
Distributed Computing
In the real world …

Venky Ravi

Distributed Computing Paradigms
Different paradigms and models used in distributed computing:

Batch processing: Breaking tasks into smaller sub-tasks that can be processed
independently.

Message passing: Communication between nodes through message passing protocols like
MPI.

Shared memory: Multiple nodes accessing a common memory space.

MapReduce: A programming model for processing large datasets in a distributed
manner.

Stream processing: Real-time processing of continuous data streams.

 +-------------+ +-------------+
 | Node 1 | | Node 2 |
 +-------------+ +-------------+

 | |
 +-----------------+ +-----------------+

 | Local Data | | Local Data |
 | Subset | | Subset |
 +-----------------+ +-----------------+

 | |
 +-----------------+ +-----------------+

 | Local Model | | Local Model |
 | Parameters | | Parameters |

 +-----------------+ +-----------------+
 | |

 +-----------------+ +-----------------+
 | Local | | Local |

 | Training | | Training |
 | Algorithm | | Algorithm |
 +-----------------+ +-----------------+

 | |
 +---------------------------------------+

 | Model Synchronization |
 | (Message Passing using MPI) |

 +---------------------------------------+
 | | .

+---------------------------------------+
 | Model Synchronization |

 | (Message Passing using MPI) |
 +---------------------------------------+

 | |
 +-----------------+ +-----------------+

 | Updated Model | | Updated Model |
 | Parameters | | Parameters |

 +-----------------+ +-----------------+
 | |

 +-----------------+ +-----------------+
 | Local | | Local |

 | Training | | Training |
 | Algorithm | | Algorithm |
 +-----------------+ +-----------------+

 | |
 +---------------------------------------+

 | Model Synchronization |
 | (Message Passing using MPI) |

 +---------------------------------------+
 | |

 +-----------------+ +-----------------+
 | Updated Model | | Updated Model |

 | Parameters | | Parameters |
 +-----------------+ +-----------------+

 | |
 . .

The MPI communication, represented by the "Model Synchronization" block, facilitates the exchange of model updates
between nodes. This allows the nodes to aggregate or gather the updates from all other nodes and incorporate them into
their local models.

Example

Distributed File Systems → like HDFS (Hadoop)
Let's consider a scenario where a company uses HDFS for its data storage and processing
needs. The company has a large dataset consisting of customer records, sales data, and
product information.

Fault Tolerance: With HDFS, the company stores multiple replicas of the data across
different nodes. If a node fails, the data is still accessible from other replicas,
ensuring fault tolerance and preventing data loss.

Scalability: As the company's data grows, they can add more nodes to the Hadoop cluster and
distribute the data across these nodes. HDFS scales horizontally, allowing the company to
accommodate the increasing volume of data without compromising performance.

Data Locality: When processing the customer data and performing analytics, HDFS ensures
data locality by storing the data on the same nodes where the computation is performed.
This reduces data transfer over the network and improves overall processing efficiency.

 +----------------------------+
 | Client Node |
 +----------------------------+

 | ^
 Read/Write | | Metadata

 Data Requests | | Operations
 v |

 +----------------------------+
 | NameNode |
 +----------------------------+

 | ^
 Metadata | | Block

 Operations | | Locations
 v |

 +---------------+---------------+
 | DataNode |
 +-------------------------------+

 | ^ |
 Read/Write | Heartbeat and
 Data Blocks | Block Report

 v | |
 +-------------------------------+
 | DataNode |
 +-------------------------------+

 | ^ |
 Read/Write | Heartbeat and
 Data Blocks | Block Report

 v | |
 +-------------------------------+
 | DataNode |
 +-------------------------------+

Example …
Client Node → Represents the entity that interacts with the DFS.

NameNode → Serves as the central metadata server for the DFS handling
metadata operations file creation, deletion, and renaming.

DataNode → Stores and manages the actual data blocks of files in the
DFS

1. Client Node sends read/write requests to the NameNode, including
metadata operations such as file creation or deletion.

2. The NameNode processes the metadata operations and responds to the
client with information about block locations.

3. Client Node then interacts directly with the relevant DataNodes to read
from or write data blocks.

4. DataNodes store and manage the data blocks, sending periodic
heartbeat and block reports to the NameNode to update their status.

5. NameNode keeps track of the metadata, block locations, and overall
health of the system.

challenges & considerations in distributed analysis
While dealing with large amounts of data the primary challenge is that it cannot fit on a single
machine.

Storage Tradeoff:
Storing data entirely in memory yields better performance but is expensive.
Disk storage is cheaper but results in lower performance.

Hybrid Caching:
Combination of SSD flash disks and hard disks for storing data subsets.
Placement of data on appropriate storage medium is crucial.

Distributing Data:
Root-leaf approach for distributing data across thousands of machines.
Each leaf machine holds a portion of the data, results merged at the root.

Latency Impact:
Latency from the slowest machine affects overall performance.
Mitigating latency through optimization techniques is essential.

Overhead in Data Transfer:
Serialization, compression, and encryption introduce overhead.
File format overhead, decryption, and decompression impact performance.

Hardware Support:
Encryption at rest and in motion requires hardware support.
Hardware advancements crucial for efficient distributed analysis.

Serialization and Interpretation:
Data structures are serialized for transmission over a wire.
Receiving machine must interpret the serialized data correctly.

Case Studies
Present a few case studies showcasing the practical
applications of distributed computing in scalable analytics:

Netflix: How distributed computing enables personalized
recommendations at scale.

Twitter: Processing massive streams of real-time data using
distributed systems.

Genome sequencing: Analyzing large genomic datasets to
identify patterns and variations.

Netflix: System Design #1
User Interface (UI) Layer:

The UI layer of Netflix includes various platforms such as
web, mobile apps, and smart TVs.

Design a responsive and user-friendly interface that allows
users to browse and search for content, manage their
profiles, and interact with the platform.

Netflix: System Design #2
Load Balancing and Caching:

Implement a load balancing mechanism to distribute user
requests across multiple servers, ensuring efficient
utilization of resources.

Utilize content delivery networks (CDNs) for caching popular
or frequently accessed content closer to the end-users,
reducing latency and improving streaming performance.

Netflix: System Design #3
Authentication and Authorization:

Implement a secure authentication and authorization system
to handle user login, registration, and user profile
management.

Utilize industry-standard authentication protocols like
OAuth or JSON Web Tokens (JWT) to ensure secure user access.

Netflix: System Design #4
Content Catalog and Metadata Management:

Design a scalable and efficient content catalog system to
store information about movies, TV shows, and other media
content.

Implement a metadata management system to store and manage
associated information such as genres, cast and crew
details, ratings, and user reviews.

Netflix: System Design #5
Recommendation Engine:

Develop a recommendation engine that utilizes machine
learning algorithms to provide personalized content
recommendations based on user preferences, viewing history,
and other factors.

Consider collaborative filtering, content-based filtering,
and hybrid approaches to generate accurate and relevant
recommendations.

 +------------------------------------+
 | User-Item Data |
 +------------------------------------+

 |
 v

 +------------------------------------+
 | Data Partitioning |
 +------------------------------------+

 |
 v

 +-----------------------------+ +-----------------------------+
 | Node 1 | | Node 2 |

 +-----------------------------+ +-----------------------------+
 | |
 v v

 +-----------------------------+ +-----------------------------+
 | Local Similarity | | Local Similarity |

 | Computation | | Computation |
 +-----------------------------+ +-----------------------------+

 | |
 v v

 +-----------------------------+ +-----------------------------+
 | Data Exchange and | | Data Exchange and |

 | Aggregation | | Aggregation |
 +-----------------------------+ +-----------------------------+

 | |
 v v

 +-----------------------------+ +-----------------------------+
 | Recommendation Generation | | Recommendation Generation |

 +-----------------------------+ +-----------------------------+
 | |
 v v

 +---------------------------------------+
 | Result Integration and |

 | Final Recommendations |
 +---------------------------------------+

distributed Collaborative filtering…
In the diagram, the process of making collaborative filtering distributed is
illustrated with two nodes (Node 1 and Node 2) as an example. Here's a
breakdown of the components:

1. User-Item Data: Represents the initial user-item interaction data used for
collaborative filtering.

2. Data Partitioning: The data is partitioned into subsets and distributed
across multiple nodes.

3. Local Similarity Computation: Each node independently computes local
similarities (e.g., cosine similarity) based on the user-item interactions
available on that node.

4. Data Exchange and Aggregation: The computed similarities are
exchanged and aggregated across the nodes to generate a global
similarity matrix.

5. Recommendation Generation: Each node utilizes the global similarity
matrix and the locally available user-item interactions to generate
personalized recommendations for its subset of users.

6. Result Integration and Final Recommendations: The recommendations
generated by each node are integrated to produce the final distributed
recommendations.

Netflix: System Design #6
Content Delivery and Streaming:

Design a scalable and fault-tolerant content delivery system
that can handle high traffic and ensure smooth streaming
across different devices and network conditions.

Utilize adaptive streaming techniques such as Dynamic
Adaptive Streaming over HTTP (DASH) or HTTP Live Streaming
(HLS) to adapt video quality based on available bandwidth.

Netflix: System Design #7
Implement backend services using a microservices
architecture to enable modularity, scalability, and
independent development of different components.

Each microservice can handle specific functionalities such
as user management, billing, content recommendation, and
search.

Netflix: System Design #8
Database and Data Storage:

Use a distributed and scalable database system like Apache
Cassandra or Amazon DynamoDB to store user profiles, viewing
history, and metadata.

Implement caching mechanisms using in-memory databases like
Redis for faster access to frequently accessed data.

Netflix: System Design #9
Analytics and Monitoring:

Incorporate analytics and monitoring tools to gather
insights on user behavior, system performance, and content
popularity.

Utilize tools like Elasticsearch, Logstash, and Kibana (ELK
stack) or similar solutions for log aggregation, analysis,
and visualization.

Netflix: System Design #10
Scalability and Fault Tolerance:

Design the system with horizontal scalability in mind,
allowing easy addition of servers and resources to handle
increasing user demands.

Implement redundancy and replication strategies to ensure
fault tolerance and high availability, utilizing techniques
like data replication across multiple data centers.

Netflix: System Design #11
Security and DRM:

Implement robust security measures to protect user data and
prevent unauthorized access.

Utilize Digital Rights Management (DRM) technologies to
protect copyrighted content from unauthorized distribution
and piracy.

Language Model: A language model is an AI model that learns patterns and relationships in natural language
text, enabling it to generate coherent and contextually relevant text. It captures the probability
distribution of word sequences, predicting the likelihood of the next word given the previous context.

Large Language Model: A large language model refers to a language model with a massive number of parameters,
such as OpenAI's GPT-3. These models are trained on extensive datasets and exhibit impressive language
generation capabilities.

Challenges in Distributed Training and Inference:

1. Computational Resources: Large language models require immense computational power, memory, and
storage. Training and inference across distributed systems necessitate significant hardware resources

2. Communication Overhead: In distributed training, coordinating updates across multiple nodes introduces
communication overhead. Efficient communication protocols and optimized data exchange mechanisms are
essential.

3. Data Synchronization: Ensuring consistent model parameters and synchronization of large amounts of data
across nodes is a challenge.In distributed inference, managing data consistency for parallel processing
can be complex.

4. Scalability: Scaling distributed training and inference to accommodate growing model sizes and datasets
is crucial. Load balancing and resource allocation need to be optimized for efficient scalability.

 Language Models and Challenges in Distributed Training and Inference

Training Large Language Models
Optimization of training and inference processes in the
context of Transformers, a popular deep learning
architecture. The aim is to achieve efficient computation
with low latency by distributing the workload across
multiple machines and optimizing caching mechanisms.

 Encoder Decoder
 +------------------+ +------------------+
 | Input | | Output |

 | Embedding | | Embedding |
 +------------------+ +------------------+

 | |
 +--------+ +--------+

 | | | |
 | Encoder| | Decoder|
 | Layers | | Layers |

 | | | |
 +--------+ +--------+

 | |
 +--------------+ +--------------+

 | Multi-head | | Multi-head |
 | Attention | | Attention |
 +--------------+ +--------------+

 | |
 +--------+ +--------+

 | | | |
 | Feed | | Feed |

 | Forward| | Forward|
 | NN | | NN |

 | | | |
 +--------+ +--------+

 | |
 +--------------------------------+

 |
 +-----------+
 | Linear |
 | Layer |
 +-----------+

Transformers …
1. Input Embedding: At the beginning of the encoder and decoder, the input sequence is

transformed into a dense vector representation called word embeddings.

2. Encoder Layers: The encoder is made up of multiple identical layers. Each layer has two
sub-layers: a multi-head self-attention mechanism and a feed-forward neural network
(FFNN). The self-attention mechanism allows the model to weigh the importance of
different words in the input sequence. The FFNN processes the attention outputs.

3. Multi-head Attention: The multi-head attention layer is a key component of the
transformer model. It consists of multiple parallel attention mechanisms called "attention
heads." Each attention head attends to different parts of the input sequence and learns
different aspects of the relationships between words.

4. Feed Forward NN: The feed-forward neural network is a fully connected network with a
couple of linear layers and a non-linear activation function (typically ReLU). It processes
the output of the multi-head attention layer.

5. Decoder Layers: The decoder also consists of multiple identical layers. In addition to the
self-attention and feed-forward sub-layers present in the encoder, the decoder has an
additional sub-layer of multi-head attention over the encoder's output. This allows the
decoder to focus on different parts of the input sequence during the decoding process.

6. Output Linear Layer: The final output of the decoder is passed through a linear layer,
followed by a softmax activation, to generate the output probabilities or scores.

 +--------------------+
 | Feed-Forward |
 | Neural Network |

 +--------------------+
 |

 +--------------------+
 | Transformer |
 | Decoder |
 +--------------------+

 |
 +--------------------+
 | Attention |

 | Mechanism |
 +--------------------+

 |
 +--------------------+

 | Feed-Forward |
 | Neural Network |

 +--------------------+
 |

 +--------------------+
 | Linear Layer |
 +--------------------+

 |
 +----------------------------+

 | Probability Distribution |
 | over Vocabulary |

 +----------------------------+
 |

 +------------------+
 | Generated Text |

 +------------------+

GPT(Generative Pre-trained Transformer)
+--+

| Input Text |
+--+

 |
 +--------------------+

 | Tokenization |
 +--------------------+

 |
 +--------------------+

 | Transformer |
 | Encoder |
 +--------------------+

 |
 +--------------------+
 | Attention |

 | Mechanism |
 +--------------------+

 |
 +--------------------+

 | Feed-Forward |
 | Neural Network |

 +--------------------+
 |

How can we Parallelize GPTs…
The parallelization of the GPT architecture can be achieved by utilizing techniques such as model
parallelism and data parallelism. Let's discuss each approach:

Model Parallelism: Model parallelism involves distributing the model across multiple devices or
machines. In the case of GPT, where the model consists of stacked transformer layers, each layer
can be allocated to different devices. This allows for parallel computation of different layers,
reducing the overall training or inference time. Model parallelism can be particularly useful when
dealing with very large models that cannot fit into a single device's memory.

Data Parallelism: Data parallelism involves dividing the data into multiple subsets and processing
them simultaneously on different devices. In the context of GPT, the training data can be
partitioned into smaller batches, and each batch is processed by a separate device or machine. The
gradients calculated on each device are then synchronized and aggregated to update the model
parameters. Data parallelism enables faster training by parallelizing the computation across
multiple devices.

Benefits of Distributed Computing for Large Language Models
The benefits of using distributed computing for large language
models:

Scalability: Distributed computing enables efficient scaling of
resources to handle large-scale training and inference workloads.

Speed: Parallel processing across multiple nodes reduces the time
required for training and inference tasks.

Fault tolerance: Distributed systems provide resilience by
replicating data and computations across multiple nodes, ensuring
uninterrupted operation even in the face of failures

Real-world Applications
Present examples of real-world applications where distributed
computing is used for large language models:

Language translation: Distributed computing facilitates the training
and serving of language translation models that can handle large
volumes of text.

Content generation: Distributed language models enable the
generation of coherent and contextually relevant content for various
applications, such as chatbots or content personalization.

Sentiment analysis: Large language models distributed across
multiple nodes can process and analyze vast amounts of text data to
derive sentiment insights.

Considerations and Challenges
Considerations and challenges associated with distributed computing
for large language models:

Data synchronization: Ensuring consistency and synchronization of
data across distributed nodes.

Communication overhead: Efficient communication and coordination
between nodes to minimize latency and optimize performance.

Resource management: Proper allocation and management of
computational resources across the distributed system.

Q & A

