The Value of Visualization

DSC 106: Data Visualization Sam Lau UC San Diego

How much data are we producing? (1 exabyte or 1 EB = 1 million terabytes)

A stack of iPads that stretch 2/3rds of the way to the Moon! 🚀

A stack of DVDs stretching from the Earth to the Moon, and back!

2006 – 161 EB

2002 – 5 EB

https://www.statista.com/topics/1464/big-data/#topicOverview

Physical Sensors

https://stamen.com/work/cabspotting/

Health and Medicine

Records of Human Activity

https://www.facebook.com/notes/10158791468612200/

"The ability to take data

value from it, to visualize it, to communicate it-

decades,

from it."

Hal Varian, Google's Chief Economist The McKinsey Quarterly, Jan 2009

- -to be able to understand it, to process it, to extract
- that's going to be a hugely important skill in the next
- ... because now we really do have essentially free and ubiquitous data. So the complimentary scarce factor is the ability to understand that data and extract value

-to be able to understand it, to process it, to extract value from it, to visualize it, to communicate it-

that's going to be a hugely important skill in the next decades, "free" to whom?

... because now we really do have essentially free and ubiquitous data. So the complimentary scarce factor is the ability "ubiquitous" about whom? d extract value from it."

"value" to whose benefit? an, Google's Chief Economist The McKinsey Quarterly, Jan 2009

My Facebook Was Breached by Cambridge Analytica. Was Yours?

How to find out if you are one of the 87 million victims

ROBINSON MEYER | APR 10, 2018 | TECHNOLOGY

	Ĺ	E/		R
Mad	hir	ne l	_e	a
Adv	an	cec	4 .	Aı

tdwi

High potential for data abuse...

CHICAGO MAY 6-11

> **N** rning & nalytics

Psychology's Replication Crisis Can't Be Wished Away

It has a real and heartbreaking cost.

TEXT	SIZE
-	+

Inequality Rise of the racist robots - how AI is learning all our worst impulses

"Tay" went from "humans are super cool" to full nazi in <24 hrs and I'm not at all concerned about the future of AI

10:56 PM - Mar 23, 2016

 \bigcirc 10.9K \bigcirc 12.8K people are talking about this

...amplified by "big data" and ML systems.

There is a saying in computer science: garbage in, garbage out. When we feed machines data that reflects our prejudices, they mimic them - from antisemitic chatbots to racially biased software. Does a horrifying future await people forced to live at the mercy of algorithms?

How might we use **visualization** to **empower understanding** of data and analysis processes?

What is visualization?

"Transformation of the symbolic into the geometric" [McCormick et al. 1987]

"... finding the artificial memory that best supports our natural means of perception." [Bertin 1967]

"The use of computer-generated, interactive, visual representations of data to amplify cognition."

[Card, Mackinlay, & Shneiderman 1999]

Set A Set B Χ Y Х Y 10 8.04 10 9.14 8 6.95 8.14 8 13 8.74 13 7.58 9 8.81 9 8.77 11 8.33 9.26 11 14 9.96 8.1 14 6 7.24 6 6.13 4 4.26 3.1 4 12 10.8 12 9.11 7.26 7 4.82 7 5 5.68 5 4.74 **Summary Statistics** Linear Regression $u_{\rm X} = 9.0$

- $\sigma_X = 3.32$ Y² = 3 + 0.5 X
- $u_{\rm Y} = 7.5$ $\sigma_{\rm Y} = 2.03$ $R^2 = 0.67$

10 7.46 8 6.77 1312.74 7.11 9 7.81 11 14 8.84 6 6.08 4 5.39 12 8.15 7 6.42 5 5.73

Set C

Y

X

Set D X Y 8 6.58 5.76 8 8 7.71 8 8.84 8 8.47 8 7.04 8 5.25 12.5 19 5.56 8 8 7.91 8 6.89

[Anscombe 1973]

Set A

Set C

Set B

Set D

Wikipedia History Flow

Height = amount of text

Color = author

What do you notice?

http://hint.fm/projects/historyflow/

http://hint.fm/projects/historyflow/

Why create visualizations?

Why create visualizations?

The Value of Visualization

Record information

Blueprints, photographs, seismographs, ...

Analyze data to support reasoning (exploratory visualization) Develop and assess hypotheses Find patterns / Discover errors in data Expand memory

Communicate information to others **(explanatory visualization)** Share and persuade Collaborate and revise

The Value of Visualization

Record information Blueprints, photographs, seismographs, ...

Analyze data to support reasoning (exploratory visualization) Develop and assess hypotheses Find patterns / Discover errors in data Expand memory

Communicate information to others (explanatory visualization) Share and persuade Collaborate and revise

Gallop, Bay Horse "Daisy" [Muybridge]

1. Marey's sphygmograph in use, 1860. La méthode graphique dans les sciences expérimentales et principalement en physiologie et en médecine.

E.J. Marey's sphygmograph [from Braun 83]

Percent of children who attended college

You Draw It: How Family Income Predicts Children's College Chances [New York Times, May 28, 2015]

You Draw It: How Family Income Predicts Children's College Chances [New York Times, May 28, 2015]

Parents' income percentile

Richest

The Value of Visualization

Record information Blueprints, photographs, seismographs, ...

Analyze data to support reasoning (exploratory visualization) Develop and assess hypotheses Find patterns / Discover errors in data Expand memory

Communicate information to others (explanatory visualization) Share and persuade Collaborate and revise

The Value of Visualization

Record information Blueprints, photographs, seismographs, ...

Analyze data to support reasoning (exploratory visualization) Develop and assess hypotheses Find patterns / Discover errors in data Expand memory

Communicate information to others **(explanatory visualization)** Share and persuade Collaborate and revise

			C	ross Sectional	View	To	o View	
30, 198.	AFT	SRM No.	Erosion Depth (in.)	Perimeter Affected (deg)	Nominal Dia. (in.)	Length Of Max Erosion (in.)	Total Heat Affected Length (in.)	Location (deg)
K 007	61A LH Center Field** 61A LH CENTER FIELD** 51C LH Forward Field** 51C RH Center Field (prim)*** 51C RH Center Field (sec)***	22A 22A 15A 15B 15B	None NONE 0.010 0.038 None	None NONE 154.0 130.0 45.0	0.280 0.280 0.280 0.280 0.280	None 4.25 12.50 None	None NONE 5.25 58.75 29.50	36°66° 338°-18° 163 354 354
	41D RH Forward Field 41C LH Aft Field* 418 LH Forward Field	13B 11A 10A	0.028 None 0.040	110.0 None 217.0	0.280 0.280 0.280	3.00 None 3.00	None None 14.50	275
ch.	STS-2 RH Aft Field	28	0.053	116.0	0.280			90

*Hot gas path detected in putty. Indication of heat on O-ring, but no damage. ***Soot behind primary O-ring, heat affected secondary O-ring.

Clocking location of leak check port - 0 deg.

٩

OTHER SRM-15 FIELD JOINTS HAD NO BLOWHOLES IN PUTTY AND NO SOOT NEAR OR BEYOND THE PRIMARY O-RING.

SRM-22 FORWARD FIELD JOINT HAD PUTTY PATH TO PRIMARY O-RING, BUT NO O-RING EROSION AND NO SOOT BLOWBY. OTHER SRM-22 FIELD JOINTS HAD NO BLOWHOLES IN PUTTY.

BLOW BY HISTORY SRM-15 WORST BLOW-BY		HISTOR	OF O (DEGRE	ES-F)	EMPERATURES
· 2 CASE JOINTS (80), (110) ARC	MOTOR	MBT	AMB	O-RING	WIND
O MUCH WORSE VISUALLY THAN SRM-22	Dm-+	68	36	47	IO MPH
	Dm - 2	76	45	52	10 mp4
SRM 22 BLOW-BY	Qm - 3	72.5	40	48	10 mpH
O 2 CASE JOINTS (30-40°)	Qm - 4	76	48	51	10 m PH
	SRM-15	52	64	53	10 MPH
SRM-13 A, 15, 16A, 18, 23A 24A	5RM-22	77	78	75	10 MPH
O NOZZLE BLOW-BY	SRM-25	55	26	29 27	10 MPH 25 MPH

2 of 13 pages of material faxed to NASA by Morton Thiokol [from Tufte 1997]

Chart of temperatures vs. O-ring damage [Tufte 97]

O-ring damage index, each launch

But wait! What is an appropriate "damage index"? Which temperatures, O-ring or outside air?

Temperature (°F) of field joints at time of launch

Cholera Outbreak (remember DSC 10?)

Cholera Outbreak (remember DSC 10?)

https://square.github.io/crossfilter/

The Value of Visualization

Record information Blueprints, photographs, seismographs, ...

Analyze data to support reasoning (exploratory visualization) Develop and assess hypotheses Find patterns / Discover errors in data Expand memory

Communicate information to others **(explanatory visualization)** Share and persuade Collaborate and revise

The Value of Visualization

Record information Blueprints, photographs, seismographs, ...

Analyze data to support reasoning (exploratory visualization) Develop and assess hypotheses Find patterns / Discover errors in data Expand memory

Share and persuade Collaborate and revise

Communicate information to others **(explanatory visualization)**

"to affect thro' the Eyes what we fail to convey to the public through their wordproof ears"

New deaths attributed to Covid-19 in European Union, United States, Brazil and United Kingdom

Seven-day rolling average of new deaths, by number of days since 3 average daily deaths first recorded

Source: Financial Times analysis of data from the European Centre for Disease Prevention and Control, the Covid Tracking Project, the UK Dept of Health & Social Care and the Spanish Ministry of Health. Data updated September 25 2020 12.46pm BST. Interactive version: ft.com/covid19

Coronavirus Tracked John Burn-Murdoch & Financial Times

FINANCIAL TIMES

The coronavirus crisis is different

Job growth (or loss) since each recession began, based on weekly earnings

Notes: Based on a three-month average to show the trend in volatile data. Source: Labor Department via IPUMS, with methodology assistance from Ernie Tedeschi of Evercore ISI THE WASHINGTON POST

The Covid Economy Washington Post

The Value of Visualization

Record information

Blueprints, photographs, seismographs, ...

Analyze data to support reasoning (exploratory visualization) Develop and assess hypotheses Find patterns / Discover errors in data Expand memory

Communicate information to others **(explanatory visualization)** Share and persuade Collaborate and revise

About this Course

About Me

Assistant Teaching Professor, HDSI <u>samlau.me</u> <u>lau@ucsd.edu</u>

Tools for visualizing programs (Pandas Tutor), curriculum design (Learning Data Science textbook)

What makes me smile:

My wife, good food, traveling, empty gym racks, students who put in their best effort!

Course staff

Instructor Sam Lau

Teaching Assistants Giorgia Nicolaou (Head TA) Aditya Mandke Gurpreet Saluja Shaokang Jiang Vancheeswaran Vaidyanathan Sai Nelakonda Deevanshu Goyal

Questions about course logistics? Email Giorgia!

See <u>dsc106.com</u> for our OH times

Principles

Data and Image Models

Interaction

Maps

...and many more!

Learning Objectives

By the end of this course:

- Understand and apply key visualization techniques and theory.
- Design, evaluate, and critique visualization designs.
- Implement interactive data visualizations for the web using D3.js.
- Develop a substantial visualization project.

Component	
Participation	8%
Labs	12%
Project 1	10%
Project 2	15%
Project 3	15%
Final Project	40%

Weight

Component

Participation	8%	1 C
Labs	12%	1
Project 1	10%	
Project 2	15%	2
Project 3	15%	3
Final Project	40%	S

Weight

% per week (2 lowest weeks dropped). 3 options:

- Attend both lectures and participate in the lecture activities.
- Share and critique 1 viz example on Ed.
- 3. Respond to 2 viz examples on Ed.

See website for full details.

Component		
Participation	8%	7
Labs	12%	
Project 1	10%	S
Project 2	15%	
Project 3	15%	IN V
Final Project	40%	C

Weight

7 labs, 2% per lab, 1 lowest dropped.

_abs are "worked examples"; solutions will be in the lab tself.

Must get checked off each week by a TA during their office hours.

Component		
Participation	8%	
Labs	12%	
Project 1	10%	3
Project 2	15%	
Project 3	15%	
Final Project	40%	

Weight

3 solo open-ended projects

Component	
Participation	8%
Labs	12%
Project 1	10%
Project 2	15%
Project 3	15%
Final Project	40%

Weight

Final project will span last 4 weeks of course

Component	
Participation	8%
Labs	12%
Project 1	10%
Project 2	15%
Project 3	15%
Final Project	40%

Weight

6 slip days for quarter.

You can use 1 slip day for labs, 2 for project deadlines

Communication

Use EdStem for all communication (my email is super slammed these days)

Email Giorgia, cc me for private questions related to course Course website will stay up-to-date (dsc106.com)

Where you're headed: Final Project

- Narrative visualization project on topic of choice
- Initial prototype and design reviews
- In-class demonstration video showcase
- Submit and publish online (if feasible)
- Projects from similar courses (at other universities) have been:
- Published as research papers
- Featured in the New York Times
- Released as successful open source projects

A concise, travel-like-a-local guide

to 74,762 attractions,

according to 9,526,193 reviews

by Ilia Blinderman

https://pudding.cool/2020/05/travel-local/

Lab 1: Altair

Lab 1 released, due Friday. Plotting in Python using the Altair plotting library

Project 1: Expository visualization

Create one static visualization for a dataset (see course website).

Pick a guiding question, use it to title your vis. Design a static visualization for that question. You are free to use any tools (inc. pen & paper).

Deliverables (upload via Gradescope; see Project 1 page) Image of your visualization (PNG or JPG format) Short description + design rationale (≤ 4 paragraphs)

Questions?

