Perception

DSC 106: Data Visualization

Sam Lau
UC San Diego

Join at
slido.com \#5872 640

An円@OUncen ents

Lab 2 due tomorrow 1/19.
Project 1 also due tomorrow 1/19.

FAQs:

1. How does project grading work? You get $9 / 10$ points if you follow all the project requirements. Can get more if your project goes above and beyond requirements (see project page for more details).
2. OH now have signup forms to distribute checkoffs, see Ed for more details.

Expressiveness

A set of facts is expressible in a visual language if the sentences (i.e. the visualizations) in the language express all the facts in the set of data, and only the facts in the data.

Effectiveness

A visualization is more effective than another if the information it conveys is more readily perceived than the information in the other visualization

Channels: Expressiveness Types and Effectiveness Ranks
Θ Magnitude Channels: Ordered Attributes
Position on common scale

Position on unaligned scale

Length (1D size) \qquad

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)
Θ Identity Channels: Categorical Attributes
Spatial region

Tamara Munzner, Visualization Analysis and Design (2014).

Channels: Expressiveness Types and Effectiveness Ranks
Θ Magnitude Channels: O or \mathbf{Q} attributes

Graphical Perception

The ability of viewers to interpret visual (graphical) encodings of information and thereby decode information in graphs.

Signal Detection

Magnitude Estimation

Pre-Attentive Processing

Selective Attention

Gestalt Grouping

Signal Detection

Discriminability: how easy is it to tell two things apart?

Magnitude Estimation

Pre-Attentive Processing

Selective Attention

Gestalt Grouping

Which is brighter?

rgb(128, 128, 128)

Join at
slido.com \#5872 640

rgb(144, 144, 144)

Which is brighter?

Join at
slido.com \#5872 640

Just Noticeable Difference (jnd)

Scale Factor
(Determined Empirically)

Change of Intensity

Ernst Weber
(1795-1878)
German physician and a founder of experimental psychology. I

Physical Intensity

Ratios more important than magnitude.
Most continuous variation in stimuli are perceived in discrete steps.
\square

Signal Detection

Discriminability: how easy is it to tell two things apart?

Magnitude Estimation

Pre-Attentive Processing

Selective Attention

Gestalt Grouping

Signal Detection

Magnitude Estimation

Accuracy: how correctly can we read off values?

Pre-Attentive Processing

Selective Attention

Gestalt Grouping

How much larger is the area of the big circle?

How much longer is the big bar?

How much larger is the area of the big circle?

How much longer is the big bar?

Stevens' Power Law

Physical Intensity

Predicts bias, not necessarily accuracy!
S. S. Stevens (1906-1972)

American psychologist, founded Harvard's Psychoacoustics Lab.

Physical Intensity

Stevens' Power Law

Sensation	Exponent
Loudness	0.6
Brightness	0.33
Smell	0.55 (Coffee) -0.6 (Heptane)
Taste	$0.6($ Saccharin $)-1.3($ Salt $)$
Temperature	$1.0($ Cold $)-1.6($ Warm $)$
Vibration	$0.6(250 \mathrm{~Hz})-0.95(60 \mathrm{~Hz})$
Duration	1.1
Pressure	1.1
Heaviness	1.45
Electric Shock	3.5

Graphical Perception Studies

TYPE 5

Figure 4. Graphs from position-length experiment.

Signal Detection

Magnitude Estimation

Accuracy: how correctly can we read off values?

Pre-Attentive Processing

Selective Attention

Gestalt Grouping

Signal Detection

Magnitude Estimation

Pre-Attentive Processing

Pop Out: how easy is it to spot some values from the rest?

Selective Attention

Gestalt Grouping

How many 3's?

1281768756138976546984506985604982826762 9809858458224509856458945098450980943585 9091030209905959595772564675050678904567 8845789809821677654876364908560912949686

How many 3's?

1281768756138976546984506985604982826762 9809858458224509856458945098450980943585 9091030209905959595772564675050678904567 8845789809821677654876364908560912949686

How immediately does our visual system perceive differences in a scene?

Pre-Attentive: immediately recognize variation with little or no conscious effort (<200-250 ms).

Attentive: Takes some deliberate effort to perceive differences.

Pre-Attentive Processing

Pre-Attentive: immediately recognize variation with little or no conscious effort (<200-250 ms).

Attentive: Takes some deliberate effort to perceive differences.

Visual Pop-Out: Color

Pre-Attentive Processing

Pre-Attentive: immediately recognize variation
with little or no conscious effort (<200-250 ms).

Attentive: Takes some deliberate effort to perceive differences.

Visual Pop-Out: Shape

Pre-Attentive Processing

Visual Pop-Out: Color Visual Pop-Out: Shape

Pre-Attentive: immediately recognize variation with little or no conscious effort (<200-250 ms).

Attentive: Takes some deliberate effort to perceive differences.

Feature Conjunctions

Pre－Attentive Processing

Visual Pop－Out：Color

Visual Pop－Out：Shape

Feature Conjunctions

Conjunctions are not pre－attentive except for spatial conjunctions：

Motion \＆3D disparity
Motion \＆color
Motion \＆shape
3D disparity \＆color
3D disparity \＆shape

$\begin{aligned} & \text { =- }-=-= \\ & =--=-=- \\ & =--=- \end{aligned}$

intensity，binocular lustre Gormican 88；Wolfe \＆Franzel

closure
Julész \＆Bergen 83

colour（hue） 90；D＇Zmura 91；Kawai et al． 9 Bauer et al．96；Healey 96；Baue
et al．98；Healey \＆Enns 99

$\underset{\text { Enns goa }}{\text { lighting direction }}$

Signal Detection

Magnitude Estimation

Pre-Attentive Processing

Pop Out: how easy is it to spot some values from the rest?

Selective Attention

Gestalt Grouping

Signal Detection

Magnitude Estimation

Pre-Attentive Processing

Selective Attention

> Separability: how much interaction occurs between attributes?

Gestalt Grouping

One-Dimensional: Lightness

One-Dimensional: Shape

Square

Circle

Circle

Square

Circle

Redundant: Shape \& Lightness

Orthogonal: Shape \& Lightness

Principles

Redundancy Gain

Improved performance when both
dimensions provide the same information.

Filtering Interference

Difficulty in ignoring one dimension while attending to another.

Principles

Redundancy Gain

Improved performance when both
dimensions provide the same information.

Filtering Interference

Difficulty in ignoring one dimension while attending to another.

Types of Dimensions

Separable

No interference or redundancy gain.

Integral

Filtering interference and redundancy gain.

Configural

Only interference. No redundancy gain.

Asymmetric

One dimension is separable from the other, but not vice versa.

Types of Dimensions

Separable

No interference or redundancy gain.
Integral
Filtering interference and redundancy gain.

Configural

Only interference. No redundancy gain.
Asymmetric
One dimension is separable from the other, but not vice versa.

Position \& Hue (Color)?

[Tamara Munzner, Visualization Analysis and Design (2014)]

Types of Dimensions

Separable

No interference or redundancy gain.
Integral
Filtering interference and redundancy gain.

Configural

Only interference. No redundancy gain.
Asymmetric
One dimension is separable from the other, but not vice versa.

Position \& Hue (Color)?

[Tamara Munzner, Visualization Analysis and Design (2014)]

Types of Dimensions

Separable

No interference or redundancy gain.

Integral

Filtering interference and redundancy gain.

Configural

Only interference. No redundancy gain.

Asymmetric

One dimension is separable from the other,

Size \& Orientation?

Types of Dimensions

Separable

No interference or redundancy gain.

Integral

Filtering interference and redundancy gain.

Configural

Only interference. No redundancy gain.

Asymmetric

One dimension is separable from the other,

Size \& Orientation?

Types of Dimensions

Separable

No interference or redundancy gain.

Integral

Filtering interference and redundancy gain.

Configural

Only interference. No redundancy gain.
Asymmetric
One dimension is separable from the other, but not vice versa.

[MacEachren 1995]

Types of Dimensions

Separable

No interference or redundancy gain.

Integral

Filtering interference and redundancy gain.

Configural

Only interference. No redundancy gain.
Asymmetric
One dimension is separable from the other, but not vice versa.

[MacEachren 1995]

Types of Dimensions

Separable

No interference or redundancy gain.

Integral

Filtering interference and redundancy gain.

Configural

Only interference. No redundancy gain.
Asymmetric
One dimension is separable from the other, but not vice versa.

Shape \& Size?

FIGURE 3.40. The bivariate temperature-precipitation map of Figure 3.36, this time using point symbols that vary in shape and size to represent the two quantities.

Types of Dimensions

Separable

No interference or redundancy gain.

Integral

Filtering interference and redundancy gain.

Configural

Only interference. No redundancy gain.
Asymmetric
One dimension is separable from the other, but not vice versa.

Shape \& Size?

FIGURE 3.40. The bivariate temperature-precipitation map of Figure 3.36, this time using point symbols that vary in shape and size to represent the two quantities.

Types of Dimensions

Separable

No interference or redundancy gain.

Integral

Filtering interference and redundancy gain.

Configural

Only interference. No redundancy gain.
Asymmetric
One dimension is separable from the other, but not vice versa.

Types of Dimensions

Separable

No interference or redundancy gain.

Integral

Filtering interference and redundancy gain.

Configural

Only interference. No redundancy gain.
Asymmetric
One dimension is separable from the other, but not vice versa.

Types of Dimensions

Separable

No interference or redundancy gain.
Integral
Filtering interference and redundancy gain.

Configural

Only interference. No redundancy gain.
Asymmetric
One dimension is separable from the other, but not vice versa.

[Tamara Munzner, Visualization Analysis and Design (2014)]

Types of Dimensions

Separable

No interference or redundancy gain.
Integral
Filtering interference and redundancy gain.

Configural

Only interference. No redundancy gain.
Asymmetric
One dimension is separable from the other, but not vice versa.

[Tamara Munzner, Visualization Analysis and Design (2014)]

Types of Dimensions

Separable

No interference or redundancy gain.
blue

Integral
Filtering interference and redundancy gain.

Configural

Only interference. No redundancy gain.

One dimension is separable from the other, but not vice versa.

Types of Dimensions

Separable

No interference or redundancy gain.

yellow

Integral
Filtering interference and redundancy gain.

Configural

Only interference. No redundancy gain.

green

Asymmetric
One dimension is separable from the other, but not vice versa.

Types of Dimensions

Separable

No interference or redundancy gain.

yellow

Integral
Filtering interference and redundancy gain.

Configural

Only interference. No redundancy gain.
Asymmetric
One dimension is separable from the other, but not vice versa.

Signal Detection

Magnitude Estimation

Pre-Attentive Processing

Selective Attention

> Separability: how much interaction occurs between attributes?

Gestalt Grouping

Signal Detection

Magnitude Estimation

Pre-Attentive Processing

Selective Attention

Gestalt Grouping

Gestalt Principles

Figure / Ground
Proximity
Similarity
Symmetry
Connectedness
Continuity
Closure
Common Fate

Gestalt Principles

Figure / Ground Proximity
Similarity
Symmetry
Connectedness
Continuity
Closure
Common Fate

Ambiguous - vase or faces?

Unambiguous (?)

Gestalt Principles

Gun deaths in Florida

Number of murders committed using firearms

Source: Florida Department of Law Enforcement

Gestalt Principles

Figure / Ground
Proximity
Similarity
Symmetry
Connectedness
Continuity
Closure
Common Fate

Coll

METRICS

Driving Shifts Into Reverse

CONOMISTS have long studied the relationship between driving habitsand gasoline prices. Low gas prices can bring periods of profligate driving, and a quick jump in prices can cause many vehicles to languish in garages.

Until recently, Americans have driven more each year than the previous one, th a cew brief exceptions. In 1956 Americans of driving age drove about loter that figure had climbed above 10,000 But the latest recession has caused me big changes. High unemploymen meant that fewer people were driving to work, and a slump in consumer spending
meant that less freight needed to be moved around the country. As gas prices oared in 2005, the number of miles driven including commercial and personal began to fall, and continued to drop after 2008 even as gasoline became cheaper. "People were surprised by the very rapid rise in gas prices, and they changed heir driving behavior," said Kenneth A University of California, Irvine "But my suspicion is that it is temporary. As soon uspicion is cyment gets back to pre-recession levels, we will see Americans doing a lot more driving again."
$7,000 \mathrm{mi}$.
$8,000 \mathrm{mi}$.
$9,000 \mathrm{mi}$.
10,000

Gestalt Principles

Figure / Ground
Proximity
Similarity
Symmetry
Connectedness
Continuity
Closure
Common Fate

Gestalt Principles

Figure / Ground
Proximity
Similarity
Symmetry
Connectedness
Continuity
Closure

Rows dominate due to similarity.

Gestalt Principles

Figure / Ground

Proximity
Similarity
Symmetry
Connectedness
Continuity
Closure
Common Fate

Bilateral symmetry gives the strong sense of a figure.

Gestalt Principles

Figure / Ground
Proximity
Similarity
Symmetry
Connectedness
Continuity
Closure
Common Fate

Connectedness overrules proximity, size, color, shape, etc.

Figure / Ground
Proximity
Similarity
Symmetry
Connectedness
Continuity
Closure
Common Fate

We prefer smooth, not abrupt, changes.

Connections are clearer with smooth contours.

Gestalt Principles
Figure / Ground
Proximity
Similarity
Symmetry
Connectedness
Continuity
Closure
Common Fate

Gestalt Principles

Figure / Ground
Proximity
Similarity
Symmetry
Connectedness
Continuity
Closure
Common Fate

We see a circle behind a rectangle, not a broken circle.

Gestalt Principles

Figure / Ground
Proximity
Similarity
Symmetry
Connectedness
Continuity
Closure
Common Fate

Dots moving together are grouped.

Signal Detection

Magnitude Estimation

Pre-Attentive Processing
Selective Attention

Gestalt Grouping

Use 4-5 steps for most channels, hard for people to distinguish more

Even a direct map to e.g. area or brightness won't always work.

Use channels that are pre-attentive for callouts e.g. color, shape.
...but be careful with combinations of channels!

Use these to improve annotations, coloring, animations.

