterns affect what
data subset gets cached in higher level of memory hierarchy
❖ Recall matrix multiplication example and CPU caches

❖ Key Principle: Optimizing layout of data file on disk based on
data access pattern can help reduce I/O costs
❖ Applies to both magnetic hard disk and flash SSDs

Ø But especially critical for magnetic hard disks due to vast
differences in latency of random vs sequential access!

16

Row-store vs Column-store Layouts

❖ A common dichotomy when serializing 2-D structured data
(relations, matrices, DataFrames) to file on disk

A B C D

1a 1b 1c 1d

2a 2b 2c 2d

3a 3b 3c 3d

4a 4b 4c 4d

5a 5b 5c 5d

6a 6b 6c 6d

Say, a page can fit only 4 cell values

1a,1b,1c,
1dRow-store: 2a,2b,2c,

2d
3a,3b,3c,

3d …

1a,2a,3a,
4aCol-store: 5a,6a 1b,2b,3b,

4b …

❖ Based on data access pattern of program, I/O costs with row- vs
col-store can be orders of magnitude apart!

17

Row-store vs Column-store Layouts

❖ With row-store: need to fetch all pages; I/O cost: 6 pages
❖ With col-store: need to fetch only B’s pages; I/O cost: 2 pages
This difference generalizes to higher dimensions for tensors

Q: What is the I/O cost with each to compute, say, a sum over B?

A B C D

1a 1b 1c 1d

2a 2b 2c 2d

3a 3b 3c 3d

4a 4b 4c 4d

5a 5b 5c 5d

6a 6b 6c 6d

Say, a page can fit only 4 cell values

1a,1b,1c,
1dRow-store: 2a,2b,2c,

2d
3a,3b,3c,

3d …

1a,2a,3a,
4aCol-store: 5a,6a 1b,2b,3b,

4b …

18

Hybrid/Tiled/“Blocked” Layouts

❖ Sometimes, it is beneficial to do a hybrid, especially for analytical
RDBMSs and matrix/tensor processing systems

1a,1b,
2a,2b

Hybrid stores with 2x2 tiled layout:

1c,1d,
2c,2d

3a,3b,
4a,4b …

Key Principle: What data layout will yield lower I/O costs (row vs
col vs tiled) depends on data access pattern of the program!

Say, a page can fit only 4 cell valuesA B C D

1a 1b 1c 1d

2a 2b 2c 2d

3a 3b 3c 3d

4a 4b 4c 4d

5a 5b 5c 5d

6a 6b 6c 6d

1a, 2a,
1b, 2b

1c, 2c,
1d, 2d

3a, 4a,
2b, 3b …

19

Example: Dask’s DataFrame

❖ Dask DF scales to disk-resident data
via a row-store

❖ “Virtual” split: each split is a Pandas
DF under the hood

❖ Dask API is a “wrapper” around
Pandas API to scale ops to splits and
put all results together

❖ If file is too large for DRAM, need
manual repartition() to get physically
smaller splits (< ~1GB)

Basic Idea: Split data file (virtually or physically) and stage reads
of its pages from disk to DRAM (vice versa for writes)

https://docs.dask.org/en/latest/dataframe-best-practices.html#repartition-to-reduce-overhead

https://docs.dask.org/en/latest/dataframe-best-practices.html

20

Example: Modin’s DataFrame

❖ Modin’s DF aims to scale to disk-
resident data via a tiled store

❖ Enables seamless scaling along both
dimensions

❖ Easier use of multi-core parallelism
Ø Many in-memory RDBMSs had this,

e.g., SAP HANA, Oracle TimesTen
Ø ScaLAPACK had this for matrices

Basic Idea: Split data file (virtually or physically) and stage reads
of its pages from disk to DRAM (vice versa for writes)

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-191.pdf

https://arxiv.org/pdf/2001.00888.pdf

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-191.pdf
https://arxiv.org/pdf/2001.00888.pdf

21

Scaling with Remote Reads

Basic Idea: Split data file (virtually or physically) and stage reads
of its pages from disk to DRAM (vice versa for writes)

❖ Similar to scaling to local disk but not “local”:
❖ Stage page reads from remote disk/disks over the network

(e.g., from S3)
❖ More restrictive than scaling with local disk, since spilling is not

possible or requires costly network I/Os
❖ OK for a one-shot filescan access pattern
❖ Use DRAM to cache; repl. policies
❖ Can also use smaller local disk as cache (done in PA1)

22

Outline

❖ Basics of Parallelism
❖ Task Parallelism; Dask
❖ Single-Node Multi-Core; SIMD; Accelerators

❖ Basics of Scalable Data Access
❖ Paged Access; I/O Costs; Layouts/Access Patterns
❖ Scaling Data Science Operations

❖ Data Parallelism: Parallelism + Scalability
❖ Data-Parallel Data Science Operations
❖ Optimizations and Hybrid Parallelism

