UCSan Diego

DSC 102
Systems for Scalable Analytics

Rod Albuyeh

Topic 4: Dataflow Systems

Chapter 2.2 of MLSys Book

Outline

Beyond RDBMSs: A Brief History
MapReduce/Hadoop Craze

Spark and Dataflow Programming
Scalable BGD with MapReduce/Spark

Dataflow Systems vs Task-Parallel Systems

Q: How can users be shielded
from needing to think
about moving raw pages
between disk/RAM/network
to scale data-intensive programs?

Parallel RDBMSs

Parallel RDBMSs are highly successful and widely used
Typically shared-nothing data parallelism

Optimized runtime performance + enterprise-grade features:
ANSI SQL & more

Business Intelligence (Bl) dashboards/APls
Transaction management; crash recovery
Indexes, auto-tuning, etc.

Q: So, why did people need to go beyond parallel RDBMSs?

Take CSE 132C for more on parallel RDBMSs 4

Beyond RDBMSs: A Brief History

DB folks got blindsided by the rise of Web/Internet giants
Google amazon

4 new concerns of Web giants vs RDBMSs built for enterprises:

Developability: Custom data models and computations hard to
program on SQL/RDBMSs; need for simpler APIs

Fault Tolerance: Need to scale to 1000s of machines; need for
graceful handling of worker failure

Elasticity: Need to be able to easily upsize or downsize cluster size
based on workload

Cost: Commercial RDBMSs licenses too costly; hired own software

engineers to build custom new systems i

A new breed of parallel data systems
called Dataflow Systems jolted the DB
folks from being complacent!

Outline

Beyond RDBMSs: A Brief History

= » MapReduce/Hadoop Craze
Spark and Dataflow Programming
Scalable BGD with MapReduce/Spark

Dataflow Systems vs Task-Parallel Systems

What is MapReduce?

A programming model for parallel programs on sharded data +
distributed system architecture

Map and Reduce are terms from functional PL; software/data/ML
engineer implements logic of Map, Reduce

System handles data distribution, parallelization, fault tolerance,
etc. under the hood

Created by Google to solve “simple” data workload: index, store,
and search the Web!

Google’s engineers started with MySQL! Abandoned it due to
reasons listed earlier (developability, fault tolerance, elasticity, etc.)

https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdiO4.pdf 8

What is MapReduce?

Standard example: count word occurrences in a doc corpus
Input: A set of text documents (say, webpages)
Output: A dictionary of unique words and their counts

function map (String dochname, String doctext) :

doctext :

for each wor
emit $w—H
function reduce (&tri

Part of MapReduce API
erator partialCounts) :

sum =20
for each pc jr partialCounts :
m += pcC

emit (word, sum)

How MapReduce Works

Parallel flow of control and data during MapReduce execution:

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result
Bear, 1 » Bear, 2 N
‘ Deer, 1 » Bear, 1
Deer Bear River Bear, 1
River, 1
Car, 1
Car, 1 » Car, 3 » Bear, 2
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River ——w» CarCarRiver —»{ Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer, 1 » Deer, 2 .
Deer, 1
Deer, 1
Deer Car Bear Car, 1 /
Bear,1 | River, 1 » River,2 |-
River, 1

Under the hood, each Mapper and Reducer is a separate process;
Reducers face barrier synchronization (BSP)

Fault tolerance achieved using data replication 10

Benefits and Catch of MapReduce

Goal: High-level functional ops to simplify data-intensive programs
Key Benefits:

Map() and Reduce() are highly general; any data types/structures;
great for ETL, text/multimedia

Native scalability, large cluster parallelism
System handles fault tolerance automatically
Decent FOSS stacks (Hadoop and later, Spark)
Catch: Users must learn “art” of casting program as MapReduce
Map operates record-wise; Reduce aggregates globally

But MR libraries now available in many PLs: C/C++, Java, Python,

R, Scala, etc.
11

Abstract Semantics of MapReduce

Map(): Process one “record” at a time independently
A record can physically batch multiple data examples/tuples
Dependencies across Mappers not allowed
Emit 1 or more key-value pairs as output(s)
Data types of input vs. output can be different

Reduce(): Gather all Map outputs across workers sharing same key into
an lterator (list)

Apply aggregation function on lterator to get final output(s)
Input Split:

Physical-level shard to batch many records to one file “block” (HDFS
default: 128MB?)

User/application can create custom Input Splits
12

Emulate MapReduce in SQL?

Q: How would you do the word counting in RDBMS / in SQL?
First step: Transform text docs into relations and load:
Part of the ETL stage
Suppose we pre-divide each doc into words w/ schema:

DocWords (DocName, Word)
Second step: a single, simple SQL query!
SELECT Word, COUNT (%)
FROM DocWords

GROUP BY Word
[ORDER BY Word]

Parallelism, scaling, etc. done
by RDBMS under the hood

13

More MR Examples: Select Operation

Input Split:

Shard table tuple-wise
Map():

On tuple, apply selection condition;

if satisfies, emit key-value (KV) pair

with dummy key, entire tuple as value
Reduce():

Not needed! No cross-shard aggregation here
These kinds of MR jobs are called “Map-only” jobs

14

More MR Examples: Simple Agqg.

Suppose it is algebraic aggregate (SUM, AVG, MAX, etc.)
Input Split:
Shard table tuple-wise
Map():
On agg. attribute, compute incr. stats;
emit pair with single global dummy key
and incr. stats as value
Reduce():

Since only one global dummy key, Iterator has all sufficient
stats to unify into global agg.

15

More MR Examples: GROUP BY Agg.

Assume it is algebraic aggregate (SUM, AVG, MAX, etc.)
Input Split:
Shard table tuple-wise
Map():
On agg. attribute, compute incr. stats;
emit pair with grouping attribute as key
and stats as value
Reduce():
Iterator has all suff. stats for a single group;
unify those to get result for that group

Different reducers will output different groups’ results

16

More MR Examples: Matrix Sum of

Sqguares

Very similar to simple SQL aggregates
Input Split:
Shard table tuple-wise
Map():
On agg. attribute, compute incr. stats;
emit pair with single global dummy key
and stats as value
Reduce():
Since only one global dummy key,
Iterator has all sufficient stats to unify into global agg.

17

What is Hadoop then?

FOSS system implementation with

MapReduce as programming model, and

HDFS as filesystem
MR user API; input splits, data distribution, shuffling, and fault
tolerances handled by Hadoop under the hood
Exploded in popularity in 2010s: 100s of papers, 10s of products
A “revolution” in scalable+parallel data processing that took the
DB world by surprise
But nowadays Hadoop largely supplanted by Spark

Note: Do not confuse MR for Hadoop or vice versa!

18

