
Topic 4: Dataflow Systems

Rod Albuyeh

1

DSC 102
Systems for Scalable Analytics



2

Outline

❖ Beyond RDBMSs: A Brief History
❖ MapReduce/Hadoop Craze
❖ Spark and Dataflow Programming
❖ Scalable BGD with MapReduce/Spark
❖ Dataflow Systems vs Task-Parallel Systems



3

Apache Spark

❖ Dataflow programming model (subsumes most of Relational 
Algebra; MR)
❖ Inspired by Python Pandas style of chaining functions
❖ Unified storage of relations, text, etc.; custom programs
❖ Custom design (and redesign) from scratch

❖ Tons of sponsors, gazillion bucks, unbelievable hype!
❖ Key idea vs Hadoop: exploit distributed memory to cache data
❖ Key novelty vs Hadoop: lineage-based fault tolerance
❖ Open-sourced to Apache; commercialized as Databricks



4

Distributed Architecture of Spark

https://spark.apache.org/docs/latest/cluster-overview.html

https://spark.apache.org/docs/latest/cluster-overview.html


5

Resilient Distributed Datasets
Key concept in Spark. 
❖ RDD has been the primary user-facing API in Spark since its 

inception. At the core an RDD is an immutable distributed 
collection of elements of your data,
❖ partitioned across nodes in your cluster 
❖ that can be operated in parallel with a low-level API that offers 

transformations and actions.

❖ Good for dataset low-level transformation, actions and control.
❖ Good for unstructured data.
❖ Good for functional programming data manipulation.
❖ Not recommended for imposing a schema on your data.
❖ Lacks some optimization and performance benefits



6

Spark’s Dataflow Programming Model

Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing. In NSDI 2012

Transformations are relational ops, MR, etc. as functions
Actions are what force computation; aka lazy evaluation

https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf


7

Word Count Example in Spark
Spark Resilient Distributed Dataset (RDD) API

available in Python, Scala, Java, and R

Spark DataFrame API of SparkSQL offers an SQL interface
Can also interleave SQL with DF-style function chaining!



8

Spark DF API and SparkSQL

❖ Databricks now recommends SparkSQL/DataFrame API; avoid RDD API 
unless really needed!

❖ Key Reason: Automatic query optimization becomes more feasible



9

Query Optimization in Spark

❖ Common automatic query optimizations (from RDBMS world) are 
now performed in Spark’s Catalyst optimizer:

❖ Projection pushdown: 
❖ Drop unneeded columns early on

❖ Selection pushdown: 
❖ Apply predicates close to base tables

❖ Join order optimization:
❖ Not all joins are equally costly

❖ Fusing of aggregates
❖ …

CSE 132C has more on relational query optimization



10

Databricks is building yet another parallel RDBMS! :)

Query Optimization in Spark



11

Reinventing the Wheel?



12

Comparing Spark’s APIs

RDD DataFrame Koalas

Abstraction Level Low High High

Named Columns No Yes Yes

Support for Query 
Optimization No Yes Yes

Programming 
Mode map-reduce Dataflow, SQL Pandas-like

Best suited for

Unstructured data
Low-level ops
Folks who like 
func. PLs and 
MapReduce

Structured data
High-level ops
Folks who know 
SQL, Python, R

Structured data
Lower barrier to entry 
for folks who only 
know Pandas or Dask

A rough comparison of
RDD, DataFrames and Koalas (databricks pandas-like module)

DSC 291 offers more about Spark programming



13The Berkeley Data Analytics Stack (BDAS)

Spark-based Ecosystem of Tools



14

New Paradigm of Data “Lakehouse”

❖ Data “Lake”: Loose coupling of data file format and data/query 
processing stack (vs RDBMS’s tight coupling); many frontends

If interested, check out this vision paper on the future of data lakes and data lakehouses:
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf 

http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf


15

References and More Material

❖ MapReduce/Hadoop:
❖ MapReduce: Simplified Data Processing on Large Clusters. 

Jeffrey Dean and Sanjay Ghemawat. In OSDI 2004.
❖ More Examples: http://bit.ly/2rkSRj8
❖ Online Tutorial: http://bit.ly/2rS2B5j

❖ Spark:
❖ Resilient Distributed Datasets: A Fault-tolerant Abstraction for 

In-memory Cluster Computing. Matei Zaharia and others. In 
NSDI 2012.

❖ More Examples: http://bit.ly/2rhkhEp, http://bit.ly/2rkT8Tc
❖ Online Guide: https://spark.apache.org/docs/2.1.0/sql-

programming-guide.html

https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf
http://bit.ly/2rkSRj8
http://bit.ly/2rS2B5j
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
http://bit.ly/2rhkhEp
http://bit.ly/2rkT8Tc
https://spark.apache.org/docs/2.1.0/sql-programming-guide.html
https://spark.apache.org/docs/2.1.0/sql-programming-guide.html


16

Outline

❖ Beyond RDBMSs: A Brief History
❖ MapReduce/Hadoop Craze
❖ Spark and Dataflow Programming
❖ Scalable BGD with MapReduce/Spark
❖ Dataflow Systems vs Task-Parallel Systems



17

Example: Batch Gradient Descent

❖ Very similar to algebraic SQL; vector addition
❖ Input Split: Shard table tuple-wise
❖ Map(): 

❖ On tuple, compute per-example gradient; add these across 
examples in shard; emit partial sum with single dummy key

❖ Reduce(): 
❖ Only one global dummy key, Iterator has partial gradients; just 

add all those to get full batch gradient



18

Outline

❖ Beyond RDBMSs: A Brief History
❖ MapReduce/Hadoop Craze
❖ Spark and Dataflow Programming
❖ More Scalable ML with MapReduce/Spark
❖ Dataflow Systems vs Task-Parallel Systems



19

Dataflow Systems vs Task-Par. Sys.

❖ Pros:

❖ Cons:



20

Specific to Spark vs Dask?

❖ Pros:

❖ Cons:



21

We’ll talk about deployment in some 
detail next week, but how does this stuff 
fit in with model deployment? 



22

Optional: More complex examples of 
MapReduce usage to scale ML
Not included in syllabus



23

Primer: K-Means Clustering

❖ Basic Idea: Identify clusters based on Euclidean distances; 
formulated as an optimization problem

❖ Llyod’s algorithm: Most popular heuristic for K-Means
❖ Input: n x d examples/points

❖ Output: k clusters and their centroids

1. Initialize k centroid vectors and point-cluster ID assignment
2. Assignment step: Scan dataset and assign each point to a cluster 

ID based on which centroid is nearest
3. Update step: Given new assignment, scan dataset again to 

recompute centroids for all clusters
4. Repeat 2 and 3 until convergence or fixed # iterations 



24

K-Means Clustering in MapReduce

❖ Input Split: Shard the table tuple-wise
❖ Assume each tuple/example/point has an ExampleID

❖ Need 2 jobs! 1 for Assignment step, 1 for Update step
❖ 2 external data structures needed for both jobs: 

❖ Dense matrix A: k x d centroids; ultra-sparse matrix B: n x k 
assignments

❖ A and B first broadcast to all Mappers via HDFS; Mappers can 
read small data directly from HDFS files

❖ Job 1 read A and creates new B
❖ Job 2 reads B and creates new A



25

K-Means Clustering in MapReduce

❖ A: k x d centroid matrix; B: n x k assignment matrix
❖ Job 1 Map(): Read A from HDFS; compute point’s distance to all k 

centroids; get nearest centroid; emit new assignment as output pair 
(PointID, ClusterID)

❖ No Reduce() for Job 1; new B now available on HDFS
❖ Job 2 Map(): Read B from HDFS; look into B and see which cluster 

point got assigned to; emit point as output pair (ClusterID, point 
vector)

❖ Job 2 Reduce(): Iterator has all point vectors of a given ClusterID; 
add them up and divide by count; got new centroid; emit output pair 
as (ClusterID, centroid vector)

Take DSC 291 for more about writing MR/Spark programs


