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Q: How can users be shielded
from needing to think
about moving raw pages
between disk/RAM/network
to scale data-intensive programs?



Parallel RDBMSs

Parallel RDBMSs are highly successful and widely used
Typically shared-nothing data parallelism

Optimized runtime performance + enterprise-grade features:
ANSI SQL & more

Business Intelligence (Bl) dashboards/APls
Transaction management; crash recovery
Indexes, auto-tuning, etc.

Q: So, why did people need to go beyond parallel RDBMSs?

Take CSE 132C for more on parallel RDBMSs 4



Beyond RDBMSs: A Brief History

DB folks got blindsided by the rise of Web/Internet giants
Google amazon

4 new concerns of Web giants vs RDBMSs built for enterprises:

Developability: Custom data models and computations hard to
program on SQL/RDBMSs; need for simpler APIs

Fault Tolerance: Need to scale to 1000s of machines; need for
graceful handling of worker failure

Elasticity: Need to be able to easily upsize or downsize cluster size
based on workload

Cost: Commercial RDBMSs licenses too costly; hired own software

engineers to build custom new systems i



A new breed of parallel data systems
called Dataflow Systems jolted the DB
folks from being complacent!
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What is MapReduce?

A programming model for parallel programs on sharded data +
distributed system architecture

Map and Reduce are terms from functional PL; software/data/ML
engineer implements logic of Map, Reduce

System handles data distribution, parallelization, fault tolerance,
etc. under the hood

Created by Google to solve “simple” data workload: index, store,
and search the Web!

Google’s engineers started with MySQL! Abandoned it due to
reasons listed earlier (developability, fault tolerance, elasticity, etc.)

https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdiO4.pdf 8



What is MapReduce?

Standard example: count word occurrences in a doc corpus
Input: A set of text documents (say, webpages)
Output: A dictionary of unique words and their counts

function map (String dochname, String doctext) :

doctext :

for each wor
emit $w—H
function reduce (&tri

Part of MapReduce API
erator partialCounts) :

sum =20
for each pc jr partialCounts :
m += pcC

emit (word, sum)



How MapReduce Works

Parallel flow of control and data during MapReduce execution:

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result
Bear, 1 » Bear, 2 N
‘ Deer, 1 » Bear, 1
Deer Bear River Bear, 1
River, 1
Car, 1
Car, 1 » Car, 3 » Bear, 2
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River ——w» CarCarRiver —»{ Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer, 1 » Deer, 2 .
Deer, 1
Deer, 1
Deer Car Bear Car, 1 /
Bear,1 | River, 1 » River,2 |-
River, 1

Under the hood, each Mapper and Reducer is a separate process;
Reducers face barrier synchronization (BSP)

Fault tolerance achieved using data replication 10



Benefits and Catch of MapReduce

Goal: High-level functional ops to simplify data-intensive programs
Key Benefits:

Map() and Reduce() are highly general; any data types/structures;
great for ETL, text/multimedia

Native scalability, large cluster parallelism
System handles fault tolerance automatically
Decent FOSS stacks (Hadoop and later, Spark)
Catch: Users must learn “art” of casting program as MapReduce
Map operates record-wise; Reduce aggregates globally

But MR libraries now available in many PLs: C/C++, Java, Python,

R, Scala, etc.
11



Abstract Semantics of MapReduce

Map(): Process one “record” at a time independently
A record can physically batch multiple data examples/tuples
Dependencies across Mappers not allowed
Emit 1 or more key-value pairs as output(s)
Data types of input vs. output can be different

Reduce(): Gather all Map outputs across workers sharing same key into
an lterator (list)

Apply aggregation function on lterator to get final output(s)
Input Split:

Physical-level shard to batch many records to one file “block” (HDFS
default: 128MB?)

User/application can create custom Input Splits
12



Emulate MapReduce in SQL?

Q: How would you do the word counting in RDBMS / in SQL?
First step: Transform text docs into relations and load:
Part of the ETL stage
Suppose we pre-divide each doc into words w/ schema:

DocWords (DocName, Word)
Second step: a single, simple SQL query!
SELECT Word, COUNT (%)
FROM DocWords

GROUP BY Word
[ORDER BY Word]

Parallelism, scaling, etc. done
by RDBMS under the hood
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More MR Examples: Select Operation

Input Split:

Shard table tuple-wise
Map():

On tuple, apply selection condition;

if satisfies, emit key-value (KV) pair

with dummy key, entire tuple as value
Reduce():

Not needed! No cross-shard aggregation here
These kinds of MR jobs are called “Map-only” jobs
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More MR Examples: Simple Agqg.

Suppose it is algebraic aggregate (SUM, AVG, MAX, etc.)
Input Split:
Shard table tuple-wise
Map():
On agg. attribute, compute incr. stats;
emit pair with single global dummy key
and incr. stats as value
Reduce():

Since only one global dummy key, Iterator has all sufficient
stats to unify into global agg.
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More MR Examples: GROUP BY Agg.

Assume it is algebraic aggregate (SUM, AVG, MAX, etc.)
Input Split:
Shard table tuple-wise
Map():
On agg. attribute, compute incr. stats;
emit pair with grouping attribute as key
and stats as value
Reduce():
Iterator has all suff. stats for a single group;
unify those to get result for that group

Different reducers will output different groups’ results
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More MR Examples: Matrix Sum of

Sqguares

Very similar to simple SQL aggregates
Input Split:
Shard table tuple-wise
Map():
On agg. attribute, compute incr. stats;
emit pair with single global dummy key
and stats as value
Reduce():
Since only one global dummy key,
Iterator has all sufficient stats to unify into global agg.
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What is Hadoop then?

FOSS system implementation with

MapReduce as programming model, and

HDFS as filesystem
MR user API; input splits, data distribution, shuffling, and fault
tolerances handled by Hadoop under the hood
Exploded in popularity in 2010s: 100s of papers, 10s of products
A “revolution” in scalable+parallel data processing that took the
DB world by surprise
But nowadays Hadoop largely supplanted by Spark

Note: Do not confuse MR for Hadoop or vice versa!
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