
Topic 4: Dataflow Systems

Chapter 2.2 of MLSys Book

Rod Albuyeh

1

DSC 102
Systems for Scalable Analytics

2

Outline

❖ Beyond RDBMSs: A Brief History
❖ MapReduce/Hadoop Craze
❖ Spark and Dataflow Programming
❖ Scalable BGD with MapReduce/Spark
❖ Dataflow Systems vs Task-Parallel Systems

Q: How can users be shielded
from needing to think
about moving raw pages
between disk/RAM/network
to scale data-intensive programs?

3

4

Parallel RDBMSs

❖ Parallel RDBMSs are highly successful and widely used
❖ Typically shared-nothing data parallelism
❖ Optimized runtime performance + enterprise-grade features:

❖ ANSI SQL & more
❖ Business Intelligence (BI) dashboards/APIs
❖ Transaction management; crash recovery
❖ Indexes, auto-tuning, etc.

Q: So, why did people need to go beyond parallel RDBMSs?

Take CSE 132C for more on parallel RDBMSs

5

Beyond RDBMSs: A Brief History

❖ 4 new concerns of Web giants vs RDBMSs built for enterprises:

❖ Developability: Custom data models and computations hard to
program on SQL/RDBMSs; need for simpler APIs

❖ Fault Tolerance: Need to scale to 1000s of machines; need for
graceful handling of worker failure

❖ Elasticity: Need to be able to easily upsize or downsize cluster size
based on workload

❖ Cost: Commercial RDBMSs licenses too costly; hired own software
engineers to build custom new systems

❖ DB folks got blindsided by the rise of Web/Internet giants

A new breed of parallel data systems
called Dataflow Systems jolted the DB
folks from being complacent!

6

7

Outline

❖ Beyond RDBMSs: A Brief History
❖ MapReduce/Hadoop Craze
❖ Spark and Dataflow Programming
❖ Scalable BGD with MapReduce/Spark
❖ Dataflow Systems vs Task-Parallel Systems

8

What is MapReduce?

❖ A programming model for parallel programs on sharded data +
distributed system architecture

❖ Map and Reduce are terms from functional PL; software/data/ML
engineer implements logic of Map, Reduce

❖ System handles data distribution, parallelization, fault tolerance,
etc. under the hood

❖ Created by Google to solve “simple” data workload: index, store,
and search the Web!

❖ Google’s engineers started with MySQL! Abandoned it due to
reasons listed earlier (developability, fault tolerance, elasticity, etc.)

https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf

9

What is MapReduce?

❖ Standard example: count word occurrences in a doc corpus
❖ Input: A set of text documents (say, webpages)
❖ Output: A dictionary of unique words and their counts

function map (String docname, String doctext) :
 for each word w in doctext :
 emit (w, 1)
function reduce (String word, Iterator partialCounts) :
 sum = 0
 for each pc in partialCounts :
 sum += pc
 emit (word, sum)

Part of MapReduce API

10

How MapReduce Works

Parallel flow of control and data during MapReduce execution:

Under the hood, each Mapper and Reducer is a separate process;
Reducers face barrier synchronization (BSP)

Fault tolerance achieved using data replication

11

Benefits and Catch of MapReduce

❖ Goal: High-level functional ops to simplify data-intensive programs

❖ Key Benefits:

❖ Map() and Reduce() are highly general; any data types/structures;
great for ETL, text/multimedia

❖ Native scalability, large cluster parallelism

❖ System handles fault tolerance automatically

❖ Decent FOSS stacks (Hadoop and later, Spark)

❖ Catch: Users must learn “art” of casting program as MapReduce

❖ Map operates record-wise; Reduce aggregates globally

❖ But MR libraries now available in many PLs: C/C++, Java, Python,
R, Scala, etc.

12

Abstract Semantics of MapReduce

❖ Map(): Process one “record” at a time independently

❖ A record can physically batch multiple data examples/tuples

❖ Dependencies across Mappers not allowed

❖ Emit 1 or more key-value pairs as output(s)

❖ Data types of input vs. output can be different

❖ Reduce(): Gather all Map outputs across workers sharing same key into
an Iterator (list)

❖ Apply aggregation function on Iterator to get final output(s)

❖ Input Split:
❖ Physical-level shard to batch many records to one file “block” (HDFS

default: 128MB?)

❖ User/application can create custom Input Splits

13

Emulate MapReduce in SQL?

Q: How would you do the word counting in RDBMS / in SQL?
❖ First step: Transform text docs into relations and load:
 Part of the ETL stage

 Suppose we pre-divide each doc into words w/ schema:

DocWords (DocName, Word)
❖ Second step: a single, simple SQL query!

SELECT Word, COUNT (*)
FROM DocWords
GROUP BY Word
[ORDER BY Word]

Parallelism, scaling, etc. done
by RDBMS under the hood

14

More MR Examples: Select Operation

❖ Input Split:
❖ Shard table tuple-wise

❖ Map():
❖ On tuple, apply selection condition;
 if satisfies, emit key-value (KV) pair
 with dummy key, entire tuple as value

❖ Reduce():
❖ Not needed! No cross-shard aggregation here

❖ These kinds of MR jobs are called “Map-only” jobs

15

More MR Examples: Simple Agg.

❖ Suppose it is algebraic aggregate (SUM, AVG, MAX, etc.)
❖ Input Split:

❖ Shard table tuple-wise
❖ Map():

❖ On agg. attribute, compute incr. stats;
 emit pair with single global dummy key
 and incr. stats as value

❖ Reduce():
❖ Since only one global dummy key, Iterator has all sufficient

stats to unify into global agg.

16

More MR Examples: GROUP BY Agg.

❖ Assume it is algebraic aggregate (SUM, AVG, MAX, etc.)
❖ Input Split:

❖ Shard table tuple-wise
❖ Map():

❖ On agg. attribute, compute incr. stats;
 emit pair with grouping attribute as key
 and stats as value

❖ Reduce():
❖ Iterator has all suff. stats for a single group;
 unify those to get result for that group
❖ Different reducers will output different groups’ results

17

More MR Examples: Matrix Sum of
Squares

❖ Very similar to simple SQL aggregates
❖ Input Split:

❖ Shard table tuple-wise
❖ Map():

❖ On agg. attribute, compute incr. stats;
 emit pair with single global dummy key
and stats as value

❖ Reduce():
❖ Since only one global dummy key,
 Iterator has all sufficient stats to unify into global agg.

18

What is Hadoop then?

❖ FOSS system implementation with
q MapReduce as programming model, and
q HDFS as filesystem

❖ MR user API; input splits, data distribution, shuffling, and fault
tolerances handled by Hadoop under the hood

❖ Exploded in popularity in 2010s: 100s of papers, 10s of products
❖ A “revolution” in scalable+parallel data processing that took the

DB world by surprise
❖ But nowadays Hadoop largely supplanted by Spark

Note: Do not confuse MR for Hadoop or vice versa!

