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Distributed Computing Paradigms
Different paradigms and models used in distributed computing:

Batch processing: Breaking tasks into smaller sub-tasks that can be processed 
independently.

Message passing: Communication between nodes through message passing protocols like 
MPI.

Shared memory: Multiple nodes accessing a common memory space.

MapReduce: A programming model for processing large datasets in a distributed 
manner.

Stream processing: Real-time processing of continuous data streams.



          +-------------+             +-------------+
          |    Node 1   |             |    Node 2   |
          +-------------+             +-------------+

                 |                           |
         +-----------------+        +-----------------+

         |   Local Data    |        |   Local Data    |
         |     Subset      |        |     Subset      |
         +-----------------+        +-----------------+

                 |                           |
         +-----------------+        +-----------------+

         |   Local Model   |        |   Local Model   |
         |   Parameters    |        |   Parameters    |

         +-----------------+        +-----------------+
                 |                           |

         +-----------------+        +-----------------+
         |    Local       |        |    Local       |

         |    Training    |        |    Training    |
         |   Algorithm    |        |   Algorithm    |
         +-----------------+        +-----------------+

                 |                           |
         +---------------------------------------+

         |           Model Synchronization       |
         |          (Message Passing using MPI)  |

         +---------------------------------------+
                 |                           |                 .                         

+---------------------------------------+
         |           Model Synchronization       |

         |          (Message Passing using MPI)  |
         +---------------------------------------+

                 |                           |
         +-----------------+        +-----------------+

         |   Updated Model |        |   Updated Model |
         |   Parameters    |        |   Parameters    |

         +-----------------+        +-----------------+
                 |                           |

         +-----------------+        +-----------------+
         |    Local       |        |    Local       |

         |    Training    |        |    Training    |
         |   Algorithm    |        |   Algorithm    |
         +-----------------+        +-----------------+

                 |                           |
         +---------------------------------------+

         |           Model Synchronization       |
         |          (Message Passing using MPI)  |

         +---------------------------------------+
                 |                           |

         +-----------------+        +-----------------+
         |   Updated Model |        |   Updated Model |

         |   Parameters    |        |   Parameters    |
         +-----------------+        +-----------------+

                 |                           |
                 .                           .

The MPI communication, represented by the "Model Synchronization" block, facilitates the exchange of model updates 
between nodes. This allows the nodes to aggregate or gather the updates from all other nodes and incorporate them into 
their local models.

Example



Distributed File Systems → like HDFS (Hadoop)
Let's consider a scenario where a company uses HDFS for its data storage and processing 
needs. The company has a large dataset consisting of customer records, sales data, and 
product information.

Fault Tolerance: With HDFS, the company stores multiple replicas of the data across 
different nodes. If a node fails, the data is still accessible from other replicas, 
ensuring fault tolerance and preventing data loss.

Scalability: As the company's data grows, they can add more nodes to the Hadoop cluster and 
distribute the data across these nodes. HDFS scales horizontally, allowing the company to 
accommodate the increasing volume of data without compromising performance.

Data Locality: When processing the customer data and performing analytics, HDFS ensures 
data locality by storing the data on the same nodes where the computation is performed. 
This reduces data transfer over the network and improves overall processing efficiency.



         +----------------------------+
         |         Client Node        |
         +----------------------------+

                    |      ^
           Read/Write    |     | Metadata

         Data Requests  |     | Operations
                    v      |

         +----------------------------+
         |         NameNode           |
         +----------------------------+

                    |      ^
          Metadata    |     | Block

         Operations   |     | Locations
                    v      |

     +---------------+---------------+
     |         DataNode             |
     +-------------------------------+

             |        ^         |
         Read/Write    |    Heartbeat and
         Data Blocks   |   Block Report

             v        |         |
     +-------------------------------+
     |         DataNode             |
     +-------------------------------+

             |        ^         |
         Read/Write    |    Heartbeat and
         Data Blocks    |   Block Report

             v        |         |
     +-------------------------------+
     |         DataNode             |
     +-------------------------------+

Example …
Client Node → Represents the entity that interacts with the DFS.

NameNode → Serves as the central metadata server for the DFS handling 
metadata operations file creation, deletion, and renaming.

DataNode → Stores and manages the actual data blocks of files in the 
DFS

1. Client Node sends read/write requests to the NameNode, including 
metadata operations such as file creation or deletion.

2. The NameNode processes the metadata operations and responds to the 
client with information about block locations.

3. Client Node then interacts directly with the relevant DataNodes to read 
from or write data blocks.

4. DataNodes store and manage the data blocks, sending periodic 
heartbeat and block reports to the NameNode to update their status.

5. NameNode keeps track of the metadata, block locations, and overall 
health of the system.



challenges & considerations in distributed analysis
While dealing with large amounts of data the primary challenge is that it cannot fit on a single 
machine.

Storage Tradeoff:
Storing data entirely in memory yields better performance but is expensive.
Disk storage is cheaper but results in lower performance.

Hybrid Caching:
Combination of SSD flash disks and hard disks for storing data subsets.
Placement of data on appropriate storage medium is crucial.

Distributing Data:
Root-leaf approach for distributing data across thousands of machines.
Each leaf machine holds a portion of the data, results merged at the root.

Latency Impact:
Latency from the slowest machine affects overall performance.
Mitigating latency through optimization techniques is essential.

Overhead in Data Transfer:
Serialization, compression, and encryption introduce overhead.
File format overhead, decryption, and decompression impact performance.

Hardware Support:
Encryption at rest and in motion requires hardware support.
Hardware advancements crucial for efficient distributed analysis.

Serialization and Interpretation:
Data structures are serialized for transmission over a wire.
Receiving machine must interpret the serialized data correctly.



Case Studies
Present a few case studies showcasing the practical 
applications of distributed computing in scalable analytics:

Netflix: How distributed computing enables personalized 
recommendations at scale.

Twitter: Processing massive streams of real-time data using 
distributed systems.

Genome sequencing: Analyzing large genomic datasets to 
identify patterns and variations.



Netflix: System Design #1
User Interface (UI) Layer:

The UI layer of Netflix includes various platforms such as 
web, mobile apps, and smart TVs.

Design a responsive and user-friendly interface that allows 
users to browse and search for content, manage their 
profiles, and interact with the platform.



Netflix: System Design #2
Load Balancing and Caching:

Implement a load balancing mechanism to distribute user 
requests across multiple servers, ensuring efficient 
utilization of resources.

Utilize content delivery networks (CDNs) for caching popular 
or frequently accessed content closer to the end-users, 
reducing latency and improving streaming performance.



Netflix: System Design #3
Authentication and Authorization:

Implement a secure authentication and authorization system 
to handle user login, registration, and user profile 
management.

Utilize industry-standard authentication protocols like 
OAuth or JSON Web Tokens (JWT) to ensure secure user access.



Netflix: System Design #4
Content Catalog and Metadata Management:

Design a scalable and efficient content catalog system to 
store information about movies, TV shows, and other media 
content.

Implement a metadata management system to store and manage 
associated information such as genres, cast and crew 
details, ratings, and user reviews.



Netflix: System Design #5
Recommendation Engine:

Develop a recommendation engine that utilizes machine 
learning algorithms to provide personalized content 
recommendations based on user preferences, viewing history, 
and other factors.

Consider collaborative filtering, content-based filtering, 
and hybrid approaches to generate accurate and relevant 
recommendations.



          +------------------------------------+
          |            User-Item Data           |
          +------------------------------------+

                             |
                             v

          +------------------------------------+
          |          Data Partitioning          |
          +------------------------------------+

                             |
                             v

    +-----------------------------+      +-----------------------------+
    |        Node 1               |      |        Node 2               |

    +-----------------------------+      +-----------------------------+
             |                                  |
             v                                  v

    +-----------------------------+      +-----------------------------+
    |    Local Similarity         |      |    Local Similarity         |

    |      Computation             |      |      Computation             |
    +-----------------------------+      +-----------------------------+

             |                                  |
             v                                  v

    +-----------------------------+      +-----------------------------+
    |    Data Exchange and        |      |    Data Exchange and        |

    |      Aggregation             |      |      Aggregation             |
    +-----------------------------+      +-----------------------------+

             |                                  |
             v                                  v

    +-----------------------------+      +-----------------------------+
    |   Recommendation Generation |      |   Recommendation Generation |

    +-----------------------------+      +-----------------------------+
             |                                  |
             v                                  v

    +---------------------------------------+
    |       Result Integration and          |

    |         Final Recommendations         |
    +---------------------------------------+

distributed Collaborative filtering…
In the diagram, the process of making collaborative filtering distributed is 
illustrated with two nodes (Node 1 and Node 2) as an example. Here's a 
breakdown of the components:

1. User-Item Data: Represents the initial user-item interaction data used for 
collaborative filtering.

2. Data Partitioning: The data is partitioned into subsets and distributed 
across multiple nodes.

3. Local Similarity Computation: Each node independently computes local 
similarities (e.g., cosine similarity) based on the user-item interactions 
available on that node.

4. Data Exchange and Aggregation: The computed similarities are 
exchanged and aggregated across the nodes to generate a global 
similarity matrix.

5. Recommendation Generation: Each node utilizes the global similarity 
matrix and the locally available user-item interactions to generate 
personalized recommendations for its subset of users.

6. Result Integration and Final Recommendations: The recommendations 
generated by each node are integrated to produce the final distributed 
recommendations.



Netflix: System Design #6
Content Delivery and Streaming:

Design a scalable and fault-tolerant content delivery system 
that can handle high traffic and ensure smooth streaming 
across different devices and network conditions.

Utilize adaptive streaming techniques such as Dynamic 
Adaptive Streaming over HTTP (DASH) or HTTP Live Streaming 
(HLS) to adapt video quality based on available bandwidth.



Netflix: System Design #7
Implement backend services using a microservices 
architecture to enable modularity, scalability, and 
independent development of different components.

Each microservice can handle specific functionalities such 
as user management, billing, content recommendation, and 
search.



Netflix: System Design #8
Database and Data Storage:

Use a distributed and scalable database system like Apache 
Cassandra or Amazon DynamoDB to store user profiles, viewing 
history, and metadata.

Implement caching mechanisms using in-memory databases like 
Redis for faster access to frequently accessed data.



Netflix: System Design #9
Analytics and Monitoring:

Incorporate analytics and monitoring tools to gather 
insights on user behavior, system performance, and content 
popularity.

Utilize tools like Elasticsearch, Logstash, and Kibana (ELK 
stack) or similar solutions for log aggregation, analysis, 
and visualization.



Netflix: System Design #10
Scalability and Fault Tolerance:

Design the system with horizontal scalability in mind, 
allowing easy addition of servers and resources to handle 
increasing user demands.

Implement redundancy and replication strategies to ensure 
fault tolerance and high availability, utilizing techniques 
like data replication across multiple data centers.



Netflix: System Design #11
Security and DRM:

Implement robust security measures to protect user data and 
prevent unauthorized access.

Utilize Digital Rights Management (DRM) technologies to 
protect copyrighted content from unauthorized distribution 
and piracy.



Language Model: A language model is an AI model that learns patterns and relationships in natural language 
text, enabling it to generate coherent and contextually relevant text. It captures the probability 
distribution of word sequences, predicting the likelihood of the next word given the previous context.

Large Language Model: A large language model refers to a language model with a massive number of parameters, 
such as OpenAI's GPT-3. These models are trained on extensive datasets and exhibit impressive language 
generation capabilities.

Challenges in Distributed Training and Inference:

1. Computational Resources: Large language models require immense computational power, memory, and 
storage. Training and inference across distributed systems necessitate significant hardware resources

2. Communication Overhead: In distributed training, coordinating updates across multiple nodes introduces 
communication overhead. Efficient communication protocols and optimized data exchange mechanisms are 
essential.

3. Data Synchronization: Ensuring consistent model parameters and synchronization of large amounts of data 
across nodes is a challenge.In distributed inference, managing data consistency for parallel processing 
can be complex.

4. Scalability: Scaling distributed training and inference to accommodate growing model sizes and datasets 
is crucial. Load balancing and resource allocation need to be optimized for efficient scalability.

 Language Models and Challenges in Distributed Training and Inference



Training Large Language Models
Optimization of training and inference processes in the 
context of Transformers, a popular deep learning 
architecture. The aim is to achieve efficient computation 
with low latency by distributing the workload across 
multiple machines and optimizing caching mechanisms. 



       Encoder                            Decoder
 +------------------+              +------------------+
 |    Input         |              |      Output      |

 |   Embedding      |              |    Embedding     |
 +------------------+              +------------------+

           |                                |
       +--------+                        +--------+

       |        |                        |        |
       | Encoder|                        | Decoder|
       | Layers |                        | Layers |

       |        |                        |        |
       +--------+                        +--------+

           |                                |
     +--------------+                +--------------+

     |   Multi-head |                |   Multi-head |
     |    Attention |                |    Attention |
     +--------------+                +--------------+

           |                                |
       +--------+                        +--------+

       |        |                        |        |
       |  Feed  |                        |  Feed  |

       | Forward|                        | Forward|
       |  NN    |                        |  NN    |

       |        |                        |        |
       +--------+                        +--------+

           |                                |
           +--------------------------------+

                        |
                  +-----------+
                  |   Linear  |
                  |   Layer   |
                  +-----------+

Transformers …
1. Input Embedding: At the beginning of the encoder and decoder, the input sequence is 

transformed into a dense vector representation called word embeddings.

2. Encoder Layers: The encoder is made up of multiple identical layers. Each layer has two 
sub-layers: a multi-head self-attention mechanism and a feed-forward neural network 
(FFNN). The self-attention mechanism allows the model to weigh the importance of 
different words in the input sequence. The FFNN processes the attention outputs.

3. Multi-head Attention: The multi-head attention layer is a key component of the 
transformer model. It consists of multiple parallel attention mechanisms called "attention 
heads." Each attention head attends to different parts of the input sequence and learns 
different aspects of the relationships between words.

4. Feed Forward NN: The feed-forward neural network is a fully connected network with a 
couple of linear layers and a non-linear activation function (typically ReLU). It processes 
the output of the multi-head attention layer.

5. Decoder Layers: The decoder also consists of multiple identical layers. In addition to the 
self-attention and feed-forward sub-layers present in the encoder, the decoder has an 
additional sub-layer of multi-head attention over the encoder's output. This allows the 
decoder to focus on different parts of the input sequence during the decoding process.

6. Output Linear Layer: The final output of the decoder is passed through a linear layer, 
followed by a softmax activation, to generate the output probabilities or scores.



                   +--------------------+
                   |   Feed-Forward     |
                   |   Neural Network   |

                   +--------------------+
                             |

                   +--------------------+
                   |   Transformer      |
                   |   Decoder          |
                   +--------------------+

                             |
                   +--------------------+
                   |   Attention        |

                   |   Mechanism        |
                   +--------------------+

                             |
                   +--------------------+

                   |   Feed-Forward     |
                   |   Neural Network   |

                   +--------------------+
                             |

                   +--------------------+
                   |   Linear Layer     |
                   +--------------------+

                             |
              +----------------------------+

              |   Probability Distribution |
              |   over Vocabulary          |

              +----------------------------+
                             |

                     +------------------+
                     |  Generated Text  |

                     +------------------+

GPT(Generative Pre-trained Transformer)
+--------------------------------------------------+

|                     Input Text                    |
+--------------------------------------------------+

                             |
                   +--------------------+

                   | Tokenization       |
                   +--------------------+

                             |
                   +--------------------+

                   |   Transformer      |
                   |   Encoder          |
                   +--------------------+

                             |
                   +--------------------+
                   |   Attention        |

                   |   Mechanism        |
                   +--------------------+

                             |
                   +--------------------+

                   |   Feed-Forward     |
                   |   Neural Network   |

                   +--------------------+
                             |



How can we Parallelize GPTs…
The parallelization of the GPT architecture can be achieved by utilizing techniques such as model 
parallelism and data parallelism. Let's discuss each approach:

Model Parallelism: Model parallelism involves distributing the model across multiple devices or 
machines. In the case of GPT, where the model consists of stacked transformer layers, each layer 
can be allocated to different devices. This allows for parallel computation of different layers, 
reducing the overall training or inference time. Model parallelism can be particularly useful when 
dealing with very large models that cannot fit into a single device's memory.

Data Parallelism: Data parallelism involves dividing the data into multiple subsets and processing 
them simultaneously on different devices. In the context of GPT, the training data can be 
partitioned into smaller batches, and each batch is processed by a separate device or machine. The 
gradients calculated on each device are then synchronized and aggregated to update the model 
parameters. Data parallelism enables faster training by parallelizing the computation across 
multiple devices.



Benefits of Distributed Computing for Large Language Models
The benefits of using distributed computing for large language 
models:

Scalability: Distributed computing enables efficient scaling of 
resources to handle large-scale training and inference workloads.

Speed: Parallel processing across multiple nodes reduces the time 
required for training and inference tasks.

Fault tolerance: Distributed systems provide resilience by 
replicating data and computations across multiple nodes, ensuring 
uninterrupted operation even in the face of failures



Real-world Applications
Present examples of real-world applications where distributed 
computing is used for large language models:

Language translation: Distributed computing facilitates the training 
and serving of language translation models that can handle large 
volumes of text.

Content generation: Distributed language models enable the 
generation of coherent and contextually relevant content for various 
applications, such as chatbots or content personalization.

Sentiment analysis: Large language models distributed across 
multiple nodes can process and analyze vast amounts of text data to 
derive sentiment insights.



Considerations and Challenges
Considerations and challenges associated with distributed computing 
for large language models:

Data synchronization: Ensuring consistency and synchronization of 
data across distributed nodes.

Communication overhead: Efficient communication and coordination 
between nodes to minimize latency and optimize performance.

Resource management: Proper allocation and management of 
computational resources across the distributed system.



Q & A


