
Ray: A distributed framework for
scaling AI & Python workloads

Jules S. Damji - @2twitme
May 18, 2023, Mandeville Auditorium, UCSD

Few Important URLs
Keep these URLs open in your browser tabs

→ GitHub: https://github.com/dmatrix/ray-core-tutorial
→ Ray Documentation: https://bit.ly/ray-core-docs

2

https://github.com/dmatrix/ray-core-tutorial
https://docs.ray.io/en/latest/

$whoami
• Lead Developer Advocate, Anyscale & Ray Team
• Sr. Developer Advocate, Databricks, Apache Spark/MLflow Team
• Led Developer Advocacy, Hortonworks
• Held Software Engineering positions:

• Sun Microsystems
• Netscape
• @Home
• Loudcloud/Opsware
• Verisign

4

5

Who we are::Original creators of Ray

What we do: Unified compute platform to develop, deploy,
and manage scalable AI & Python applications with Ray

Why do it: Scaling is a necessity, scaling is hard; make
distributed computing easy and simple for everyone

Agenda

● Evolution of Distributed & Cloud Computing
● Distributed Computing: Necessity not a norm
● Why Ray & what is Ray
● Ray Ecosystem: Libraries & Integrations
● Ray & LLMs
● Ray core module - 1
● Q & A

6

The future of computing is
distributed

ARPA
Network
(1970s)

HPC
(1980s)

Web
(1990s)

Big Data
(2000s)

Distributed systems not new…

Big Data
(2010s)

How to scale AI applications using massive data in
Lakehouse in the cloud?

The Evolution and trend in
cloud computing

Cloud patterns &
architectures

Why and what’s Ray?

20

Machine
learning is
pervasive

Distributed
computing is a
necessity

Python is the
default
language for
DS/ML

Why Ray

21

Blessings of scale …

22

Compute - supply demand problem

35x every 18 months

2020

GPT-3

CPU

https://openai.com/blog/ai-and-compute/

GPU*
TPU
*

https://openai.com/blog/ai-and-compute/

23

Specialized hardware is not enough

35x every 18 months

2020

GPT-3

CPU

https://openai.com/blog/ai-and-compute/

GPU*
TPU
*

No way out but to distribute!

https://openai.com/blog/ai-and-compute/

24

Python data science ecosystem

What is Ray

● A simple/general-purpose library for distributed computing
● An ecosystem of Python libraries (for scaling ML and more)
● Runs on laptop, public cloud, K8s, on-premise

25

A layered cake of functionality and
capabilities for scaling ML workloads

A Layered Cake and Ecosystem

26

Run
anywhere

general-purpose
framework for
distributed
computing

Library +
app
ecosystem

Ray core

Ray AI Runtime (AIR) is a scalable runtime for end-to-end ML
applications

27

High-level libraries that
make scaling easy for both

data scientists and ML
engineers.

Ray AI Runtime (AIR) is a scalable toolkit for end-to-end ML
applications

28

Scalable integrations with
best-of-breed

libraries/MLOps tools

Ray Architecture &
Components

30

An anatomy of a Ray cluster

 Driver Worker

Global Control Store
(GCS)

 Scheduler

 Object Store
Ra

yl
et

 Worker Worker

 Scheduler

 Object Store
Ra

yl
et

 Worker Worker

 Scheduler

 Object Store
Ra

yl
et

… …

Head Node Worker Node #1 Worker Node #N. . .

Unique to
Ray

Ray distributed design &
scaling patterns & APIs

Ray Basic Design Patterns

● Ray Parallel Tasks
○ Functions as stateless units of execution
○ Functions distributed across the cluster as tasks

● Ray Objects as Futures
○ Distributed (immutable objects) store in the cluster
○ Fetched when materialized
○ Enable massive asynchronous parallelism

● Ray Actors
○ Stateful service on a cluster
○ Enable Message passing

32

1. Patterns for Parallel Programming
2. Ray Design Patterns
3. Ray Distributed Library Integration Patterns

https://www.goodreads.com/book/show/85053.Patterns_for_Parallel_Programming
https://docs.google.com/document/d/167rnnDFIVRhHhK4mznEIemOtj63IOhtIPvSYaPgI4Fg/edit#heading=h.crt5flperkq3
https://www.anyscale.com/blog/ray-distributed-library-patterns

Different data / Same function Same data / Different function

Compute

Data

Batch Training / Inference AutoML Batch Tuning

Different data / Same function /
Different hyperparam per job

Scaling Design Patterns

...
...

34

Python → Ray APIs

def f(x):
 # do something with
x:
 y = …
 return y

@ray.remote
def f(x):
 # do something with
x:
 Y = …
 return y
f.remote()

f()
Node

…Task Distributed
f()
Node

class Cls():
 def
__init__(self, x):
 def f(self, a):

…
 def g(self, a):

…

Actor
@ray.remote
class Cls():
 def __init__(self,
x):
 def f(self, a):

…
 def g(self, a):

…
cls = Cls.remote()
cls.f.remote(a)

Cls
Node

…Distributed
Cls
Node

import numpy as np
a= np.arange(1, 10e6)
b = a * 2

Distributed
immutable
object

import numpy as np
a = np.arange(1, 10e6)
obj_a = ray.put(a)
b = ray.get(obj_a) * 2 Node

…Distributed

Node
a a

Ray Task

def f(a, b):

 return a + b

f(1, 2)

f(2, 3)

f(4, 5)

@ray.remote(num_cpus=2)

f.remote(1, 2) # returns 3

A function remotely executed in a cluster Result = 3

Result = 5

f(3, 4)
Result = 7

Result = 9

Ray Actor

class HostActor:

 def __init__(self):

 self.num_devices = os.environ["CUDA_VISIBLE_DEVICES"]

 def f(self, output):

 return f"{output} {self.num_devices}"

A class remotely executed in a cluster

@ray.remote(num_gpus=4)

actor = HostActor.remote() # Create an actor

actor.f.remote("hi") # returns "hi 0,1,2,3"

Host Host

client client

method method

local states local states

Function → Task Class → Actor

3
7

@ray.remote(num_gpus=1)
class Counter(object):
 def __init__(self):
 self.value = 0
 def inc(self):
 self.value += 1
 return self.value

c = Counter.remote()
id4 = c.inc.remote()
id5 = c.inc.remote()

@ray.remote
def read_array(file):
 # read ndarray “a”
 # from “file”
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

Task API

3
8

@ray.remote
def read_array(file):
 # read ndarray “a”
 # from “file”
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file
1

file
2

Node 1 Node 2

read_array

id1

Return id1 (future) immediately,
before read_array() finishes

Task API

3
9

@ray.remote
def read_array(file):
 # read ndarray “a”
 # from “file”
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file
1

file
2

Node 1 Node 2

read_array

id1

read_array

id2

Dynamic task graph:
build at runtime

Task API

4
0

@ray.remote
def read_array(file):
 # read ndarray “a”
 # from “file”
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

Node 2

file
1

file
2

 Node 1 Node 2

read_array

id1

read_array

id2

add

id

Node 3

ray.get() block until
result available

Distributed Immutable object store

Worker

process

Worker

process

….

X Y Z

Spill over to external
storage

Distributed object store

@ray.remote
def f():
 …
 return X

@ray.remote
def g(a):
 …
 return Y

id_X = f.remote()
id_Y = g.remote(id_X)

Node 1

id_X

Node 2

f()

X

id_X

Only X’s id (id_X) is
returned, not X’s value

.. ..

Shared object
store

Distributed object store

@ray.remote
def f():
 …
 return X

@ray.remote
def g(a):
 …
 return Y

id_X = f.remote()
id_Y = g.remote(id_X)

Node 1

g(id_X)

X

id_X

id_X

Node 2

Y

id_Y

id_Y

g(id_X) is scheduled on same node, so X is never transferred

…

Shared object
store

Examples of Distributed
Applications with Ray

45

ML Libraries
● Ray AI Runtime
● Distributed

scikit-learn/Joblib
● Distributed XGBoost on

Ray
● Ray Multiprocess Pool

All using Ray core APIs & patterns

Distributed Applications with Ray

Experimenting &
Monitoring Services

All using Ray design patterns

ML Platforms &
Integrations

● DoorDash ML platform
● AirFlow,

PrefectePredibase AI
● Uber, Lyft
● Instacart
● Spotify

All using Ray core APIs &
patterns

● WhyLabs
● Arize AI
● W & B
● MLflow

All using Ray core APIs &
patterns

Ray Ecosystem: https://docs.ray.io/en/latest/ray-overview/ray-libraries.html

https://docs.ray.io/en/latest/ray-overview/ray-libraries.html

Ray: Fastest Growing Scalable Compute Framework

1,000+
Organizations

Using Ray

25,000+
GitHub
stars

5,000+
Repositories

Depend on Ray

820+
Community
Contributors

Generative AI, LLMs & Ray

LLM companies provide commercial APIs
(note: co:here and OpenAI both use Ray internally)

Current state of the world..

1
Download th

e m
odels

HuggingFace

2
Fine-tu

ne th
e m

odels

??
? 3

Serve
 th

ese
 m

odels

??
?

Options for poor mortals …

What are pain points in training/serving LLMs?

Distributed Training hard
to get working right03

● Hyperparameters need to be tuned
● Need a platform to iterate very quickly at

scale

Existing serving /
inference solutions don’t
scale

02
● Individual replicas can’t be distributed
● Need to be able to integrate business

logic

Scaling is costly and hard
to manage01

● Need spot instance support
● Hard to run distributed workloads
● Hard to optimize CPUs/GPUs

Ray provides generic platform for LLMs

Training03
● Integrates distributed training with distributed

hyperparameter tuning w/ ML frameworks

Inference and serving02
● Ability to support complex pipelines

integrating business logic
● Ability to support multiple node serving

Simplify orchestration
and scaling01

● Spot instance support for data parallel training
● Easily spin up and run distributed workloads on

any cloud
● Optimize CPUs/GPUs by pipelining w/ Ray Data

What’s the LLM stack for Generative AI?

GPU or other hardware

Ray for Orchestration

PyTorch for Framework

DeepSpeed for optimized Training

HuggingFace for models

What about Generative AI?

https://anyscale.com/blog

https://anyscale.com/blog

Ray and Anyscale emerging as a
standard for ML infrastructure

Key Takeaways

● Distributed computing is a necessity & norm
● Ray’s vision: make distributed computing simple

○ Don’t have to be distributed programming expert
● Build your own disruptive apps & libraries with Ray
● Scale your ML workloads with Ray libraries (Ray AIR)
● Ray offers the compute substrate for Generative AI workloads

55

Ray Summit 2023

https://bit.ly/raysummit2023

https://bit.ly/raysummit2023

Let’s go with

https://bit.ly/pydata-seattle-tutorial-2023

https://bit.ly/pydata-nyc-tutorial-2022

Thank you!

Questions?
email: jules@anyscale.com

twitter: @2twitme

