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2016: PhD in Political Science from USC

2016-2019: Senior Data Scientist at Intuit
2019-2020: Senior Manager, Data Science at Oportun

2020-2022: Principal Data Scientist at Figure

2022-2023: Machine Learning Architect at Resmed

2021-Present: Part-Time Lecturer at UCSD 
2023-Present: Founder, Chief AI Scientist at Albell

About Me
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My Current Academic Work 
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Deep learning for tabular data, the “last unconquered castle” of deep 
learning. 

Reproducible enterprise-grade infrastructure for machine learning 
research. 

Machine learning for political science research. 



What is this course about? Why take it?
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1. Netflix’s “spot-on” recommendations
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How does Netflix know that?
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Large datasets + Machine learning!

Log all user behavior (views, clicks, pauses, searches, etc.)
Recommender systems apply ML to TBs of data from all 

users and movies to deliver a tailored experience
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2. Structured data with search results
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How does Google know that?
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Large datasets + Machine learning!

Knowledge Base Construction (KBC) process extracts 
tabular/relational data from large amounts of text data
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3. AlphaGo defeats human champion!
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How did AlphaGo achieve that?
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Breakthrough powered by deep learning!

https://www.slideshare.net/SanFengChang/mastering-the-game-of-go-with-deep-neural-networks-and-tree-search

Deep CNNs to visually process board status in plays

https://www.slideshare.net/SanFengChang/mastering-the-game-of-go-with-deep-neural-networks-and-tree-search
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Innumerable “enterprise” applications
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“Domain sciences” and healthcare tech 
are also becoming data+ML intensive
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Software systems for data analytics and 
ML over large and complex datasets are 
now critical for digital applications in 
many domains
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The Age of “Big Data”/“Data Science”
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Emerging Age of LLMs 
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LLMs and Transformers 

Many researchers find that they run out of hardware before they manage to overfit.
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DSC 102 will get you thinking about the fundamentals of 
systems for scalable analytics

1. “Systems”: What resources does a computer have? How 
to store and efficiently compute over large data? What is 
cloud?

2. “Scalability”: How to scale and parallelize data-intensive 
computations?

3. For “Analytics”:
1. Source: Data acquisition & preparation for ML
2. Build: Model selection & deep learning systems
3. Deploying ML models

4. Hands-on experience with scalable analytics tools
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The Lifecycle of ML-based Analytics

Data acquisition
Data preparation

Feature Engineering
Training & Inference

Model Selection

Serving
Monitoring
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ML Systems

❖ A data processing system (aka data system) for 
mathematically advanced data analysis operations 
(inferential or predictive):
❖ Statistical analysis; ML, deep learning (DL); data mining 

(domain-specific applied ML + feature eng.)
❖ High-level APIs to express ML computations over (large) 

datasets
❖ Execution engine to run ML computations efficiently

Q: What is a Machine Learning (ML) System?
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Categorizing ML Systems

❖Orthogonal Dimensions of Categorization:

1. Scalability: In-memory libraries v. Scalable ML 
system (works on larger-than-memory datasets)

2. Target Workloads: General ML library v. Decision 
tree-oriented v. Deep learning, etc.

3. Implementation Reuse: Layered on top of scalable 
data system v. Custom from-scratch framework
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Major Existing ML Systems

General ML libraries:

Disk-based files:In-memory: Layered on RDBMS/Spark:

Cloud-native: “AutoML” platforms:

Decision tree-oriented: Deep learning-oriented:
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Data Systems Concerns in ML

Q: How do “ML Systems” relate to ML?

ML Systems : ML :: Computer Systems : TCS

Key concerns in ML:
Accuracy
Runtime efficiency (sometimes)
Additional key practical concerns in ML Systems: 
Scalability (and efficiency at scale)
Usability
Manageability
Developability

Q: What if the dataset is larger than single-node RAM?Q: How are the features and models configured?Q: How does it fit within production systems and workflows?Q: How to simplify the implementation of such systems?

Long-standing 
concerns in the 
DB systems 

world!

Can often trade off accuracy a bit to gain on the rest!
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Conceptual System Stack Analogy

Program
Specification SQL

Execution
Primitives

Parallel Relational 
Operator Dataflows

Program
Modification Query Optimization

TensorFlow,
Scikit-learn,

others...

Hardware CPU, GPU, FPGA, NVM, RDMA, etc.

Model optimization,
tuning, regularization

Parallel computing primitives

Program
Formalism Relational Algebra

Tensor Algebra
Gradient Descent

Relational DB Systems ML Systems

Theory First-Order Logic
Complexity Theory

Learning Theory
Optimization Theory
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Real-World ML: Pareto Surfaces

Monetary cost

Ac
cu

ra
cy

A

B

C

95%

90%

85%

$1K $10K

D

Q: Suppose you are given ad click-through prediction models A, 
B, C, and D with accuracies of 95%, 85%, 90%, and 85%, 

respectively. Which one will you pick?

Q: What about now?

E

Pareto 
Frontier

❖ Real-world ML users must grapple 
with multi-dimensional Pareto 
surfaces: accuracy, monetary cost, 
training time, scalability, inference 
latency, tool availability, 
interpretability, fairness, etc.

❖ Multi-objective optimization criteria 
set by application needs / business 
policies.



30

❖ Explain the basic principles of the memory hierarchy, parallelism 
paradigms, scalable data systems, and cloud computing.

❖ Identify the abstract data access patterns of, and opportunities for 
parallelism and efficiency gains in, data processing and ML 
algorithms at scale.

❖ Outline how to use cluster and cloud services, dataflow (“Big Data”) 
programming with MapReduce and Spark, and ML tools at scale.

❖ Apply the above programming skills to create end-to-end pipelines 
for data preparation, feature engineering, and model selection on 
large-scale datasets.

❖ Reason critically about practical tradeoffs between accuracy, 
runtimes, scalability, usability, and total cost.

After this course, you’ll be able to:
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What this course is NOT about

❖ NOT a course on databases, relational model, or SQL
❖ Take DSC 100 instead (pre-requisite)

❖ NOT a course on internal details of RDBMSs
❖ Take CSE 132C instead

❖ NOT a training module for how to use Spark (but our suggested 
Spark textbook is excellent for that)

❖ NOT a course on ML or data mining algorithmics; instead, we 
focus on ML systems
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Now for the course logistics …
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Prerequisites

❖ DSC 100 (or equivalent) is necessary
❖ Transitively DSC 80; a mainstream ML algorithmics course is 

necessary
❖ Proficiency in Python programming – some familiarity with 

Linux command line is also helpful, but not required.  
❖ For all other cases, email me with proper justification; a waiver 

can be considered

Course website is listed in Canvas. 
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Components and Grading

❖ 3 Programming Assignments: 40% (8% + 16% + 16%)
❖ No late days! Plan your work well ahead.

❖ Midterm Exam: 15%
❖ Thu, May 11; in-class only (50min)

❖ Cumulative Final Exam: 35%
❖ Thu, June 15; in-class only (3hrs long but 4hrs limit)

❖ 10 (of 12) In-Class Activities: 10%; recoup 60% if submitted by 
end of day. There will be no announcement outside of class. 

❖ Extra Credit Activities: 4% (likely)
❖ LMK ahead of time if you need makeup exam slot
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Grading Scheme

Grade Relative Bin (Use strictest) Absolute Cutoff (>=)

A+ Highest 5% 95

A Next 10% (5-15) 90

A- Next 15% (15-30) 85

B+ Next 15% (30-45) 80

B Next 15% (45-60) 75

B- Next 15% (60-75) 70

C+ Next 5% (75-80) 65

C Next 5% (80-85) 60

C- Next 5% (85-90) 55

D Next 5% (90-95) 50

F Lowest 5% < 50

Hybrid of relative and absolute; grade is better of the two
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Tentative Course Schedule
Week Topic

1-2 Basics of Machine Resources: Computer Organization

2-3 Basics of Machine Resources: Operating Systems

4 Basics of Cloud Computing

4-5 Parallel and Scalable Data Processing: Parallelism Basics

6 Midterm Exam on Thursday, May 11 – in class

6-7 Parallel and Scalable Data Processing: Scalable Data Access

7-8 Parallel and Scalable Data Processing: Data Parallelism

9 Dataflow Systems

10 ML Model Building Systems

11 Final Exam on Fri, June 15, remote

Systems
Principles

Scalability
Principles

Scalable
Analytics
Systems

There will be 2 industry guest lectures (maybe 3)
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Programming Assignments

❖ PA0: Setting up AWS and Dask
❖ April 10 to April 25

❖ PA1: Data Exploration with Dask
❖ April 25 to May 16

❖ PA2: Feature Eng. and Model Selection with Spark
❖ May 16 to June 9

❖ Expectations on the PAs: 
❖ Teams of 2 or 1 (individual); see webpage on academic integrity
❖ I will cover the concepts and tools’ tradeoffs in the lectures
❖ TAs will explain and demo the tools; handle all Q&A
❖ You are expected to put in the effort to learn the details of the tools’ 

APIs using their documentation on your own!
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Course Administrivia

❖ Lectures: TuTh 8-9:20am PT in MANDE B-210
❖ Attendance optional but encouraged; podcast available
❖ Bring iClicker to class for PI activities; app is OK too

❖ Discussions: Tu 7-7:50pm PT in MANDE B-210
❖ Only for talks on PAs and exams by TAs

❖ Instructor: Rod Albuyeh; ralbuyeh@ucsd.edu
❖ OHs: Thu 9:30-10:30am PT at SDSC 2nd Floor

❖ TAs: Golokesh Patra, Trevor Tuttle; see webpage for details on TA OHs
❖ Course Website for all announcements
❖ Campuswire for async discussion 
❖ Canvas for PA submission, Final Exam, Extra Credits
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Suggested Textbooks

Aka “Cow Book”Aka “Comet Book”

Aka “MLSys Book”

(Free PDFs available online; also check out our library)

Aka “CompOrg Book”

Aka “Spark Book”
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Why so many textbooks?!

Hardware

1. Computer systems are about carefully layering levels of abstraction.

2. Analytics/ML Systems is a recent/emerging area of research.
3. Also, DSC 102 is the first UG course of its kind in the world!

Low-level 
systems 
software

Higher-level
relational
dataflows

More general
scalable
dataflows

ML-oriented
dataflows

& lifecycle
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General Dos and Do NOTs

Do:
❖ Follow all announcements on course website
❖ Try to join the lectures/discussions live
❖ Participate in discussions in class / on Campuswire
❖ Raise your hand before speaking
❖ View/review podcast videos asynchronously by yourself
Do NOT:
❖ Harass, intimidate, or intentionally talk over others
❖ Violate academic integrity on the PAs, exams, or other 

components; I am very strict on this matter!


