Run git pull in the main branch to follow along today.

D3.js (Part 2)

DSC 106: Data Visualization

Sam Lau

UC San Diego

Announcements

Lab 5 due Friday.

Project 3 checkpoint due Tuesday next week.

Project 2 peer grading coming out this week.

FAQs:

- How much time should I allocate for Lab 5? About 2x your previous labs.
- 2. **How do I get the Lab 5 extra credit?** Fix the bug described in Step 5.4, then show us the working website in your video.

Project 1 Best Project Awards (top 4%)

If you got an award, mention it on your resume / portfolio!

How do Location and Weather Affect Exercise Trends?

Do extreme weather changes (as well as geographical factors) affect people's preference of forms of physical activity?

Is there a noticeable difference in sunlight between the months with the least and greatest average hours of sunlight per day?

Sun Seekers or Rain Romantics: Which Urban Retreat Matches Your Weather Vibe?

How Does Geographic Location Impact Annual Rainfall Patterns Across the U.S.?

NAVIGATING STORMY WEATHER

THE LINK BETWEEN RAINFALL AND CAR ACCIDENTS

MOTIVATING QUESTION

"How Does Rain Impact Car Accident Rates in Areas with Limited Rainfall?"

IMPORTANT BACKGROUND INFO

- Nearly 5,700 people are killed and more than 544,700 people are injured in crashes on wet pavement annually.
- Over 3,400 people are killed and over 357,300 people are injured in crashes during rainfall every year.

WHY?

- Flooding reduces roadway capacity by limiting or preventing access to submerged lanes.
- Inland flooding, usually following the evolution of a tropical storm or hurricane, has typically been the greatest source of fatalities, and caused the most damage to roadway infrastructure.
- 3.Rain causes wet pavement, which reduces vehicle traction and maneuverability. Heavy rain also reduces visibility distance. .

 Rain and wet pavement increase crash risk as well.

How Well Do Drivers in San Diego Navigate Rainy Weather?

REFERENCES

U.S. Department of Transportation: https://www.transportation.gov

Rainy Days vs. Sunny Skies: A Year in Major U.S. Cities

How Many Years Would it Take to Submerge a City? If the rain never evaporated or drained

Rain or Shine? Why Not Both?

Miami witnesses more than twice the average rain of SD, but has nearly the same amount of sun

What was the most challenging part of Project 2 for you?

tryclassbuzz.com

Code: proj2

Project 2 Peer Feedback

Opportunity to get feedback from your peers.

"I like / I wish / What if?" format.

Worth 5% of your final grade, graded by completion.

Project 3: Interactive Visualization

Choose a health dataset (can reuse Project 2 data).

Create one interactive graphic to let readers explore the data.

E.g. panning, zooming, brushing, annotations, etc.

Must use D3, no other plotting libraries allowed.

Must complete in teams of 3-4.

Pro-tip: Explore lots of options using pen-and-paper. Then, keep scope of project very tight! Do one thing well.

https://namerology.com/baby-name-grapher/

D3

Today: Making an interactive scatterplot

Before:

After:

Step 1: Using D3 instead of plain JS

Before:

After:

But in D3!

Demo: d3-lecture/weather01

Step 2: Making circles and using d3 scales

Before:

After:

Demo: d3-lecture/weather02

Making circles

Before:

```
svg
.selectAll('text')
.data(weatherData.hourly.temperature_2m)
.join('text')
.attr('x', (d, i) => i * 5)
.attr('y', (d) => 500 - d * 6)
.text((d) => d);
Jus
```

After:

Just needed to swap out text with circle + set the right attributes.

```
.selectAll('circle')
.data(weatherData.hourly.temperature_2m)
.join('circle')
.attr('cx', (d, i) => xScale(i))
.attr('cy', (d) => yScale(d))
.attr('r', 2);
```

Scales

```
Before:
```

```
.attr('cx', (d, i) => i * 5)
.attr('cy', (d) => 500 - d * 6)
```

Magic numbers!

After:

```
.attr('cx', (d, i) => xScale(i))
.attr('cy', (d) => yScale(d))
```

D3 scales

```
const xScale = d3
   .scaleLinear()
   .domain([0, weatherData.hourly.temperature_2m.length - 1])
   .range([margin.left, width - margin.right]);
```

Domain = possible inputs

Range = possible outputs

D3 scales will automatically make plot fit the space.

Step 3: Adding axes

Before:

After:

Demo: d3-lecture/weather03

Axes

```
const yAxis = d3.axisLeft(yScale);
```

Creates a D3 axis object

```
append('g')
    attr('class', 'y axis')
    attr('transform', `translate(${margin.left}, 0)`)
    call(yAxis);
```

Creates an SVG <g> object, then draws axis into it

Step 4: Adding a basic tooltip

Before:

After:

Demo: d3-lecture/weather04

Making a tooltip

```
const tooltip = d3
  select('body')
  append('div')
  attr('class', 'tooltip')
  style('position', 'absolute')
  style('visibility', 'hidden')
  style('background-color', 'white')
  style('border', '1px solid #ddd')
  style('padding', '5px')
  style('border-radius', '3px');
```

Creates a <div>, styles it, and hides it so that it'll only show up with interaction

```
.on('mouseover', function (event, d) {
   d3.select(this).attr('r', 4); // Increase circle size on hover
   tooltip.style('visibility', 'visible').text(`${d.toFixed(1)}°F`);
})
```

```
.on('mouseover', function (event, d) {
    When a circle is moused over...
    tooltip.style('visibility', 'visible').text(`${d.toFixed(1)}°F`);
})
```

```
.on('mouseover', function (event, d) {
    d3.select(this).attr('r', 4); // Increase circle size on hover
    tooltip.style('visibility', 'visible').text(`${d.toFixed(1)}°F`);
})
Make tooltip visible and set its text
```

Step 5: Improving our tooltip

Before:

After:

Demo: d3-lecture/weather05

Interacting with the plot, not just points

```
// Create a rect overlay for mouse tracking
const overlay = svg
                                    Interaction trick:
  append('rect')
                                    Add an invisible rectangle just
  attr('class', 'overlay')
                                    to capture mouse events
  .attr('x', margin.left)
  .attr('y', margin.top)
  .attr('width', width - margin.left - margin.right)
  .attr('height', height - margin.top - margin.bottom)
  style('fill', 'none')
  style('pointer-events', 'all');
                                    Listening for mouse events on
                                    the parent <svg> tag also ok
```

Improving interaction

```
.on('mousemove', function (event) {
  const mouseX = d3.pointer(event)[0];
  const xDate = xScale.invert(mouseX);

// Find the closest data point
  const bisect = d3.bisector((d) => new Date(d)).left;
  const index = bisect(weatherData.hourly.time, xDate);
  const temp = weatherData.hourly.temperature_2m[index];
  const time = new Date(weatherData.hourly.time[index]);
```

Challenge: since we're not hovering directly over points, we have to use the mouse position to find nearest point

You Try: Explain D3 code

https://observablehq.com/@d3/gallery

Pick a simple visualization (scatter plot, line plot, bar chart). Explain the code to your neighbor, then write a question about the code using this format:

URL: ...

Question: ...

tryclassbuzz.com Code: **explain-d3**