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Few Important URLs 
Keep these URLs open in your browser tabs

→ GitHub: https://github.com/dmatrix/ray-core-tutorial
→ Ray Documentation: https://bit.ly/ray-core-docs
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https://github.com/dmatrix/ray-core-tutorial
https://docs.ray.io/en/latest/




$whoami
• Lead Developer Advocate, Anyscale & Ray Team
• Sr. Developer Advocate, Databricks, Apache Spark/MLflow Team
• Led Developer Advocacy, Hortonworks
• Held Software Engineering  positions:

• Sun Microsystems
• Netscape
• @Home
• Loudcloud/Opsware
• Verisign
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Who we are::Original creators of Ray

What we do: Unified compute platform to develop, deploy, 
and manage scalable AI & Python applications with Ray

Why do it: Scaling is a necessity, scaling is hard; make 
distributed computing easy and simple for everyone



Agenda

● Evolution of Distributed & Cloud Computing 
● Distributed Computing: Necessity not a norm
● Why Ray & what is Ray
● Ray Ecosystem: Libraries & Integrations
● Ray & LLMs
● Ray core module - 1
● Q & A
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The future of computing is 
distributed



ARPA 
Network
(1970s)

HPC
(1980s)

Web
(1990s)

Big Data
(2000s)

Distributed systems not new…

Big Data
(2010s)





How to scale AI applications using massive data in 
Lakehouse in the cloud?



The Evolution and trend in 
cloud computing









Cloud patterns & 
architectures









Why and what’s Ray?
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Machine 
learning is 
pervasive 

Distributed 
computing is a 
necessity

Python is the 
default 
language for  
DS/ML

Why Ray 



21

Blessings of scale …
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Compute - supply demand problem

35x every 18 months

2020

GPT-3

CPU

https://openai.com/blog/ai-and-compute/

GPU*
TPU
*

https://openai.com/blog/ai-and-compute/
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Specialized hardware is not enough

35x every 18 months

2020

GPT-3

CPU

https://openai.com/blog/ai-and-compute/

GPU*
TPU
*

No way out but to distribute!

https://openai.com/blog/ai-and-compute/
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Python data science ecosystem



What is Ray 

● A simple/general-purpose library for distributed computing
● An ecosystem of Python libraries (for scaling ML and more)
● Runs on laptop, public cloud, K8s, on-premise
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A layered cake of functionality and 
capabilities for scaling ML workloads



A Layered Cake and Ecosystem
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Run 
anywhere

general-purpose  
framework for 
distributed 
computing

Library + 
app 
ecosystem

Ray core



Ray AI Runtime (AIR) is a scalable runtime for end-to-end ML 
applications
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High-level libraries that 
make scaling easy for both 

data scientists and ML 
engineers.



Ray AI Runtime (AIR) is a scalable toolkit for end-to-end ML 
applications
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Scalable integrations with 
best-of-breed 

libraries/MLOps tools



Ray Architecture & 
Components
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An anatomy of a Ray cluster

   Driver    Worker

Global Control Store 
(GCS)

   Scheduler 

   Object Store     
Ra

yl
et

 

   Worker    Worker

   Scheduler 

   Object Store     
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   Worker    Worker

   Scheduler 

   Object Store     
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yl
et

 

… …

Head Node Worker Node #1 Worker Node #N. . .

Unique to 
Ray



Ray distributed design & 
scaling patterns & APIs



Ray Basic Design Patterns

● Ray Parallel Tasks
○ Functions as stateless units of execution
○ Functions distributed across the cluster as tasks

● Ray Objects as  Futures
○ Distributed (immutable objects) store in the cluster
○ Fetched when materialized
○ Enable massive asynchronous parallelism

● Ray Actors
○ Stateful service on a cluster
○ Enable Message passing 
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1. Patterns for Parallel Programming
2. Ray Design Patterns
3. Ray Distributed Library Integration Patterns

https://www.goodreads.com/book/show/85053.Patterns_for_Parallel_Programming
https://docs.google.com/document/d/167rnnDFIVRhHhK4mznEIemOtj63IOhtIPvSYaPgI4Fg/edit#heading=h.crt5flperkq3
https://www.anyscale.com/blog/ray-distributed-library-patterns


Different data / Same function Same data / Different function 

Compute

Data

Batch Training / Inference AutoML Batch Tuning

Different data / Same function / 
Different hyperparam per job

Scaling Design Patterns

...
...
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Python → Ray APIs

def f(x):
   # do something with 
x:
   y = …
   return y

@ray.remote
def f(x):
   # do something with 
x:
   Y = …
   return y
f.remote()

f()
Node

…Task Distributed 
f()
Node

class Cls():
  def 
__init__(self, x):
  def f(self, a):

…
  def g(self, a):

…

    

Actor
@ray.remote
class Cls():
  def __init__(self, 
x):
  def f(self, a):

…
  def g(self, a):

…
cls = Cls.remote()
cls.f.remote(a)
    

Cls
Node

…Distributed 
Cls
Node

import numpy as np
a= np.arange(1, 10e6)
b = a * 2 

Distributed 
immutable 
object

import numpy as np
a = np.arange(1, 10e6)
obj_a = ray.put(a)
b = ray.get(obj_a) * 2 Node

…Distributed 

Node
a a



Ray Task

def f(a, b):

   return a + b

f(1, 2)

f(2, 3)

f(4, 5)

@ray.remote(num_cpus=2)

f.remote(1, 2) # returns 3

A function          remotely executed in a cluster Result = 3

Result = 5

f(3, 4)
Result = 7

Result = 9



Ray Actor

class HostActor:

   def __init__(self):

       self.num_devices = os.environ["CUDA_VISIBLE_DEVICES"]

   def f(self, output):

       return f"{output} {self.num_devices}"

A class            remotely executed in a cluster

@ray.remote(num_gpus=4)

actor = HostActor.remote()  # Create an actor

actor.f.remote("hi")  # returns "hi 0,1,2,3"

Host Host

client client

method method

local states local states



Function → Task Class → Actor
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@ray.remote(num_gpus=1)
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value

c = Counter.remote()
id4 = c.inc.remote()
id5 = c.inc.remote()

@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)



Task API
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@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file
1

file
2

Node 1 Node 2

read_array

id1

Return id1 (future) immediately, 
before read_array() finishes



Task API
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@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file
1

file
2

Node 1 Node 2

read_array

id1

read_array

id2

Dynamic task graph:
build at runtime



Task API
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@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

Node 2

file
1

file
2

 Node 1 Node 2

read_array

id1

read_array

id2

add

id

Node 3

ray.get() block until 
result available



Distributed Immutable object store

Worker
 
process 

Worker
 
process 

….

X Y Z

Spill over to external 
storage



Distributed object store

@ray.remote
def f():
    …
    return X

@ray.remote
def g(a):
    …
    return Y

id_X = f.remote()
id_Y = g.remote(id_X)

Node 1

id_X

Node 2

f()

X

id_X

Only X’s id (id_X) is 
returned, not X’s value

.. ..

Shared object 
store



Distributed object store

@ray.remote
def f():
    …
    return X

@ray.remote
def g(a):
    …
    return Y

id_X = f.remote()
id_Y = g.remote(id_X)

Node 1

g(id_X)

X

id_X

id_X

Node 2

Y

id_Y

id_Y

g(id_X) is scheduled on same node, so X is never transferred

…

Shared object 
store



Examples of Distributed 
Applications with Ray
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ML Libraries
● Ray AI Runtime
● Distributed 

scikit-learn/Joblib
● Distributed XGBoost on 

Ray
● Ray Multiprocess Pool

All using Ray core APIs & patterns

Distributed Applications with Ray

Experimenting & 
Monitoring Services

All using Ray design patterns

ML Platforms  & 
Integrations

● DoorDash ML platform
● AirFlow, 

PrefectePredibase AI
● Uber, Lyft
● Instacart
● Spotify

All using Ray core APIs & 
patterns

● WhyLabs
● Arize AI
● W & B
● MLflow

All using Ray core APIs & 
patterns

Ray Ecosystem: https://docs.ray.io/en/latest/ray-overview/ray-libraries.html

https://docs.ray.io/en/latest/ray-overview/ray-libraries.html


Ray: Fastest Growing Scalable Compute Framework 

1,000+
Organizations

Using Ray

25,000+
GitHub
stars

5,000+
Repositories

Depend on Ray

820+
Community
Contributors



Generative AI, LLMs & Ray



LLM companies provide commercial APIs 
(note: co:here and OpenAI both use Ray internally) 

Current state of the world..



1
Download th

e m
odels

HuggingFace

2
Fine-tu

ne th
e m

odels

??
? 3

Serve
 th

ese
 m

odels

??
?

Options for poor mortals …



What are pain points in training/serving LLMs?

Distributed Training hard 
to get working right03

● Hyperparameters need to be tuned
● Need a platform to iterate very quickly at 

scale

Existing serving / 
inference solutions don’t 
scale

02
● Individual replicas can’t be distributed
● Need to be able to integrate business 

logic

Scaling is costly and hard 
to manage01

● Need spot instance support
● Hard to run distributed workloads
● Hard to optimize CPUs/GPUs



Ray provides generic platform for LLMs

Training03
● Integrates distributed training with distributed 

hyperparameter tuning w/ ML frameworks

Inference and serving02
● Ability to support complex pipelines 

integrating business logic
● Ability to support multiple node serving

Simplify orchestration 
and scaling01

● Spot instance support for data parallel training
● Easily spin up and run distributed workloads on 

any cloud
● Optimize CPUs/GPUs by pipelining w/ Ray Data



What’s the LLM stack           for Generative AI?

GPU or other hardware

Ray for Orchestration

PyTorch for Framework

DeepSpeed for optimized Training

HuggingFace for models



What about Generative AI?

https://anyscale.com/blog

https://anyscale.com/blog


Ray and Anyscale emerging as a 
standard for ML infrastructure



Key Takeaways

● Distributed computing is a necessity & norm
● Ray’s vision: make distributed computing simple 

○ Don’t have to be distributed programming expert
● Build your own disruptive apps & libraries with Ray 
● Scale your ML workloads with Ray libraries (Ray AIR)
● Ray offers the compute substrate for Generative AI workloads
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Ray Summit 2023

https://bit.ly/raysummit2023

https://bit.ly/raysummit2023


Let’s go with 

https://bit.ly/pydata-seattle-tutorial-2023

https://bit.ly/pydata-nyc-tutorial-2022


Thank you!

Questions?
email: jules@anyscale.com 

twitter: @2twitme


