

DSC 102 Systems for Scalable Analytics

Rod Albuyeh

Topic 3: Parallel and Scalable Data Processing Part 2: Scalable Data Access

Outline

Basics of Parallelism

- Task Parallelism; Dask
- Single-Node Multi-Core; SIMD; Accelerators
- Basics of Scalable Data Access
 - Paged Access; I/O Costs; Layouts/Access Patterns
 - Scaling Data Science Operations
 - Data Parallelism: Parallelism + Scalability
 - Data-Parallel Data Science Operations
 - Optimizations and Hybrid Parallelism

Recap: Memory Hierarchy

Memory Hierarchy in Action

Rough sequence of events when program is executed

Scale of Datasets in Practice

https://www.kdnuggets.com/2020/07/poll-largest-dataset-analyzed-results.html

How much DRAM might a machine have?

Common DRAM configs:

- Average Laptop: 16GB
- t2.xlarge EC2 instance: 16GB (at \$0.19/hour)
- 2023 MacBook Pro: 32GB-96GB
- Consumer Deep Learning / Gaming PC: 128GB (\$288 fixed)
- r7g.metal EC2 instance: 512GB (at \$3.43/hour)
- hpc6id.32xlarge EC2 instance: 1024GB (at \$5.70/hour)

Less common: u-24tb1.112xlarge: 24<u>TB</u> (at \$218.40/hour)

Scalable Data Access

Central Issue: Large data file does not fit entirely in DRAM Basic Idea: Divide-and-conquer again. "Split" a data file (virtually or physically) and <u>stage reads</u> of its pages from disk to DRAM; vice versa for writes

4 key regimes of scalability / staging reads:

- Single-node disk: Paged access from file on local disk
- Remote read: Paged access from disk(s) over a network
- Distributed memory: Data fits on a cluster's total DRAM
- Distributed disk: Use entire memory hierarchy of cluster

Outline

Basics of Parallelism

- Task Parallelism; Dask
- Single-Node Multi-Core; SIMD; Accelerators
- Basics of Scalable Data Access
- Paged Access; I/O Costs; Layouts/Access Patterns
 - Scaling Data Science Operations
- Data Parallelism: Parallelism + Scalability
 - Data-Parallel Data Science Operations
 - Optimizations and Hybrid Parallelism

Paged Data Access to DRAM

Basic Idea: "Split" data file (virtually or physically)

and stage reads of its pages from disk to DRAM (vice versa for writes)

Page Management in DRAM Cache

- Caching: Retaining pages read from disk in DRAM
- Eviction: Removing a page frame's content in DRAM
- Spilling: Writing out pages from DRAM to disk
 - If a page in DRAM is "dirty" (i.e., some bytes were written but not backed up on disk), eviction requires a spill.
- The set of DRAM-resident pages typically changes over the lifetime of a process
- Cache Replacement Policy: The algorithm that chooses which page frame(s) to evict when a new page has to be cached but the OS cache in DRAM is full
 - Popular policies include Least Recently Used, Most Recently Used, etc. (more shortly)

Quantifying I/O: Disk, Network

- Page reads/writes to/from DRAM from/to disk incur latency
- Disk I/O Cost: Abstract counting of number of page I/Os; can map to bytes given page size
- Sometimes, programs read/write data over network
- Communication/Network I/O Cost: Abstract counting of number of pages/bytes sent/received over network
- I/O cost is *abstract*; mapping to latency is *hardware-specific*

Example: Suppose a data file is 40GB; page size is 4KB I/O cost to read file = 10 million page I/Os

Disk with I/O throughput: 800 MB/s \longrightarrow 40GB/800MBps = 50s Network with speed: 200 MB/s \longrightarrow 40GB/200MBps = 200s

Scaling to (Local) Disk

Basic Idea: Split data file (virtually or physically) and <u>stage reads</u> of its pages from disk to DRAM (vice versa for writes)

Suppose OS Cache has only 4 frames; initially empty

Scaling to (Local) Disk

- In general, <u>scalable programs stage access</u> to pages of file on disk and efficiently use available DRAM
 - Recall that typically DRAM size << Disk size</p>
- Modern DRAM sizes can be 10s of GBs; so we read a "chunk"/"block" of file at a time (say, 1000s of pages)
 - On magnetic hard disks, such chunking leads to more sequential I/Os, raising throughput and lowering latency!
 - Similarly, write a chunk of dirtied pages at a time

Generic Cache Replacement Policies

Q: What to do if number of page frames is too few for file?

- Cache Replacement Policy: Algorithm to decide which page frame(s) to evict to make space
 - ✤ Typical frame ranking criteria:
 - recency of use
 - > frequency of use
 - number of processes reading it
 - Typical optimization goal: Reduce total page I/O costs
- A few well-known policies:
 - Least Recently Used (LRU): Evict page that was used longest ago
 - Most Recently Used (MRU): (Opposite of LRU)
 - ML-based caching policies are "hot" nowadays!

Ad: Take CSE 132C for more on cache replacement policies 14

Data Layouts and Access Patterns

- Recall that data layouts and data access patterns affect what data subset gets cached in higher level of memory hierarchy
 - Recall matrix multiplication example and CPU caches
- Key Principle: Optimizing layout of data file on disk based on data access pattern can help reduce I/O costs
 - Applies to both magnetic hard disk and flash SSDs
 - But especially critical for magnetic hard disks due to vast differences in latency of random vs sequential access!

Row-store vs Column-store Layouts

 A common dichotomy when serializing 2-D structured data (relations, matrices, DataFrames) to file on disk

Α	В	С	D	Say, a page can fit only 4 cell values					
1a	1b	1c	1d						
2a	2b	2c	2d	Pow store:	1a,1b,1c,	2a,2b,2c,	3a,3b,3c,		
3a	3b	3c	3d	NUW-SIDIE.	1d	2d	3d	••••	
4a	4b	4c	4d		1 - 0 - 0 -			1	
5a	5b	5c	5d	Col-store:	1a,2a,3a, 4a	5a,6a	4b	• • •	
6a	6b	6c	6d						

Based on data access pattern of program, I/O costs with row- vs col-store can be orders of magnitude apart!

Row-store vs Column-store Layouts

Α	В	С	D	Say, a page can fit only 4 cell values					
1a	1b	1c	1d						
2a	2b	2c	2d	Pow store:	1a,1b,1c,	2a,2b,2c,	3a,3b,3c,		
3a	3b	3c	3d	ROW-SLOIE.	1d	2d	3d	••••	
4a	4b	4c	4d		1 - 2 - 2 -				
5a	5b	5c	5d	Col-store:	1a,2a,3a, 4a	5a,6a	4b	•••	
6a	6b	6c	6d						

Q: What is the I/O cost with each to compute, say, a sum over B?

With row-store: need to fetch *all* pages; I/O cost: 6 pages
With col-store: need to fetch only B's pages; I/O cost: 2 pages
This difference generalizes to higher dimensions for tensors

Hybrid/Tiled/"Blocked" Layouts

Sometimes, it is beneficial to do a hybrid, especially for analytical RDBMSs and matrix/tensor processing systems

Α	В	С	D	Say, a page can fit only 4 cell values				
1a	1b	1c	1d	Hybrid stores with 2x2 tiled layout:				
2a	2b	2c	2d]
3a	3b	3c	3d		1a,1b, 2a,2b	1c,1d, 2c,2d	3a,3b, 4a,4b	
4a	4b	4c	4d]
5a	5b	5c	5d		1a, 2a,	1c, 2c,	3a, 4a,	
6a	6b	6c	6d		1b, 2b	1d, 2d	2b, 3b	

Key Principle: What data layout will yield lower I/O costs (row vs col vs tiled) depends on data access pattern of the program!

Example: Dask's DataFrame

Basic Idea: Split data file (virtually or physically) and <u>stage reads</u> of its pages from disk to DRAM (vice versa for writes)

Example: Modin's DataFrame

Basic Idea: Split data file (virtually or physically) and <u>stage reads</u> of its pages from disk to DRAM (vice versa for writes)

- Modin's DF aims to scale to diskresident data via a tiled store
- Enables seamless scaling along both dimensions
- Easier use of multi-core parallelism
 - Many in-memory RDBMSs had this, e.g., SAP HANA, Oracle TimesTen
 - ScaLAPACK had this for matrices

modin.pandas DataFrame

pandas Index

Scaling with Remote Reads

Basic Idea: Split data file (virtually or physically) and <u>stage reads</u> of its pages from disk to DRAM (vice versa for writes)

- Similar to scaling to local disk but not "local":
 - Stage page reads from remote disk/disks over the network (e.g., from S3)
- More restrictive than scaling with local disk, since spilling is not possible or requires costly network I/Os
 - ♦ OK for a *one-shot* filescan access pattern
 - Use DRAM to cache; repl. policies
 - Can also use smaller local disk as cache (done in PA1)

Outline

Basics of Parallelism

- Task Parallelism; Dask
- Single-Node Multi-Core; SIMD; Accelerators
- Basics of Scalable Data Access
 - Paged Access; I/O Costs; Layouts/Access Patterns
- Scaling Data Science Operations
- Data Parallelism: Parallelism + Scalability
 - Data-Parallel Data Science Operations **
 - Optimizations and Hybrid Parallelism