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Outline

❖ Beyond RDBMSs: A Brief History
❖ MapReduce/Hadoop Craze
❖ Spark and Dataflow Programming
❖ Scalable BGD with MapReduce/Spark
❖ Dataflow Systems vs Task-Parallel Systems
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Apache Spark

❖ Dataflow programming model (subsumes most of Relational 
Algebra; MR)
❖ Inspired by Python Pandas style of chaining functions
❖ Unified storage of relations, text, etc.; custom programs
❖ Custom design (and redesign) from scratch

❖ Tons of sponsors, gazillion bucks, unbelievable hype!
❖ Key idea vs Hadoop: exploit distributed memory to cache data
❖ Key novelty vs Hadoop: lineage-based fault tolerance
❖ Open-sourced to Apache; commercialized as Databricks
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Distributed Architecture of Spark

https://spark.apache.org/docs/latest/cluster-overview.html

https://spark.apache.org/docs/latest/cluster-overview.html
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Resilient Distributed Datasets
Key concept in Spark. 
❖ RDD has been the primary user-facing API in Spark since its 

inception. At the core an RDD is an immutable distributed 
collection of elements of your data,
❖ partitioned across nodes in your cluster 
❖ that can be operated in parallel with a low-level API that offers 

transformations and actions.

❖ Good for dataset low-level transformation, actions and control.
❖ Good for unstructured data.
❖ Good for functional programming data manipulation.
❖ Not recommended for imposing a schema on your data.
❖ Lacks some optimization and performance benefits
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Spark’s Dataflow Programming Model

Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing. In NSDI 2012

Transformations are relational ops, MR, etc. as functions
Actions are what force computation; aka lazy evaluation

https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
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Word Count Example in Spark
Spark Resilient Distributed Dataset (RDD) API

available in Python, Scala, Java, and R

Spark DataFrame API of SparkSQL offers an SQL interface
Can also interleave SQL with DF-style function chaining!
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Spark DF API and SparkSQL

❖ Databricks now recommends SparkSQL/DataFrame API; avoid RDD API 
unless really needed!

❖ Key Reason: Automatic query optimization becomes more feasible
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Query Optimization in Spark

❖ Common automatic query optimizations (from RDBMS world) are 
now performed in Spark’s Catalyst optimizer:

❖ Projection pushdown: 
❖ Drop unneeded columns early on

❖ Selection pushdown: 
❖ Apply predicates close to base tables

❖ Join order optimization:
❖ Not all joins are equally costly

❖ Fusing of aggregates
❖ …

CSE 132C has more on relational query optimization
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Databricks is building yet another parallel RDBMS! :)

Query Optimization in Spark
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Reinventing the Wheel?
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Comparing Spark’s APIs

RDD DataFrame Koalas

Abstraction Level Low High High

Named Columns No Yes Yes

Support for Query 
Optimization No Yes Yes

Programming 
Mode map-reduce Dataflow, SQL Pandas-like

Best suited for

Unstructured data
Low-level ops
Folks who like 
func. PLs and 
MapReduce

Structured data
High-level ops
Folks who know 
SQL, Python, R

Structured data
Lower barrier to entry 
for folks who only 
know Pandas or Dask

A rough comparison of
RDD, DataFrames and Koalas (databricks pandas-like module)

DSC 291 offers more about Spark programming



13The Berkeley Data Analytics Stack (BDAS)

Spark-based Ecosystem of Tools
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New Paradigm of Data “Lakehouse”

❖ Data “Lake”: Loose coupling of data file format and data/query 
processing stack (vs RDBMS’s tight coupling); many frontends

If interested, check out this vision paper on the future of data lakes and data lakehouses:
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf 

http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
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References and More Material

❖ MapReduce/Hadoop:
❖ MapReduce: Simplified Data Processing on Large Clusters. 

Jeffrey Dean and Sanjay Ghemawat. In OSDI 2004.
❖ More Examples: http://bit.ly/2rkSRj8
❖ Online Tutorial: http://bit.ly/2rS2B5j

❖ Spark:
❖ Resilient Distributed Datasets: A Fault-tolerant Abstraction for 

In-memory Cluster Computing. Matei Zaharia and others. In 
NSDI 2012.

❖ More Examples: http://bit.ly/2rhkhEp, http://bit.ly/2rkT8Tc
❖ Online Guide: https://spark.apache.org/docs/2.1.0/sql-

programming-guide.html

https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf
http://bit.ly/2rkSRj8
http://bit.ly/2rS2B5j
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
http://bit.ly/2rhkhEp
http://bit.ly/2rkT8Tc
https://spark.apache.org/docs/2.1.0/sql-programming-guide.html
https://spark.apache.org/docs/2.1.0/sql-programming-guide.html
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Outline

❖ Beyond RDBMSs: A Brief History
❖ MapReduce/Hadoop Craze
❖ Spark and Dataflow Programming
❖ Scalable BGD with MapReduce/Spark
❖ Dataflow Systems vs Task-Parallel Systems
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Example: Batch Gradient Descent

❖ Very similar to algebraic SQL; vector addition
❖ Input Split: Shard table tuple-wise
❖ Map(): 

❖ On tuple, compute per-example gradient; add these across 
examples in shard; emit partial sum with single dummy key

❖ Reduce(): 
❖ Only one global dummy key, Iterator has partial gradients; just 

add all those to get full batch gradient
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Outline

❖ Beyond RDBMSs: A Brief History
❖ MapReduce/Hadoop Craze
❖ Spark and Dataflow Programming
❖ More Scalable ML with MapReduce/Spark
❖ Dataflow Systems vs Task-Parallel Systems
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Dataflow Systems vs Task-Par. Sys.

❖ Pros:

❖ Cons:
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Specific to Spark vs Dask?

❖ Pros:

❖ Cons:
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We’ll talk about deployment in some 
detail next week, but how does this stuff 
fit in with model deployment? 
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Optional: More complex examples of 
MapReduce usage to scale ML
Not included in syllabus
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Primer: K-Means Clustering

❖ Basic Idea: Identify clusters based on Euclidean distances; 
formulated as an optimization problem

❖ Llyod’s algorithm: Most popular heuristic for K-Means
❖ Input: n x d examples/points

❖ Output: k clusters and their centroids

1. Initialize k centroid vectors and point-cluster ID assignment
2. Assignment step: Scan dataset and assign each point to a cluster 

ID based on which centroid is nearest
3. Update step: Given new assignment, scan dataset again to 

recompute centroids for all clusters
4. Repeat 2 and 3 until convergence or fixed # iterations 
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K-Means Clustering in MapReduce

❖ Input Split: Shard the table tuple-wise
❖ Assume each tuple/example/point has an ExampleID

❖ Need 2 jobs! 1 for Assignment step, 1 for Update step
❖ 2 external data structures needed for both jobs: 

❖ Dense matrix A: k x d centroids; ultra-sparse matrix B: n x k 
assignments

❖ A and B first broadcast to all Mappers via HDFS; Mappers can 
read small data directly from HDFS files

❖ Job 1 read A and creates new B
❖ Job 2 reads B and creates new A
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K-Means Clustering in MapReduce

❖ A: k x d centroid matrix; B: n x k assignment matrix
❖ Job 1 Map(): Read A from HDFS; compute point’s distance to all k 

centroids; get nearest centroid; emit new assignment as output pair 
(PointID, ClusterID)

❖ No Reduce() for Job 1; new B now available on HDFS
❖ Job 2 Map(): Read B from HDFS; look into B and see which cluster 

point got assigned to; emit point as output pair (ClusterID, point 
vector)

❖ Job 2 Reduce(): Iterator has all point vectors of a given ClusterID; 
add them up and divide by count; got new centroid; emit output pair 
as (ClusterID, centroid vector)

Take DSC 291 for more about writing MR/Spark programs


