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Few Importcmt URLs

Keep these URLs open in your browser tabs

—  GitHub:_https://github.com/dmatrix/ray-core-tutorial
— Ray Documentation: https://bit.ly/ray-core-docs



https://github.com/dmatrix/ray-core-tutorial
https://docs.ray.io/en/latest/
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Sh anyscale

Original creators of Ray

Unified compute platform to develop, deploy,
and manage scalable Al & Python applications with Ray

Scaling is a necessity, scaling is hard; make
distributed computing easy and simple for everyone
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The future of computing is
distributed
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The Evolution and trend in
cloud computing



Too Big To Fit, scale-up vs. scale-out

When an application becomes too big or too complex to run
efficiently on a single server, there are some options:

* migrate to a larger server, and buy bigger licenses —
that’s called vertical scale-up

* distribute data+compute across multiple servers —
that’s called horizontal scale-out

The histories of MPI, Hadoop, Spark, Dask, etc., represent
generations of scale-out, which imply trade-offs both for the
risks (losing partitions, split-brain, etc.) as well as the inherent
overhead costs



When an application becomes too big or too complex to run
efficiently on a single server, there are some options:

* migrate to &
uEISReElEl: Cloud Computing has arguably been

an embodiment of distributed systems

practices for the past 15 years, whether

for scale-up or scale-out

risks (losing partitions, split-brain, etc.) as well as the inherent
overhead costs




Professors lon Stoica and
David Patterson led EECS
grad students to define cloud
computing formally in 2009

“More than 17,000 citations
to this paper...”

2019 follow-up:

“We now predict ... that
Serverless Computing will grow
to dominate the future of cloud
computing in the next decade”

4riselab

Cloud Programming Simplified: A Berkeley View on
Serverless Computing

’ ST 8 FEBRUARY 10, 2019




Initially, cloud services were simplified to
make them more recognizable for IT staff
accustomed to VMware

e Patterson, et al., developed industry
research methodology and eventually
also a pattern language to describe
distributed systems

e AMPIlab foresaw how cloud use cases
would progress in industry over the
next decade, which greatly informed
Apache Spark, etc.

Above the Clouds: A Berkeley View of Cloud

Computing

Michael Armbrust
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Rean Griffith
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Randy H. Katz
Andrew Konwinski
Gunho Lee
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Matei Zaharia
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Above the Clouds: A Berkeley View of Cloud
Computing

Initially, cloud services were simplified to
make them more recognizable for IT staff
accustomed to VMware

Michael Armbrust
Armando Fox
Rean Griffith
Anthony D. Joseph
Randy H. Katz
Andrew Konwinski
Gunho Lee
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Cloud Programming Simplified: A Berkeley View on
Serverless Computing

Eric Jonas noted >50% of RISElab grad
students had never used Spark; also, how
cloud was evolving in its second decade:

Eric Jonas

Johann Schleier-Smith
Vikram Sreekanti
Chia-Che Tsai

Anurag Khandelwal
Qifan Pu

Vaishaal Shankar

Joao Menezes Carreira
Karl Krauth

Neeraja Yadwadkar
Joseph Gonzalez
Raluca Ada Popa

lon Stoica

David A. Patterson

Electrical Engineering and Computer Sciences
University of California at Berkeley

e “Decoupling of computation and storage;
they scale separately and are priced
independently”

e “The abstraction of executing a piece of
code instead of allocating resources on
which to execute that code”

Technical Report No. UCB/EECS-2019-3
http:/www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3 html

February 10, 2019

e “Paying for the code execution instead of
paying for resources you have allocated
toward executing the code”

2019



noted >50% of grad
students had never used Spark, plus how
cloud was evolving.in.its.second decade:

SRS  Ray is an important outcome
Rt from this collective area of
independently research

e “The abstraction
code instead of allocating resources on
which to execute that code”

» “Paying for the code execution instead of
paying for resources you have allocated
toward executing the code”
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Why and what's Ray?



Why Ray oo»

Machine
learning is
pervasive

Distributed
computing is a
necessity

Python is the
default
language for
DS/ML

20



Blessings of scale ...

The blessings of scale
Al training runs, estimated computing resources used
Floating-point operations, selected systems, by type, log scale
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Sources: “Compute trends across three eras of machine learning”, by J. Sevilla et al,, arXiv, 2022; Our World in Data
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Compute - supply demand problem
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https://openai.com/blog/ai-and-compute/

Specialized hardware is not enough

10,000 =,
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https://openai.com/blog/ai-and-compute/


https://openai.com/blog/ai-and-compute/

Python data science ecosystem
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What is Ray o§>

e A simple/general-purpose library for distributed computing
e An ecosystem of Python libraries (for scaling ML and more)
e Runs on laptop, public cloud, K8s, on-premise

A layered cake of functionality and
capabilities for scaling ML workloads

25



A Layered Cake and Ecosystem

Ray AIR enables simple scaling of Al workloads.

Ray Core enables scalable
apps to be built in pure Python.

................................

Data Train Tune Serve RLIib Custom Applications
Tasks Actors Objects
Ray core

Library +

app
ecosystem

general-purpose
framework for
distributed
computing

Run
anywhere

26



Ray Al Runtime (AIR) is a scalable runtime for end-to-end ML
applications

Data / features Training Hyperparameter Experiment Serving/ Explanability/
o)) A\ DELTA LAKE Y XGBoost Tuning management | | Applications Observability
555,72? % Parquet a2 T TensorFlow @ W&B R[lask WHYLABS

simooin (g dask 5 O PyTorch N mifiow O FastAPI Aarize
@ FeEasT  MIARS @ 7 LightGBM v ‘  comet v Streamlit 0@ ALTBI
) Keras HEBHI ﬁ &3 gradio
4 L3 L3 A - - A
v & & 4 “ B +
Datasets Train RLlib Tune Serve

o3> Ray Al Runtime

Storage and metadata

aws

°§> Ray Core

A © © B

High-level libraries that
make scaling easy for both
data scientists and ML
engineers.
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Ray Al Runtime (AIR) is a scalable toolkit for end-to-end ML

applications

Data / features Training Hyperparameter Experiment Serving/ Explanability/
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Ray Architecture &
Components



An anatomy of a Ray cluster

Head Node %
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Ray distributed design &
scaling patterns & APIs



Ray Basic Design Patterns

e Ray Parallel Tasks

o Functions as stateless units of execution

o Functions distributed across the cluster as tasks
e Ray Objects as Futures

o Distributed (immutable objects) store in the cluster
o Fetched when materialized
o Enable massive asynchronous parallelism

e Ray Actors

o Stateful service on a cluster
o Enable Message passing

1. Patterns for Parallel Programming
2. Ray Design Patterns
3. Ray Distributed Library Integration Patterns

Design Patterns

Elements of Reusable

by Grady Booch
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https://www.goodreads.com/book/show/85053.Patterns_for_Parallel_Programming
https://docs.google.com/document/d/167rnnDFIVRhHhK4mznEIemOtj63IOhtIPvSYaPgI4Fg/edit#heading=h.crt5flperkq3
https://www.anyscale.com/blog/ray-distributed-library-patterns

Scaling Design Patterns
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Python — Ray APls

def f(x):

# do something with
X:

y = ..

return y

class Cls():
def

__init__ (self, x):
def f(self, a):

def g(self, a):

import numpy as np
a= np.arange(1l, 10e6)
b=a*2

Task

Actor

Distributed
immutable
object

A

def f(x):

# do something with
X:

Y = ...

return y
f.remote()

class Cls():

def __init__(self,
x):

def f(self, a):

def g(self, a):

cls = Cls.remote()
cls.f.remote(a)

import numpy as np
a = np.arange(1, 10e6)
obj_a = ray.put(a)
b = ray.get(obj_a) * 2

Distributed

Distributed

Distributed
Node Node
34



Ray Task

A function £‘ remotely executed in a cluster ki)~ —> Result = 3

RAY
@ray.remote(num_cpus=2) £(1, 2)
def f(a, b): — -
All—P Result = 5
return a + b
f P Bl - )—P Result = 7
f.remote(1, 2) # returns 3 X RAY
—
-./'.
-.I— —> Result = 9

e B |

$ RAY



Ray Actor

@2 ®
A class remotely executed in a cluster

@ray.remote(num_gpus=4)
class HostActor:
def _init_ (self):
self.num_devices = os.environ["CUDA_VISIBLE DEVICES"]

def f(self, output):

return f"{output} {self.num_devices}"

actor = HostActor.remote() # Create an actor

actor.f.remote("hi") # returns "hi 0,1,2,3"

Host

client |

method ]

Host




Function — Task Class — Actor

@ray.remote (num_gpus=1)
def read_array(file): class Counter(object):
# read ndarray “a” def __init_ (self):
# from “file” self.value = 0
return a def inc(self):
self.value += 1
ggiyégngfeb): return self.value
return np.add(a, b) c = Counter.remote()

idl = read_array.remote(filel) id4 = c.inc.remote()
id2 = read_array.remote(file2) id5 = c.inc.remote()
id = add.remote(idl, id2)
sum = ray.get(id)




Task API

@ray.remote

def read_array(file):
# read ndarray “a” ﬁ
# from “file”

return a <:::f:::>
read_array
@ray.remote
4

def add(a, b):
return np.add(a, b)

idl = read_array.remote(filel)

id2 = read_array.remote(file2)

id = add.remote(idl, id2) , _ '

sum = ray.get(id) Return id1 (future) immediately,
before read_array() finishes




Task API

@ray.remote

def read_array(file):
# read ndarray “a”
# from “file”

return a
read_array read_array
@ray.remote

def add(a, b): ry
return np.add(a, b) id1 id2

idl = read_array.remote(filel) D ; :
id2 = read _array.remote(file2) %Qaﬂ}gs?jﬁéﬁifh'
id = add.remote(idl, id2)

sum = ray.get(id)




Task API

@ray.remote

def read_array(file):
# read ndarray “a”
# from “file”
return a

@ray.remote
def add(a, b):

return np.add(a, b) id1

idl = read_array.remote(filel)
id2 = read_array.remote(file2)

id = add.remote(idl, jid
sum = ray.get(id) ray.get() block until
result available




Distributed Immutable object store

s
Node
Worker slots
Worker Worker
process process

x| v 2]

Shared-memory object store

LT Tl Spill over to external
storage

External object store (disk, S3, etc)




Distributed object store

Shared object
store

@ray.remote
def f():

Féturn X

@ray.remote
def g(a):

Féturn Y
£ _remote()
g.remote(id_X)

Only X’sid (id_X) is
returned, not X’s value




Distributed object store

Shared object
store

@ray.remote
def f():

return X

@ray.remote
def g(a):

return Y

.remote()

=

g(id_X) is scheduled on same node, so X is never transferred




Examples of Distributed
Applications with Ray



Distributed Applications with Ray

ML Platforms &

Experimenting & Inteqrations

ML Libraries Monitoring Services
ng AI Runtime e  Whylabs Df)orDash ML platform
Distributed . AirFlow,
I . e Arize Al )
scikit-learn/Joblib L e s PrefectePredibase Al
e Distributed XGBoost on Uber, Lyft
e MLflow
Ray Instacart
*  RayMultiprocess Pool All using Ray core APIs & Spotify

All using Ray core APIs & patterns

patterns
All using Ray core APIs &

patterns

Ray Ecosystem: https://docs.ray.io/en/latest/ray-overview/ray-libraries.html

45


https://docs.ray.io/en/latest/ray-overview/ray-libraries.html
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Generative Al, LLMs & Ray



Current state of the world..

LLM companies provide commercial APls
(note: co:here and OpenAl both use Ray internally)

co:here @ OpenAl

ANTHROP\C [+~ Hugging Face

DOD anyscale



Options for poor mortals ...

DDD anyscale



What are pain points in training/serving LLMs?

Scaling is costly and hard
to manage

Existing serving /
inference solutions don't
scale

Distributed Training hard
to get working right

Need spot instance support
Hard to run distributed workloads
Hard to optimize CPUs/GPUs

Individual replicas can't be distributed
Need to be able to integrate business
logic

Hyperparameters need to be tuned

Need a platform to iterate very quickly at
scale

DDD anyscale



Ray provides generic platform for LLMs

X . . Spot instance support for data parallel training
Slmphfy orchestration Easily spin up and run distributed workloads on

and scaling any cloud
Optimize CPUs/GPUs by pipelining w/ Ray Data

Ability to support complex pipelines
Inference and Serving integrating business logic
Ability to support multiple node serving

Integrates distributed training with distributed
Training hyperparameter tuning w/ ML frameworks

DDD anyscale



What's the LLM stack @ for Generative Al?

@ Technical stacks for Large language models (LLMs)

éé‘ix Model definition

[

Automatic model parallelization

[

0% RAY GPU management and runtime orchestration

[

n Compilation and runtime

[

@AnviDIA.  GPU accelerator

<

Figure 5: Technical integration layered stack for LLM

[ HuggingFace for models

[ DeepSpeed for optimized Training

-

PyTorch for Framework

\ |

-

Ray for Orchestration

\ |

-

GPU or other hardware
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What about Generative Al?
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Faster stable diffusion fine-tuning with
Ray AIR

This is part 3 of our generative Al blog series that dives into a concrete example of
horm You can use Ray to scale the training of generative Al models. To learn ore.
using Ray to productionize generative model workloads, see part 7 To I boe
how Ray empowers LLM frameworks such as Alpa, see part 2, - oot

How to fine tune and serve LLMs simply,
quickly and cost effectively using Ray +
DeepSpeed + HuggingFace

By Waleed Kadous, Jun Gong, Antoni Baum and Richard Liaw April 10, 2023

This is part 4 of our blog series on Generative Al. In the previous blog posts we
explained why Ray is a sound platform for Generative Al, we showed how it can push
the performance limits, and how you can use Ray for stable diffusion.


https://anyscale.com/blog

Ray and Anyscale emerging as a
standard for ML infrastructure

How Ray, a Distributed Al Framework,
Ray breaks the $1/TB barrier as the ps Power ChatGPT

world’s most cost-efficient sorting 9| Google Cloud — Blog | Large Scale Deep Learning
Training and Tuning with Ray
system " : e
y The Magic of Merlin: Shopify's New at Uber
s vced IVI@Chine Learning Platform Xu Ning, Di Yu, Michael Mui
by Isaac Vidas D?taScience&Engineering B Han L|

Mar17 - 9minread - @ Listen

Unleashing ML Innovation at Spotify
with Ray

aws sy  Distributed Machine Learning at Instacart

re:lnvent Products Solutions Pricing Documentation Le:

How Instacart uses distributed Machine Learning to efficientl
thousands of models in production

Netflix Technology Blog Ej
Feb13 - 11minread - @ Listen

Scaling Media Machine Learning at Netflix

Blog Home Category v Edition v

AWS Big Data Blog

Introducing AWS Glue for Ray: Scaling
your data integration workloads using
Python

T nlnoen: o manes: B imalusile Dalemmn: amal TSamnbe-d fn o DEE KIS T




Key Takeaways

e Distributed computing is a necessity & norm

e Ray’s vision: make distributed computing simple
o Don’t have to be distributed programming expert

e Build your own disruptive apps & libraries with Ray
e Scale your ML workloads with Ray libraries (Ray AIR)
e Ray offers the compute substrate for Generative Al workloads
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Ray Summlt 2023

AY
SUMMITZS SPEAKERS TRAINING SPONSORS WHO ATTENDS REGISTER NOW

THE PLACE FOR EVERYTHING RAY https://bit.ly/raysummit2023

San Francisco Marriott Marquis | September 18-20

Al is moving fast. Get in front of what's next at Ray Summit 2023. Join the global
Ray community in San Francisco for keynotes, Ray deep dives, lightning talks and

more exploring the future of machine learning and scalable Al.
REGISTRATION IS OPEN | ]
- 1

REGISTER
BY 5/31 AND



https://bit.ly/raysummit2023

Let's go with °§°

https://bit.ly/pydata-seattle-tutorial-2023



https://bit.ly/pydata-nyc-tutorial-2022

Thank you!

Questions?

email: jules@anyscale.com

twitter: @2twitme




