Data and Image Models

DSC 106: Data Visualization

Sam Lau
UC San Diego

Join at
 slido.com \#3872 641

Announcements

Lab 1 and Welcome Survey due tomorrow!
Project 1 due next week Friday, 1/19.

FAQs on course logistics:

1. Are lectures podcasted? Yes.
2. Can I get participation if I attend a different lecture than the one I enrolled? Yes, as long as there are seats in the room.
3. When are Ed posts due for participation? Sundays at 11:59pm
4. Can I use ChatGPT / CoPilot? Yes, but use with caution!

Name that chart!

Percent of working-age people who said they had "serious difficulty" with

1\%

1	1	1	1	1	1		
2009	2011	2013	2015	2017	2019	2021	2023

Drop off

Estimated monthly active Twitter/X users

\% change on a year earlier

*To December 5th

Spotting a trend

Forecasted chance of winning

Carte Figurative des pertes successives en bommes del'OCmée crrançaise dans la campagne de cRussie $1812 \sim 1813$. Oressée par M. MZinoad, Inopectent Général des Tonts an Cbansicen en retraite ÓPaxis, le 20 Novembre 186 g . Ses nombres d'hommes présents som-représentés parles largenrs des zönes colorécs à raison d'un millinëtre pour dix mille bommes; ils som- de plus écrits en travers

© Chart editor		
Setup	Customize	
Chart type		
(®) Pie chart		-
Line		
x	B	自
Area		
- \times	\approx	-
5)	mm
Column		
1.1	.1.1.	11
Bar		
E-	-	$\underline{\square}$
Pie		
-	O	c
Scatter		
Map		
4	\bigcirc	
Other		
$\mathrm{cos}^{* *}$	11	樓
9		
\pm	\square	∞

Visualizing Data

Mapping or Visual Encoding

Data

Physical Data Types
int, float, string

Conceptual Data Types

temperature, location

Visual

> Graphical Marks rect, line, point, area

Visual Channels

x, y, color, opacity

Data

Expressiveness

A set of facts is expressible in a visual language if the sentences (i.e. the visualizations) in the language express all the facts in the set of data, and only the facts in the data.
Data

Expressiveness

Can't express the facts

A dataset with many variables may be inexpressive in a single horizontal dot plot because multiple records are mapped to the same position.

```
: alt.Chart(source).mark_point().encode(
        x='Horsepower'
    )
: 
```


Data

Visual

Expressiveness

Expressiveness

Expresses facts not in the data

Fig. 11. Incorrect use of a bar chart for the Nation relation. The lengths of the bars suggest an ordering on the vertical axis, as if the USA cars were longer or better than the other cars, which is not true for the Nation relation.

Data

Expressiveness

A set of facts is expressible in a visual language if the sentences (i.e. the visualizations) in the language express all the facts in the set of data, and only the facts in the data.

Expressiveness

A set of facts is expressible in a visual language if the sentences (i.e. the visualizations) in the language express all the facts in the set of data, and only the facts in the data. what the facts are.

Data Models

Conceptual Models vs. Data Models

	city		רcept	M	sunshine	rain
	San Diego		lumn re	res	217	1.53
1	San Diego		urs of	uns	255	0.15
	San Diego	4.710700	17.10100		234	0.57
3	San Diego	32.715736	-117.161087	Apr	236	1.01
4	San Diego	32.715736	-117.161087	May	277	0.02
...
67	Miami	25.761681	-80.191788	Aug	263	8.88
68	Miami	25.761681	-80.191788	Sep	216	9.86
69	Miami	25.761681	-80.191788	Oct	215	6.33
70	Miami	25.761681	-80.191788	Nov	212	3.27
71	Miami	25.761681	-80.191788	Dec	209	2.04

Conceptual Models vs. Data Models

Dataset Types

Tamara Munzner, Visualization
Analysis and Design (2014).

Dataset Types

1. Tabular: collection of records with named attributes

Dataset Types

1. Tabular: collection of records with named attributes

https://www.nytimes.com/interactive/2016/09/12/science/earth/ocean-warming-climate-change.htm

An unusually high percentage of absentee ballots were not returned in two counties in North Carolina's Ninth Consessiol District.

Attribute / Data Types (remember DSC 80?)

Nominal Labels or categories.

$=, \neq \quad$ E.g., Fruits: apples, bananas, cantaloupes, ...

Ordinal Ordered.
$=, \neq,<,>\quad$ E.g., Quality of eggs: Grade AA, A, B

Quantitative (Interval)

$$
=, \neq,<,\rangle_{1}-
$$

Quantitative
 (Ratio)
 $=, \neq,<,>,-, \%$

Interval (zero can be arbitrarily located).
E.g., Dates: Jan 19, 2018; Location: (Lat 42.36, -71.09)

Only differences can be calculated (e.g., distances or spans).

Ratio (fixed zero / meaningful baseline).
E.g., Physical measurement: length, mass, temperature

Counts and amounts. Can measure ratios or proportions.

Data Models

Attribute Type
Burned vs. Not-Burned (N)
Hot, Warm, Cold (O)
Temperature Value (Q)

Conceptual Model Temperature $\left({ }^{\circ} \mathrm{C}\right)$

Activity: U.S.Census

What are the types of these attributes (N/O/Q)?

People Count: \# of people in group

Year: 1850 - 2000 (every decade) Age: 0 - 90+

Sex: Male, Female
Marital Status: Single, Married, Divorced, ...

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	

Activity: U.S.Census

What are the types of these attributes (N/O/Q)?

People Count: \# of people in group

Year: 1850-2000 (every decade)
Age: 0 - 90+
Sex: Male, Female
Marital Status: Single, Married, Divorced, ...

\triangle	A	B	C	D	E
1	year	age	marst	sex	people
2	1850	0	0	1	1483789
3	1850	0	0	2	1450376
4	1850	5	0	1	1411067
5	1850	5	0	2	1359668
6	1850	10	0	1	1260099
7	1850	10	0	2	1216114
8	1850	15	0	1	1077133
9	1850	15	0	2	1110619
10	1850	20	0	1	1017281
11	1850	20	0	2	1003841
12	1850	25	0	1	862547
13	1850	25	0	2	799482
14					

Expressiveness

A set of facts is expressible in a visual language if the sentences (i.e. the visualizations) in the language express all the facts in the set of data, and only the facts in the data. what the facts are.

Expressiveness

A set of facts is expressible in a visual language if the sentences (i.e. the visualizations) in the language express all the facts in the set of data, and only the facts in the data.

> Image models give us a way of talking about what is more readily perceived.

Effectiveness

A visualization is more effective than another if the information it conveys is more readily perceived than the information in the other visualization

Image Models

The Semiology of Graphics (1967)

Jacques Bertin (1918-2010) French cartographer

The Semiology of Graphics (1967) Study of signs and how cultures use them.

Jacques Bertin (1918-2010)
French cartographer

The Semiology of Graphics (1967)

 Study of signs and how cultures use them.
"Metal painted red"?

or

"Hit the brakes!"

Jacques Bertin (1918-2010) French cartographer

What do these signs signify?

1. A, B, C are distinguishable.
2. B is between A and C.
3. $B C$ is twice as long as $A B$.
"Resemblance, order, and proportion are the three signfields in graphics."
-Bertin

LES VARIABIEC nerimance

Visual Variables

Also called visual channels.

Used to encode data values as characteristics of marks.

* From 1967, so Bertin only accounted for visualizations that were printable on white paper.

Channels: Expressiveness Types and Effectiveness Ranks
Θ Magnitude Channels: Ordered Attributes
Position on common scale

Position on unaligned scale

Length (1D size) \qquad

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)
Θ Identity Channels: Categorical Attributes
Spatial region

Tamara Munzner, Visualization Analysis and Design (2014).

Channels: Expressiveness Types and Effectiveness Ranks

Channels: Expressiveness Types and Effectiveness Ranks
Θ Magnitude Channels: Ordered Attributes
Position on common scale
Θ Identity Channels: Categorical Attributes
Spatial region

Color hue

Motion

site
Crookston

Channels: Expressiveness Types and Effectiveness Ranks
Θ Magnitude Channels: Ordered Attributes
Position on common scale

Position on unaligned scale

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)

Tamara Munzner, Visualization Analysis and Design (2014).

Name that ehart!

Visual Encoding!

Percent of working-age people who said they had "serious difficulty" with ...

What about color?

1\%

1	1	1	1	1	1	1	
2009	2011	2013	2015	2017	2019	2021	2023

Drop off

Estimated monthly active Twitter/X users
\% change on a year earlier

Spotting a trend

Emigration from the Northern Triangle* to United States, by weather extremity, 2012-18

Emigration per 100,000 people

*El Salvador, Guatemala and Honduras \dagger Using the Standardised Precipitation-Evapotranspiration Index three-month average
Source: "Dry growing seasons predicted Central American migration to the US from 2012 to 2018", by A. Linke et al., 2023

Example from Lab 1

Mark: line
X-axis: date (Q-interval)
Y-axis: price (Q-ratio)
Color: symbol (N)

alt.Chart(stocks_df).mark_line().encode(x="date:T",
y="price",
color="symbol",
)

Mark: line

X-axis: date (Q-interval) Y-axis: price (Q-ratio) Color: symbol (N)

Notice how Altair lets us specify the mark, then the encodings!

Mark: point
X-axis: chance (Q-ratio)
Y-axis: ?? (nothing!)

- We thought the Red Sox had a 78\% chance of beating the Orioles on Sept. 26, 2018. They won.

Forecasted chance of winning

Join at

Next time: Visual Encoding \& Design

