UCSan Diego

DSC 102
Systems for Scalable Analytics

Rod Albuyeh

Topic 3: Parallel and Scalable Data Processing
Part 2. Scalable Data Access

Ch.9.4,12.2,14.1.1,14.6, 22.1-22.3, 22.4.1, 22.8 of Cow Book
Ch. 5, 6.1, 6.3, 6.4 of MLSys Book

Admin

Guest speakers this week and next week

Midterm grades posted on Canvas.

Midterm review postponed as a few students have
not yet taken the midterm. We will review next
week.

Upcoming extra credit

Outline

Basics of Parallelism
Task Parallelism; Dask
Single-Node Multi-Core; SIMD; Accelerators
Basics of Scalable Data Access
Paged Access; I/O Costs; Layouts/Access Patterns
=P <» Scaling Data Science Operations
Data Parallelism: Parallelism + Scalability
Data-Parallel Data Science Operations
Optimizations and Hybrid Parallelism

Scaling Data Science Operations

Scalable data access is used in key representative examples of
programs/operations that are ubiquitous in data science:

-] DB systems:
Non-deduplicating (as in, not avoiding duplication) project
Simple SQL aggregates (min, max, sum, etc)
SQL GROUP BY aggregates (agg group by key)
Relational select (WHERE)
ML systems:
Matrix Sum of Squares
(Stochastic) Gradient Descent

Scaling to Disk: Non-dedup. Project

“nn R SELECT C FROM R
1la 1b 1c 1d

2a 2b 2c 2d Row-store: |1@1b.1c,| |2a,2b2c,| |3a,3b,3c,
3a 3b 3¢ 3d ' e 2 >

4a 4b 4c 4d
5a 5b 5c 5d
6a 6b 6C 6d

4a,4b,4c,| | 5a,5b,5¢c, | |6a,6b,6cC,
4d 5d 6d

Straightforward filescan data access pattern
Read one page at a time into DRAM; may need cache repl.
Drop unneeded columns from tuples on the fly

/O cost: 6 (read) + output # pages (write)

Scaling to Disk: Non-dedup. Project

“nn R SELECT C FROM R
1la 1b 1c 1d

3a 3b 3c 3d
43 4b 4c 4d

1c,2¢,3c, 5.6 1d,2d,3d, 54.64
52 5b 5c 5d 4c €06 4d !

6a 6b 6C 6d

Since we only need col C, no need to read other pages!
|/O cost: 2 (read) + output # pages (write)

Big advantage for col-stores over row-stores for SQL analytics
queries (projects, aggregates, etc.); popular in online analytical
processing (“OLAP?)

Rationale for col-store RDBMS (e.g., Vertica) and Parquet

Scaling to Disk: Simple Aggregates

“nn R SELECT MAX(A) FROM R
1a 1b 1c 1d

2a 2b 2c 2d Row-store: |1@1b.1c,| |2a,2b2c,| |3a,3b,3c,
3a 3b 3¢ 3d ' e 2 >

4a 4b 4c 4d
5a 5b 5c 5d
6a 6b 6C 6d

4a,4b,4c,| | 5a,5b,5¢c, | |6a,6b,6cC,
4d 5d 6d

Again, straightforward filescan data access pattern
Similar I/0O behavior as non-deduplicating project
/O cost: 6 (read) + output # pages (write)

Scaling to Disk: Simple Aggregates

ENEREIEN R
1a 1b 1c 1d

2a
3a
43
5a
6a

2b
3b
4b
5b
6b

2C
3c
4c
5c
6C

2d
3d
4d
5d
6d

Col-store:

SELECT MAX(A) FROM R

1a,2a,3a, 1b,2b,3Db,

42 5a,6a 4b 5b,6b
1¢c,2¢,3c, 1d,2d,3d,

Ac 5c,6¢c 44 5d,6d

Similar to the non-dedup. project, we only need col A; no need
to read other pages!

|/O cost: 2 (read) + output # pages (write)

Scaling to Disk: Group By Aggregate

“nn R SELECT A, SUM(D)
al 1b 1c 4 FROM R

GROUP BY A

a2 2b 2c¢ 3 Now it is not straightforward due to the
al 3b 3¢ 5 GROUP BY!
a3 4b 4c 1 Need to “collect” all tuples in a group
a2 5b 5¢ 10 and apply aggregation function to each
al 6b 6¢c 8 Typically done with a hash table
maintained in DRAM
Hash table (output) Has 1 record per group and

maintains “running information” for
that group’s aggregation function

Built on the fly during filescan of R;
holds the output in the end

al 17
a2 13
a3 1

Scaling to Disk: Group By Aggregate

“nn R SELECT A, SUM(D)
al 1b 1c 4 FROM R

GROUP BY A

a2 2b 2¢ 3

1,1b,1 2.2b.2 1
al 3b 3c 5 Row-store: a f clla ?I)O clla ,35,30,

a3 4b 4c 1
a2 5b 5c 10

a3,4b,4c, ||| a2,5b,5¢, |||a1,6b,6c,

al 6b 6c 8 1 10 8

Hash table in DRAM Note that the sum for each group is
constructed incrementally

a1 4->9 ->17 /O cost: 6 (read) + output # pages

o , .
22 3 ->13 (write); just one filescan again!

a3 1 Q: But what if hash table > DRAM size?!

Scaling to Disk: Group By Aggregate

SELECT A, SUM(D) FROM R GROUP BY A
Q: But what if hash table > DRAM size?

Program might crash depending on backend implementation. OS may
keep swapping pages of hash table to/from disk; aka “thrashing”

Q: How to scale to large number of groups?

Divide and conquer! Split up R based on values of A

HT for each split may fit in DRAM alone

Reduce running info. size if possible

Ad: Take CSE 132C for more on how GROUP BY is scaled "

Scaling to Disk: Relational Select

SELECT A
DEEEEEENR op_«3p(R) sromr
1a 1b 1c 1d

WHERE B = “3b”

2a 2b 2c 2d Row-store: |1@1b.1c,| |2a,2b2c,| |3a,3b,3c,
3a 3b 3¢ 3d ' e 2 >

4a 4b 4c 4d
5a 5b 5c 5d
6a 6b 6C 6d

4a,4b,4c,| | 5a,5b,5¢c, | |6a,6b,6cC,
4d 5d 6d

Straightforward filescan data access pattern
Read pages/chunks from disk to DRAM one by one
CPU applies predicate to tuples in pages in DRAM
Copy satisfying tuples to temporary output pages
Use LRU for cache replacement, if needed

|/O cost: 6 (read) + output # pages (write)

12

Scaling to Disk: Relational Select

OS Cache
in DRAM

O-B:“3b” (R)

Reserved for writing output

— data of program (may be

spilled to a temp. file)

CPU finds a matching tuple!
Copies that to output page

Need to evict some page
LRU says kick out page 1
Then page 2 and so on

3a,3b,3
c,3d
1a,1b,1c, | [2a,2b,2c, | | 3a,3b,3c,
1d 2d 3d
4a,4b,4c,| | 5a,5b,5¢,| |6a,6b,6cC,
4d 5d 6d

13

Scaling Data Science Operations

Scalable data access for key representative examples of
programs/operations that are ubiquitous in data science:

DB systems:

Relational select

Non-deduplicating project

Simple SQL aggregates

SQL GROUP BY aggregates
=P - ML systems:

Matrix Sum of Squares

(Stochastic) Gradient Descent

14

Scaling to Disk: Matrix Sum of Squares

2 1 0 0 Mexa

2 1 0 0

0 1 0 2 _ 2.1 2,1 0,1
Row-store: 0.0 0.0 0.2

0 0 1 2

N 0.0 3.0, 3.0

3 0 1 0 1.2 1,0 1.0

Again, straightforward filescan data access pattern
Very similar to relational simple aggregate
Running info. in DRAM for sum of squares of cells

0->5->10->15->20->30->40

|/O cost: 6 (read) + output # pages (write)

15

Scalable Matrix/Tensor Algebra

In general, tiled partitioning is more common for matrix/tensor ops

DRAM-to-disk scaling: e T —
p B D R , Syste m D S : an d D as k ,/9 DASK Get Started Algorithms Setup

Text Vectorization Pipeline

: Hyperparameter optimization with Dask
Arra yS fO r matrices [Create Random array

Use Voting Classifiers This creates a 10000x10000 array of random numbers, represen:

S Ci D B : Xa rray fo r n _d a rra yS Automate Machine Leamning with TPOT 1000x1000 (or smaller if the array cannot be divided evenly). In t

numpy arrays of size 1000x1000.
Generalized Linear Models

CUDA for DRAM-GPU caches = N
SCa I i N g Of m atri X/te NSOor O pS Analyze web-hosted JSON data

Async/Await and Non-Blocking
Execution Array Chunk

Asynchronous Computation: Web Bytes 800.00 MB 8.00 MB
Servers + Dask

10000

Shape (10000, 10000) (1000, 1000)
Embarrassingly parallel Workloads Count 100 Tasks 100 Chunks

10000

Handle Evolving Workflows Type floaté4 numpy.ndarray

Apache SystemDS’

Image Processing

Programming with Big Data in R

16

Numerical Optimization in ML

Many regression and classification models in ML are formulated as a
(constrained) minimization problem

E.g., logistic and linear regression, linear SVM, DL classification and
regression.

Aka “Empirical Risk Minimization” (ERM) approach
Computes “loss” of predictions over labeled examples

W = argmin., Z (ys, f(W, ;)

1=1
A hyperplane in R3 Is a pIane

Hyperplane-based models aka "
Generalized Linear Models . oioed
(GLMs) use f() that is a scalar 9

function of distances: T ol o
W I; g

Batch Gradient Descent for ML

— Z l(yu f(W, ZEZ))

In many cases, loss L() is convex;
Closed-form minimization typically infeasible
Batch Gradient Descent:

Iterative numerical procedure to find an optimal w
Initialize w to some value w(©

Compute gradient:
w() Z Viyi, f(w™), z;))
Descend along gradlent
Aka Update Rule
Arate D WD) k) _ nV L(w*))

Repeat until we get close to w*, aka convergence

18

Batch Gradient Descent for ML

w) — w® — v L (w®)

L(W) w® — w@® _ nVL(W(l)) Gradient
VL(W(O))
VL(W(l)) _
W w@wDw® w

Learning rate is a hyper-parameter selected by user or “AutoML”
tuning procedures

Number of epochs (iterations) of BGD also hyper-parameter

Other hyper-parameters? v

Data Access Pattern of BGD at Scale

The data-intensive computation in BGD is the gradient
In scalable ML, dataset D may not fitin DRAM
Model w is typically (but not always) small and DRAM-resident

(k) Z Vl yu)))

Q: What SQL operation is this reminiscent of?

Gradient is like SQL SUM over vectors (one per example)

At each epoch, 1 filescan over D to get gradient

Update of w happens normally in DRAM

Monitoring across epochs (or iterations) for convergence needed

Loss function L() is also just a SUM in a similar manner
20

/O Cost of Scalable BGD

n
k)\ _ k
D VL(w®) =) Vi(y:, f(w®, :))
1=1
Y| X1 | X2
0 1b 1c 1d Row-store: 0,1b, 1,2b, 1,3b,
1 2b 2c 2d ' 1c,1d 2¢,2d 3c,3d
1 3b 3c 3d
0 4b 4c 4d 0,4b, 1,5b, 0,6Db,
1 5h 5c 5d 4c.,4d 5¢,5d 6¢c,6d
0 6b 6¢C 6d

Straightforward filescan data access pattern for SUM

Similar 1/O behavior as non-dedup. project and simple SQL
aggregates

I/O cost: 6 (read) + output # pages (write for final w)

21

Stochastic Gradient Descent for ML

Two key cons of BGD:
Often, too many epochs to reach optimal

Each update of w needs full scan: costly I/Os, full design matrix in
memory

Stochastic GD (SGD) mitigates both cons

Basic Idea: Use a sample (mini-batch) of D to approximate gradient
instead of “full batch” gradient

Done without replacement
Randomly reorder/shuffle D before every epoch
Sequential pass: sequence of mini-batches

Another big pro of SGD: works better for non-convex loss too,
especially DL

SGD often called the “workhorse” of modern ML/DL

22

Access Pattern of Scalable SGD

WD « WO _pVL(W®) VL(W) =) Vi(y;, f(W,;))
1€B
Sample mini-batch from dataset without replacement

Original Randomized
dataset dataset Epoch 1 Epoch 2
I Random w) w®)
“shuffle”
Seq. scan Seq. scan

/\ Mini-batch 1

w@® (Optional) |y ()
New
Mini-batch 2 Random

W@ Shuffle

\/ Mini-batch 3
ORDER BY RAND() W ,,)

/O Cost of (Very) Scalable SGD

|/O cost of random shuffle is non-trivial; need so-called “external
merge sort” (skipped in this course)

Typically amounts to 1 or 2 passes over file

Mini-batch gradient computations: 1 filescan per epoch:

As filescan proceeds, count # examples seen, accumulate per-
example gradient for mini-batch

Typical mini-batch sizes: 10s to 1000s... or 1 if transformer model
and limited resources...

Orders of magnitude more model updates than BGD!
Total I1/O cost per epoch: 1 shuffle cost + 1 filescan cost
Often, shuffling only once upfront suffices
Loss function L() computation is same as before (for BGD)

24

PyTorch datasets

25

Outline

Basics of Parallelism
Task Parallelism; Dask
Single-Node Multi-Core; SIMD; Accelerators

Basics of Scalable Data Access
Paged Access; I/O Costs; Layouts/Access Patterns
Scaling Data Science Operations

=P <+ Data Parallelism: Parallelism + Scalability

Data-Parallel Data Science Operations
Optimizations and Hybrid Parallelism

26

Review Questions

1. What are the 4 main regimes of scalable data access?

2. Briefly explain 1 pro and 1 con of scaling with local disk vs scaling with
remote reads.

3. Which is the best layout format for 2-D structured data?

4. Briefly explain 1 pro and 1 con of SGD vs BGD.

5. Suppose you use scalable SGD to train a DL model. The dataset has
100 mil examples. You use a mini-batch size of 50. How many iterations
(number of model update steps) will SGD finish in 20 epochs?

6. What is the runtime tradeoff involved in shuffle-once-upfront vs shuffle-
every-epoch for SGD? Assume a physical shuffle is necessary, not an
index-based shuffle.

27

