

DSC 102 Systems for Scalable Analytics

Rod Albuyeh

Topic 5: Model Building Systems

Chapter 8.1 and 8.3 of MLSys Book

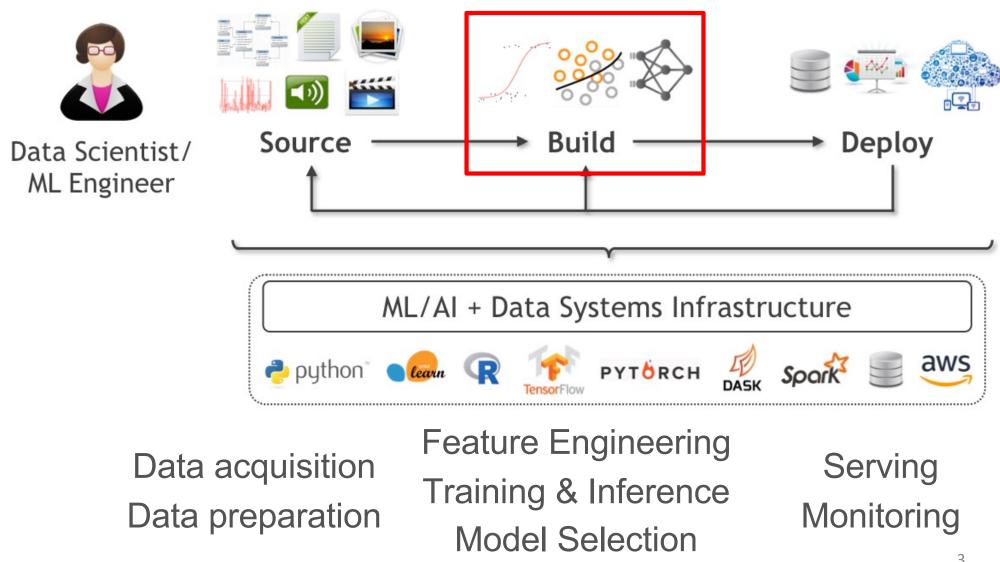
Admin

Reminder: 90%+ CAPE response rate for class yields 0.5% collective boost to final score.

Current response rate as of June 5th 7pm is 36.61%.

Help both your instructor and DSC 102 improve!

The Lifecycle of ML-based Analytics



Building Stage of ML Lifecycle

- Perform model selection, i.e., convert prepared ML-ready data to prediction function(s) and/or other analytics outputs
- What makes model building challenging/time-consuming?
 - Heterogeneity of data sources/formats/types
 - Configuration complexity of ML models
 - Large scale of data
 - Long training runtimes of some models
 - Pareto optimization on criteria for application
 - Evolution of data-generating process/application

Building Stage of ML Lifecycle

- Perform model selection, i.e., convert prepared ML-ready data to prediction function(s) and/or other analytics outputs
- Data scientist / ML engineer must steer 3 key activities that invoke ML training and inference as sub-routines:
 - 1. Feature Engineering (FE):

Appropriate signals representation for domain of prediction function.

2. Algorithm/Architecture Selection (AS):

Choice of prediction functions class (incl. artificial neural networks (ANN) architecture) to use.

3. Hyper-parameter Tuning (HT):

Model improvement (accuracy, etc.) by configuring ML "knobs".

High Level Overview

- Perform model selection, i.e., convert prepared ML-ready data to prediction function(s) and/or other analytics outputs
- Data scientist / ML engineer must steer 3 key activities that invoke ML training and inference as sub-routines:
 - 1. Feature Engineering (FE):

Appropriate signals representation for domain of prediction function.

2. Algorithm/Architecture Selection (AS):

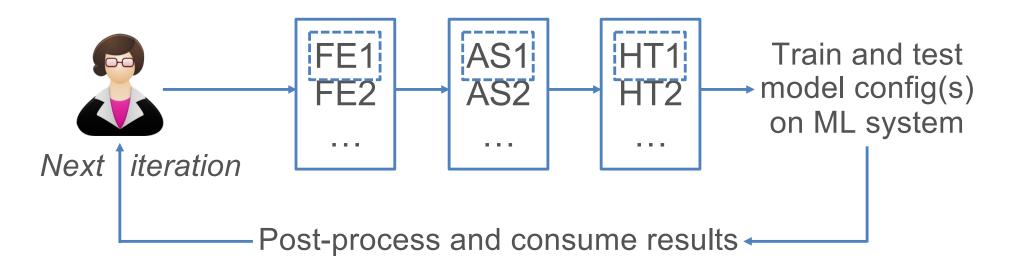
Choice of prediction functions class (incl. artificial neural networks (ANN) architecture) to use.

3. Hyper-parameter Tuning (HT):

Model improvement (accuracy, etc.) by configuring ML "knobs".

Model Selection Process

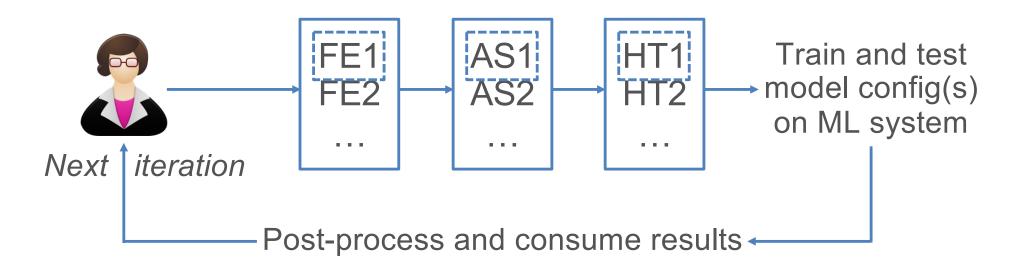
- Model selection is usually an *iterative exploratory* process with human making decisions on FE, AS, and/or HT
- Increasingly, automation of some or all parts possible: AutoML



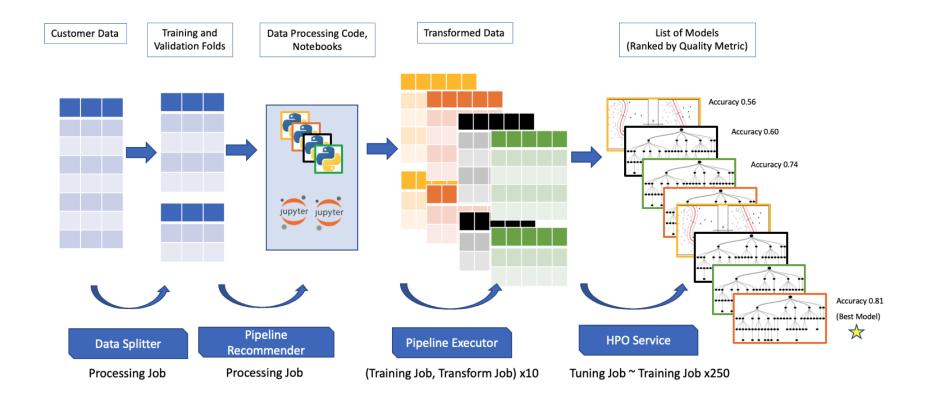
https://dl.acm.org/doi/abs/10.1145/3399579.3399870

Model Selection Process

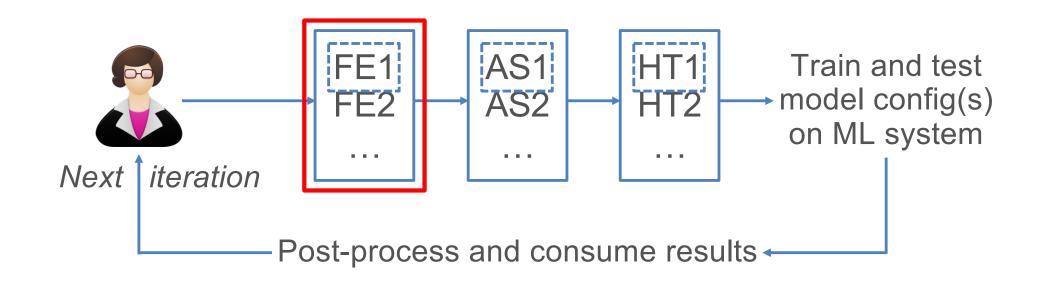
- Decisions on FE, AS, HT guided by many constraints/metrics: prediction accuracy, data/feature types, interpretability, tool availability, scalability, runtimes, fairness, legal issues, etc.
- Decisions are typically application-specific and dataset-specific; recall Pareto surfaces and tradeoffs



AutoML-based Selection



Feature Engineering



Feature Engineering

- Converting prepared data into a *feature vector representation* for ML training and inference
 - Aka feature extraction, representation extraction, etc.
- Umbrella term for many tasks dep. on type of ML model trained:
 - 1. Recoding and value conversions
 - 2. Joins and/or aggregates
 - 3. Feature interactions
 - 4. Feature selection
 - 5. Dimensionality reduction
 - 6. Temporal feature extraction
 - 7. Textual feature extraction and embeddings
 - 8. Learned feature extraction in deep learning

1. Recoding and value conversions

- Common on relational/tabular data
- Typically needs some global column stats + code to reconvert each tuple (example's feature values)

UserID	State	Date	Upvotes	Comment	Label
143	СА	4/3/19	1539	"This restaurant is overrated"	-
337	NY	11/7/19	5020	"Not too bad!"	+
98	WI	2/8/20	402	"Pretty rad"	+

Example:

Decision trees can use categorical features directly but GLMs support only numeric features; need numerical vector such as **one-hot encoded**, **weight of evidence / target encoding, integer encoding, embedding** (via additional DL model), etc. How to implement and scale these? 12

1. Recoding and value conversions

- Common on relational/tabular data
- Typically needs some *global column stats* + code to *reconvert* each tuple (example's feature values)

UserID	State	Date	Upvotes	Comment	Label
143	CA	4/3/19	1539	"This restaurant is overrated"	-
337	NY	11/7/19	5020	"Not too bad!"	+
98	WI	2/8/20	402	"Pretty rad"	+
		•••			

Example:

GLMs and ANNs need **standardization** (either mean/stdev or min/max based) and **decorrelation**

Scaling global stats: How to scale mean/stdev/max/min?

Reconversion: Tuple-level function to modify number using stats. How to scale?

1. Recoding and value conversions

- Common on relational/tabular data
- Typically needs some global column stats + code to reconvert each tuple (example's feature values)

UserID	State	Date	Upvotes	Comment	Label
143	CA	4/3/19	1539	"This restaurant is overrated"	-
337	NY	11/7/19	5020	"Not too bad!"	+
98	WI	2/8/20	402	"Pretty rad"	+
		•••			

Example:

Some models like Bayesian Networks or Markov Logic Networks benefit from (or even need) **binning/discretization** of numerics **Scaling global stats:** How to scale histogram computations? **Reconversion:** Tuple-level function to convert number to bin ID

2. Joins and Aggregates

- Common on relational/tabular data
- Most real-world relational datasets are multi-table; require key-foreign key joins, aggregation-and-key-key-joins, etc.

UserID	Age	Name	UserID	State	Date	Upvotes	Comment	Label
304	40		143	CA				-
23	25	•••	337	NY	•••			+
143	33		143	CA	•••			+
		•••			•••		•••	

Example:

Join tables on UserID; concatenate user's info. as extra features! What kind of join is this? How to scale this computation?

2. Joins and Aggregates

- Common on relational/tabular data
- Most real-world relational datasets are multi-table; require key-foreign key joins, aggregation-and-key-key-joins, etc.

UserID	State	Date	Upvotes	Comment	Label
143	CA				-
337	NY	•••			+
143	CA	•••			+
		•••			

Example:

Join table with itself on UserID to count #reviews and avg #upvotes for each user in a new temp. table and join that to get more features! What kind of computation is this? How to scale it?

3. Polynomials and Feature Interactions

- Sometimes used on relational/tabular data, especially for high-bias models like GLMs
- Pairwise is common; ternary is not unheard of

F1	F2	F3	Label	F1	F2	F3	F11	F12	F13	F22	F23	F33	Label
3	2		-	3	2		9	6		4			-
4	20		+	4	20		16	80		400			+
5	10		+	5	10		25	50		100	•••	•••	+
		•••			•••			•••		•••	•••		

- No global stats, just a tuple-level function
- Popularity of this has reduced due to GBMs popularity for tabular data, which encode nonlinearities and interactions as part of the learning process.

4. Feature Selection

- Often used on high dimensional relational/tabular data
- Basic Idea: Instead of using whole feature set, use a subset

	User	ID State	Date	Upvotes	Com	ment	Labe	el
			•••			••	•••	
				_				
State	Upvotes	Comment	Label	Upv	/otes	Comn	nent	Label
•••					•••	•••		•••

- Formulated as a *discrete optimization* problem
 - NP-Hard in #features in general
 - Many heuristics exist in ML/data mining; typically rely on some information theoretic criteria
 - Typically scaled as "outer loops" over training/inference
- Some ML users also prefer human-in-the-loop approach

5. Dimensionality Reduction

- Often used on relational/structured/tabular data
- Basic Idea: Transforms features to a different latent space
- Examples: Principal Component Analysis (PCA), Singular Value Decomposition (SVD), Linear Discriminant Analysis (LDA), Matrix factorization

UserID	State	Date	Upvotes	Comment	Label
		•••			
	F1	F2	F3	Label	
	0.3	4.2	-29.2		

Q: How is this different from "feature selection"?

- Feat. sel. preserves semantics of each feature but dim. red. typically does not—combines features in "nonsensical" ways
- Scaling this is non-trivial! Similar to scaling individual ML training algorithms (later)

6. Temporal Feature Extraction

- Many relational/tabular data have time/date
- Per-example reconversion to extract numerics/categoricals
- Sometimes global stats needed to calibrate time
- Complex temporal features studied in *time series mining*

UserID	State	Date	Upvotes	Comment	Label
143	СА	4/3/19	1539	"This restaurant is overrated"	-
337	NY	11/7/19	5020	"Not too bad!"	+
98	WI	2/8/20	402	"Pretty rad"	+

Example:

Most classifiers cannot use Date directly; extract month (categorical), year (categorical?), day? (categorical), etc.

Reconversion: Tuple-level function (many-to-one) to extract numbers/categories

7. Textual Feature Extraction

- Many relational/tabular data have text columns; in NLP, whole example is often just text
- Most classifiers cannot process text/strings directly
- Extracting numerics from text studied in *text mining*

•••	Comment	Label		sucks	good	•••	
	"This restaurant is sucks"	-		1	0		
	"Good good!"	+	•••	0	2	•••	
•••	"Pretty rad"	+		0	0		
•••						•••	

Example:

Bag-of-words features: count number of times each word in a given *vocabulary* arises; need to know vocabulary first

Scaling global stats: How to get vocabulary?

Reconversion: Tuple-level function to count words; look up index

7. Textual Feature Extraction

Knowledge Base-based: Domain-specific knowledge bases like entity dictionaries (e.g., celebrity or chemical names) help extract domain-specific features

Embedding-based:

- Numeric vector for a text token; popular in NLP
- Offline training of function from string to numeric vector in self-supervised way on large text corpus (e.g., Wikipedia); embedding dimensionality is a hyper-parameter
- Pre-trained word embeddings (Word2Vec and GloVe) and sentence embeddings (Doc2Vec) available off-the-shelf; to scale, just use a tuple-level conversion function

Word2Vec:https://en.wikipedia.org/wiki/Word2vecGloVe:https://nlp.stanford.edu/projects/gloveDoc2Vec:https://arxiv.org/abs/1405.4053

8. Learned Feature Extraction in DL

- A big win of Deep Learning (DL) is no manual feature engineering on unstructured data
 - DL is not common on structured/tabular data, but growing in popularity. See: https://arxiv.org/pdf/2110.01889.pdf
- DL is very versatile: almost any data type as input and/or output:
 - Convolutional NNs (CNNs) over image tensors
 - Recurrent NNs (RNNs) and Transformers over text
 - Graph NNs (GNNs) over graph-structured data
- Neural architecture specifies how to extract and transform features internally with weights that are learned
- Software 2.0: Buzzword for such "learned feature extraction" programs vs old hand-crafted feature engineering