
Topic 3: Parallel and Scalable Data Processing
Part 2: Scalable Data Access

Ch. 9.4, 12.2, 14.1.1, 14.6, 22.1-22.3, 22.4.1, 22.8 of Cow Book
Ch. 5, 6.1, 6.3, 6.4 of MLSys Book

Rod Albuyeh

1

DSC 102
Systems for Scalable Analytics

2

Admin

❖ Guest speakers this week and next week
❖ Midterm grades posted on Canvas.
❖ Midterm review postponed as a few students have

not yet taken the midterm. We will review next
week.

❖ Upcoming extra credit

3

Outline

❖ Basics of Parallelism
❖ Task Parallelism; Dask
❖ Single-Node Multi-Core; SIMD; Accelerators

❖ Basics of Scalable Data Access
❖ Paged Access; I/O Costs; Layouts/Access Patterns
❖ Scaling Data Science Operations

❖ Data Parallelism: Parallelism + Scalability
❖ Data-Parallel Data Science Operations
❖ Optimizations and Hybrid Parallelism

4

Scaling Data Science Operations

❖ Scalable data access is used in key representative examples of
programs/operations that are ubiquitous in data science:
❖ DB systems:

❖ Non-deduplicating (as in, not avoiding duplication) project
❖ Simple SQL aggregates (min, max, sum, etc)
❖ SQL GROUP BY aggregates (agg group by key)
❖ Relational select (WHERE)

❖ ML systems:
❖ Matrix Sum of Squares
❖ (Stochastic) Gradient Descent

5

A B C D

1a 1b 1c 1d

2a 2b 2c 2d

3a 3b 3c 3d

4a 4b 4c 4d

5a 5b 5c 5d

6a 6b 6c 6d

1a,1b,1c,
1dRow-store: 2a,2b,2c,

2d
3a,3b,3c,

3d

4a,4b,4c,
4d

5a,5b,5c,
5d

6a,6b,6c,
6d

❖ Straightforward filescan data access pattern
❖ Read one page at a time into DRAM; may need cache repl.
❖ Drop unneeded columns from tuples on the fly

❖ I/O cost: 6 (read) + output # pages (write)

R

Scaling to Disk: Non-dedup. Project

SELECT C FROM R

6

Scaling to Disk: Non-dedup. Project

A B C D

1a 1b 1c 1d

2a 2b 2c 2d

3a 3b 3c 3d

4a 4b 4c 4d

5a 5b 5c 5d

6a 6b 6c 6d

SELECT C FROM RR

1a,2a,3a,
4aCol-store: 5a,6a 1b,2b,3b,

4b

1c,2c,3c,
4c 5c,6c 1d,2d,3d,

4d

5b,6b

5d,6d

❖ Since we only need col C, no need to read other pages!
❖ I/O cost: 2 (read) + output # pages (write)
❖ Big advantage for col-stores over row-stores for SQL analytics

queries (projects, aggregates, etc.); popular in online analytical
processing (“OLAP”)
❖ Rationale for col-store RDBMS (e.g., Vertica) and Parquet

7

Scaling to Disk: Simple Aggregates

A B C D

1a 1b 1c 1d

2a 2b 2c 2d

3a 3b 3c 3d

4a 4b 4c 4d

5a 5b 5c 5d

6a 6b 6c 6d

1a,1b,1c,
1dRow-store: 2a,2b,2c,

2d
3a,3b,3c,

3d

4a,4b,4c,
4d

5a,5b,5c,
5d

6a,6b,6c,
6d

❖ Again, straightforward filescan data access pattern
❖ Similar I/O behavior as non-deduplicating project

❖ I/O cost: 6 (read) + output # pages (write)

R SELECT MAX(A) FROM R

8

A B C D

1a 1b 1c 1d

2a 2b 2c 2d

3a 3b 3c 3d

4a 4b 4c 4d

5a 5b 5c 5d

6a 6b 6c 6d

R

1a,2a,3a,
4aCol-store: 5a,6a 1b,2b,3b,

4b

1c,2c,3c,
4c 5c,6c 1d,2d,3d,

4d

5b,6b

5d,6d

❖ Similar to the non-dedup. project, we only need col A; no need
to read other pages!

❖ I/O cost: 2 (read) + output # pages (write)

Scaling to Disk: Simple Aggregates

SELECT MAX(A) FROM R

9

Scaling to Disk: Group By Aggregate

A B C D

a1 1b 1c 4

a2 2b 2c 3

a1 3b 3c 5

a3 4b 4c 1

a2 5b 5c 10

a1 6b 6c 8

R SELECT A, SUM(D)
FROM R
GROUP BY A

❖ Now it is not straightforward due to the
GROUP BY!

❖ Need to “collect” all tuples in a group
and apply aggregation function to each

❖ Typically done with a hash table
maintained in DRAM
❖ Has 1 record per group and

maintains “running information” for
that group’s aggregation function

❖ Built on the fly during filescan of R;
holds the output in the end

A Running Info.

a1 17

a2 13

a3 1

Hash table (output)

10

Scaling to Disk: Group By Aggregate

A B C D

a1 1b 1c 4

a2 2b 2c 3

a1 3b 3c 5

a3 4b 4c 1

a2 5b 5c 10

a1 6b 6c 8

R SELECT A, SUM(D)
FROM R
GROUP BY A

A Running Info.

Hash table in DRAM

a1,1b,1c,
4Row-store: a2,2b,2c,

3
a1,3b,3c,

5

a3,4b,4c,
1

a2,5b,5c,
10

a1,6b,6c,
8

a1 4
a2 3
a3 1

❖ Note that the sum for each group is
constructed incrementally

❖ I/O cost: 6 (read) + output # pages
(write); just one filescan again!

Q: But what if hash table > DRAM size?!

-> 9 -> 17
-> 13

11

Scaling to Disk: Group By Aggregate

SELECT A, SUM(D) FROM R GROUP BY A

❖ Program might crash depending on backend implementation. OS may
keep swapping pages of hash table to/from disk; aka “thrashing”

Q: But what if hash table > DRAM size?

Q: How to scale to large number of groups?

❖ Divide and conquer! Split up R based on values of A

❖ HT for each split may fit in DRAM alone

❖ Reduce running info. size if possible

Ad: Take CSE 132C for more on how GROUP BY is scaled

12

Scaling to Disk: Relational Select

A B C D

1a 1b 1c 1d

2a 2b 2c 2d

3a 3b 3c 3d

4a 4b 4c 4d

5a 5b 5c 5d

6a 6b 6c 6d

1a,1b,1c,
1dRow-store: 2a,2b,2c,

2d
3a,3b,3c,

3d

4a,4b,4c,
4d

5a,5b,5c,
5d

6a,6b,6c,
6d

❖ Straightforward filescan data access pattern
❖ Read pages/chunks from disk to DRAM one by one
❖ CPU applies predicate to tuples in pages in DRAM
❖ Copy satisfying tuples to temporary output pages
❖ Use LRU for cache replacement, if needed

❖ I/O cost: 6 (read) + output # pages (write)

R
SELECT A
FROM R
WHERE B = “3b”

13

Scaling to Disk: Relational Select

1a,1b,1
c,1d

2a,2b,2
c,2d

3a,3b,3
c,3d

4a,4b,4
c,4d

5a,5b,5
c,5d

6a,6b,6
c,6d

Disk

OS Cache
in DRAM

Reserved for writing output
data of program (may be
spilled to a temp. file)

1a,1b,1c,
1d

2a,2b,2c,
2d

3a,3b,3c,
3d

4a,4b,4c,
4d

5a,5b,5c,
5d

6a,6b,6c,
6d

CPU finds a matching tuple!
Copies that to output page

3a,3b,3
c,3d

Need to evict some page
LRU says kick out page 1
Then page 2 and so on
…

14

Scaling Data Science Operations

❖ Scalable data access for key representative examples of
programs/operations that are ubiquitous in data science:
❖ DB systems:

❖ Relational select
❖ Non-deduplicating project
❖ Simple SQL aggregates
❖ SQL GROUP BY aggregates

❖ ML systems:
❖ Matrix Sum of Squares
❖ (Stochastic) Gradient Descent

15

Scaling to Disk: Matrix Sum of Squares

2 1 0 0

2 1 0 0

0 1 0 2

0 0 1 2

3 0 1 0

3 0 1 0

2,1,
0,0Row-store: 2,1

0,0
0,1,
0,2

0,0,
1,2

3,0,
1,0

3,0,
1,0

❖ Again, straightforward filescan data access pattern
❖ Very similar to relational simple aggregate
❖ Running info. in DRAM for sum of squares of cells

❖ 0 -> 5 -> 10 -> 15 -> 20 -> 30 -> 40
❖ I/O cost: 6 (read) + output # pages (write)

M6x4

16

Scalable Matrix/Tensor Algebra

❖ In general, tiled partitioning is more common for matrix/tensor ops

❖ DRAM-to-disk scaling:
❖ pBDR, SystemDS, and Dask

Arrays for matrices
❖ SciDB, Xarray for n-d arrays

❖ CUDA for DRAM-GPU caches
scaling of matrix/tensor ops

17

Numerical Optimization in ML

❖ Many regression and classification models in ML are formulated as a
(constrained) minimization problem
❖ E.g., logistic and linear regression, linear SVM, DL classification and

regression.
❖ Aka “Empirical Risk Minimization” (ERM) approach
❖ Computes “loss” of predictions over labeled examples

❖ Hyperplane-based models aka
Generalized Linear Models
(GLMs) use f() that is a scalar
function of distances:

18

❖ In many cases, loss L() is convex;
❖ Closed-form minimization typically infeasible
❖ Batch Gradient Descent:

Batch Gradient Descent for ML

❖ Iterative numerical procedure to find an optimal w
❖ Initialize w to some value w(0)

❖ Compute gradient:

❖ Descend along gradient:
(Aka Update Rule)

❖ Repeat until we get close to w*, aka convergence

19

Batch Gradient Descent for ML

Gradient

…

❖ Learning rate is a hyper-parameter selected by user or “AutoML”
tuning procedures

❖ Number of epochs (iterations) of BGD also hyper-parameter
❖ Other hyper-parameters?

20

Data Access Pattern of BGD at Scale

❖ The data-intensive computation in BGD is the gradient
❖ In scalable ML, dataset D may not fit in DRAM
❖ Model w is typically (but not always) small and DRAM-resident

❖ Gradient is like SQL SUM over vectors (one per example)
❖ At each epoch, 1 filescan over D to get gradient
❖ Update of w happens normally in DRAM
❖ Monitoring across epochs (or iterations) for convergence needed
❖ Loss function L() is also just a SUM in a similar manner

Q: What SQL operation is this reminiscent of?

21

I/O Cost of Scalable BGD

Y X1 X2 X3
0 1b 1c 1d
1 2b 2c 2d
1 3b 3c 3d
0 4b 4c 4d
1 5b 5c 5d
0 6b 6c 6d

D

0,1b,
1c,1dRow-store: 1,2b,

2c,2d
1,3b,
3c,3d

0,4b,
4c,4d

1,5b,
5c,5d

0,6b,
6c,6d

❖ Straightforward filescan data access pattern for SUM
❖ Similar I/O behavior as non-dedup. project and simple SQL

aggregates
❖ I/O cost: 6 (read) + output # pages (write for final w)

22

Stochastic Gradient Descent for ML

❖ Two key cons of BGD:
❖ Often, too many epochs to reach optimal
❖ Each update of w needs full scan: costly I/Os, full design matrix in

memory

❖ Stochastic GD (SGD) mitigates both cons
❖ Basic Idea: Use a sample (mini-batch) of D to approximate gradient

instead of “full batch” gradient
❖ Done without replacement
❖ Randomly reorder/shuffle D before every epoch
❖ Sequential pass: sequence of mini-batches

❖ Another big pro of SGD: works better for non-convex loss too,
especially DL

❖ SGD often called the “workhorse” of modern ML/DL

23

Access Pattern of Scalable SGD

Sample mini-batch from dataset without replacement
Original
dataset

Random
“shuffle”

Epoch 1

Seq. scan
Mini-batch 1

Mini-batch 2

Mini-batch 3

Epoch 2

Seq. scan

(Optional)
New

Random
Shuffle

…

…

ORDER BY RAND()

Randomized
dataset

24

I/O Cost of (Very) Scalable SGD

❖ I/O cost of random shuffle is non-trivial; need so-called “external
merge sort” (skipped in this course)
❖ Typically amounts to 1 or 2 passes over file

❖ Mini-batch gradient computations: 1 filescan per epoch:
❖ As filescan proceeds, count # examples seen, accumulate per-

example gradient for mini-batch
❖ Typical mini-batch sizes: 10s to 1000s... or 1 if transformer model

and limited resources...
❖ Orders of magnitude more model updates than BGD!

❖ Total I/O cost per epoch: 1 shuffle cost + 1 filescan cost
❖ Often, shuffling only once upfront suffices

❖ Loss function L() computation is same as before (for BGD)

25

Context

❖ PyTorch datasets

26

Outline

❖ Basics of Parallelism
❖ Task Parallelism; Dask
❖ Single-Node Multi-Core; SIMD; Accelerators

❖ Basics of Scalable Data Access
❖ Paged Access; I/O Costs; Layouts/Access Patterns
❖ Scaling Data Science Operations

❖ Data Parallelism: Parallelism + Scalability
❖ Data-Parallel Data Science Operations
❖ Optimizations and Hybrid Parallelism

27

Review Questions

1. What are the 4 main regimes of scalable data access?
2. Briefly explain 1 pro and 1 con of scaling with local disk vs scaling with

remote reads.
3. Which is the best layout format for 2-D structured data?
4. Briefly explain 1 pro and 1 con of SGD vs BGD.
5. Suppose you use scalable SGD to train a DL model. The dataset has

100 mil examples. You use a mini-batch size of 50. How many iterations
(number of model update steps) will SGD finish in 20 epochs?

6. What is the runtime tradeoff involved in shuffle-once-upfront vs shuffle-
every-epoch for SGD? Assume a physical shuffle is necessary, not an
index-based shuffle.

