
Topic 3: Parallel and Scalable Data Processing
Part 3: Data Parallelism

Ch. 9.4, 12.2, 14.1.1, 14.6, 22.1-22.3, 22.4.1, 22.8 of Cow Book
Ch. 5, 6.1, 6.3, 6.4 of MLSys Book

Rod Albuyeh

1

DSC 102
Systems for Scalable Analytics



2

Admin: Midterm Analysis

Most points marked off for task graph comprehension, where
 performance was ~60% for the class. I’ll release a walkthrough video on it. 



3

Admin: PA2

❖ ”Black Box” infrastructure running on Kubernetes 
instead of the fully transparent AWS view. 

❖ More of an exercise in the Spark API but limited 
customizability. 

❖ Note: 2021 pandemic version of this course ran 
PA2 on EMR. 



4

Outline

❖ Basics of Parallelism
❖ Task Parallelism; Dask
❖ Single-Node Multi-Core; SIMD; Accelerators

❖ Basics of Scalable Data Access
❖ Paged Access; I/O Costs; Layouts/Access Patterns
❖ Scaling Data Science Operations

❖ Data Parallelism: Parallelism + Scalability
❖ Data-Parallel Data Science Operations
❖ Optimizations and Hybrid Parallelism



5

Introducing Data Parallelism

❖ The most common approach to marrying parallelism and 
scalability in data systems

❖ Generalization of SIMD and SPMD idea from parallel processors 
to large-scale data and multi-worker/multi-node setting

❖ Distributed-memory vs Distributed-disk

Q: What is “data parallelism”?

Basic Idea of Scalability: Split data file (virtually or physically) 
and stage reads/writes of its pages between disk and DRAM

Data Parallelism: Partition large data file physically across 
nodes/workers; within worker: DRAM-based or disk-based



6

3 Paradigms of Multi-Node Parallelism

Shared-Nothing 
Parallelism

Shared-Memory 
Parallelism

Shared-Disk 
Parallelism

Interconnect

Interconnect

Interconnect

Data parallelism is technically orthogonal to these 3 paradigms 
but most commonly paired with shared-nothing



7

Shared-Nothing Data Parallelism

Shared-Nothing 
Parallel Cluster

Interconnect

D1
D2
D3
D4
D5
D6

D1
D2

D3
D4

D5
D6

❖ Partitioning a data file across 
nodes is aka sharding

❖ Part of a stage in data processing 
workflows called Extract-
Transform-Load (ETL)

❖ ETL is an umbrella term for all 
kinds of processing done to the 
data file before it is ready for 
users to query, analyze, etc.
❖ Sharding, compression, file 

format conversions, etc.

D1 D3 D5



8

Data Parallelism in Other Paradigms?

Shared-Memory 
Parallel Cluster

Shared-Disk 
Parallel Cluster

Interconnect Interconnect

D1
D2
D3
D4
D5
D6

D1
D2

D3
D4

D5
D6

D1
D2
D3
D4
D5
D6

D1
D2

D3
D4

D5
D6

D1 D3 D5
D1
D2
D3 Contention



9

Data Partitioning Strategies

❖ Row-wise/horizontal partitioning is most common (sharding)
❖ 3 common schemes (given k nodes):

❖ Round-robin: assign tuple i to node i MOD k
❖ Hashing-based: needs hash partitioning attribute(s)
❖ Range-based: needs ordinal partitioning attribute(s)

❖ Tradeoffs: 
❖ For Relational Algebra (RA) and SQL:
❖ Hashing-based most common in practice for RA/SQL
❖ Range-based often good for range predicates in RA/SQL

❖ But all 3 are often OK for many ML workloads (why?)
❖ Replication of partition across nodes (e.g., 3x) is common to 

enable “fault tolerance” and better parallel runtime performance



10

Other Forms of Data Partitioning

❖ Just like with disk-aware data layout on single-node, we can 
partition a large data file across workers in other ways too:

Node 1A B C D

1a 1b 1c 1d

2a 2b 2c 2d

3a 3b 3c 3d

4a 4b 4c 4d

5a 5b 5c 5d

6a 6b 6c 6d

R Columnar Partitioning

Node 2 Node 3

…

1a,2a,
3a,4a

5a,6a

1b,2b,
3b,4b

1c,2c,
3c,4c

5c,6c5b,6b



11

Other Forms of Data Partitioning

❖ Just like with disk-aware data layout on single-node, we can 
partition a large data file across workers in other ways too:

Node 1A B C D

1a 1b 1c 1d

2a 2b 2c 2d

3a 3b 3c 3d

4a 4b 4c 4d

5a 5b 5c 5d

6a 6b 6c 6d

R Hybrid/Tiled Partitioning

Node 2 Node 3

…

1a, 2a, 
1b, 2b

1c, 2c, 
1d, 2d

3a,3b,
4a,4b

5a,5b,
6a,6b

5c,5d,
6c,6d

3c,3d,
4c,4d



12

Cluster Architectures

Worker 1

Manager

Q: What is the protocol for cluster nodes to talk to each other?

Manager-Worker Architecture

Worker 2 Worker k…

❖ 1 (or few) special node called Manager 
(aka “Server” or archaic “Master”); 1 or 
more Workers

❖ Manager tells workers what to do and 
when to talk to other nodes

❖ Most common in data systems (e.g., 
Dask, Spark, par. RDBMS, etc.)

Peer-to-Peer Architecture

Worker 1

Worker 2 Worker k

…
Worker k-

1

❖ No special manager
❖ Workers talk to each 

other directly
❖ E.g., Horovod
❖ Aka Decentralized (vs 

Centralized)



13

Bulk Synchronous Parallelism (BSP)

❖ Most common protocol of data parallelism in data systems (e.g., in 
parallel RDBMSs, Hadoop, Spark)

❖ Shared-nothing sharding + manager-worker architecture

Worker 1

Manager

Worker 2 Worker k

…D1
D2

D3
D4

D5
D6

1. Sharded data file on workers
2. Client gives program to manager (e.g., 

SQL query, ML training, etc.)

3. Manager divides first piece of 
work among workers

4. Workers work independently on 
self’s data partition (cross-talk can 
happen if Manager asks)

5. Worker sends partial results to 
Manager

6. Manager waits till all k done
7. Go to step 3 for next pieceAka (Barrier) Synchronization

Communication costs!



14

Speedup Analysis/Limits of of BSP

❖ Cluster overhead factors that hurt speedup:
❖ Per-worker: startup cost; tear-down cost
❖ On manager: dividing up the work; collecting/unifying partial partial 

results from workers
❖ Communication costs: talk between manager-worker and across 

workers (when asked by manager)
❖ Barrier synchronization suffers from “stragglers” (workers that fall 

behind) due to skews in shard sizes and/or worker capacities

Q: What is the speedup yielded by BSP?

Speedup = 
Completion time given only 1 worker

Completion time given k (>1) workers



15

Quantifying Benefit of Parallelism

Number of workers

Runtime speedup (fixed data size)

1 4 8 12

1

4

8

12
Linear 

Speedup

Sublinear
Speedup

Q: Is superlinear speedup/scaleup ever possible?

Factor (# workers, data size)

Runtime speedup

1 4 8 12

1

0.5

2

Linear Scaleup

Sublinear
Scaleup

Speedup plot / Strong scaling Scaleup plot / Weak scaling



16

Distributed Filesystems

❖ Recall definition of file; distributed file generalizes it to a cluster of 
networked disks and OSs

❖ Distributed filesystem (DFS) is a cluster-resident filesystem to 
manage distributed files
❖ A layer of abstraction on top of local filesystems
❖ Nodes manage local data as if they are local files
❖ Illusion of a one global file: DFS APIs let nodes access data 

sitting on other nodes
❖ 2 main variants: Remote DFS vs In-Situ DFS

❖ Remote DFS: Files reside elsewhere and read/written on 
demand by workers

❖ In-Situ DFS: Files resides on cluster where workers exist



17

❖ An old remote DFS (c. 1980s) with simple client-server 
architecture for replicating files over the network

Network Filesystem (NFS)

❖ Main pro: simplicity of setup 
and usage 

❖ But many cons:
❖ Not scalable to very 

large files
❖ Full data replication
❖ High contention for 

concurrent reads/writes
❖ Single-point of failure



18

Hadoop Distributed File System (HDFS)

❖ Most popular in-situ DFS (c. late 2000s); part of Hadoop; open 
source spinoff of Google File system (GFS)

❖ Highly scalable; scales to 10s of 1000s of nodes, PB files

https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

❖ Designed for clusters of 
cheap commodity nodes

❖ Parallel reads/writes of 
sharded data “blocks”

❖ Replication of blocks to 
improve fault tolerance

❖ Cons: Read-only + batch-
append (no fine-grained 
updates/writes)

https://static.googleusercontent.com/media/research.google.com/en/archive/gfs-sosp2003.pdf
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html


19

Hadoop Distributed File System (HDFS)

❖ NameNode’s roster maps data blocks to DataNodes/IPs
❖ A distributed file on HDFS is just a directory (!) with individual 

filenames for each data block and metadata files

❖ HDFS has configurable parameters:
Parameter name Purpose Default value

Data block size Splitting data into chunks 128 MB

Replication factor Ensure data availability 3x



20

Data-Parallel Dataflow/Workflow

❖ Data-Parallel Dataflow: A dataflow graph with ops wherein each 
operation is executed in a data-parallel manner

❖ Data-Parallel Workflow: A generalization; each vertex a whole 
task/process that is run in a data-parallel manner

Note: In parallel 
environments like parallel 
RDBMSs and Spark:
Each of these extended 
relational ops have 
scalable data-parallel 
implementations.All input tables 

are sharded

Q: So how do we run data science workflows in data-parallel manner?


