Color

DSC 106: Data Visualization

Sam Lau
UC San Diego

Join at
slido.com \#3972 640

Announcements

Lab 3 (JavaScript) out, checkoffs due 1/26.
Project 2 out, due on Friday 2/2.
In-person OH moved to HDSI 355 (not 1st floor!)
Sam's OH moved to 1 pm on Thurs, not 2 pm

FAQs:

1. When will Project 1 be graded? Aiming for Friday.

Project 2: Deceptive Visualization

Task: Create two static visualizations. One is earnest. One is deceptive.
Earnest = understandable, appropriate encodings, transparent
Deceptive = deliberately misleading, biased headings, not transparent.
Should be hard to tell which one is deceptive! Can't lie (e.g. change data values).

You will peer review 3 other students' submissions.

Quick Poll

1. Did you feel like you could get adequate OH help for Project 1 ?

Quick Poll

1. Did you feel like you could get adequate OH help for Project 1 ?
2. Are you in favor of setting aside OH specifically for project questions?

Modeling Color Perception

Low-Level

Abstraction

High-Level

Physical World
Visual System
Mental Models

Modeling Color Perception

Low-Level

Physical World

Visible Light

Visual System

Opponent Encoding

Perceptual Models

Mental Models

Appearance
Models
"Teal"

Cognitive Models

Visible Light

Light is an electromagnetic wave.
Wavelength (λ) between 370nm - 730nm.
Color depends on the spectral distribution function (or spectrum): distribution of "relative luminance" at each wavelength.

Area under the spectrum is intensity: or how bright each wavelength is.

Visible Light

Light is an electromagnetic wave.
Wavelength (λ) between 370nm-730nm.
Color depends on the spectral distribution

Additive (digital displays)

Subtractive: Start from a white spotlight, and materials absorb specific λs (e.g., RYB or CMYK).

Modeling Color Perception

Low-Level

Physical World

Visible Light

Visual System

Opponent Encoding

Perceptual Models

Mental Models

Appearance
Models
"Teal"

Cognitive Models

Modeling Color Perception

Low-Level

The Retina

Photoreceptors on retina are responsible for vision: rods - low-light levels, poor spatial acuity, little color vision

The Retina

Photoreceptors on retina are responsible for vision:
rods - low-light levels, poor spatial acuity, little color vision cones- sensitive to different wavelengths = color vision! short, middle, long ~ blue, green, red

The Retina

Firefox and Chrome have built in simulators.

The Retina

Photoreceptors on retina are responsible for vision:
rods - low-light levels, poor spatial acuity, little color vision cones- sensitive to different wavelengths = color vision! short, middle, long ~ blue, green, red

The Retina

Photoreceptors on retina are responsible for vision:
rods - low-light levels, poor spatial acuity, little color vision cones- sensitive to different wavelengths = color vision! short, middle, long ~ blue, green, red integrate against different input stimuli

Input Stimulus

Cone Response Curves

Product

tri-stimulus response - color can be modeled as 3 values.

The Retina

Photoreceptors on retina are responsible for vision:
rods - low-light levels, poor spatial acuity, little color vision cones- sensitive to different wavelengths = color vision! long, middle, short ~ red, green, blue integrate against different input stimuli tri-stimulus response - color can be modeled as 3 values.

metamers-spectra that stimulate the same LMS response are indistinguishable.

CIE XYZ
 Color space standardized in 1931 to mathematically represent tri-stimulus response curves.

Color space standardized in 1931 to mathematically represent tri-stimulus response curves.

CIE XYZ Color Space

Project into a 2D plane to separate colorfulness from brightness.

$$
\begin{aligned}
& x=\frac{X}{X+Y+Z} \\
& y=\frac{Y}{X+Y+Z} \\
& 1=x+y+z
\end{aligned}
$$

CIE XYZ Color Space

$$
\begin{aligned}
& x=\frac{X}{X+Y+Z} \\
& y=\frac{Y}{X+Y+Z} \\
& 1=x+y+z
\end{aligned}
$$

Spectral locus - set of pure colors (i.e., lasers of a single wavelength).

Slowly shifts from $S \rightarrow M \rightarrow L$.

CIE XYZ Color Space

Display gamut = portion of the color space that can be reproduced by a display.

CIE XYZ Color Space

Display gamut = portion of the color space that can be reproduced by a display.

CIE XYZ Color Space

Displaygamut = portion of the color space that can be reproduced by a display.

The angry rainbow in sRGB.
Corners of sRGB \square
Photoshop grayscale \square
\square
No linear brightness gradient within a single hue.

Modeling Color Perception

Low-Level

Modeling Color Perception

Low-Level
Abstraction

Physical World

Visual System

Opponent Encoding

Mental Models

Appearance
Models
"Teal"

Cognitive Models

Opponent Encoding

CIE LAB Color Space

Axes correspond to opponent signals:
L* = luminance
$a^{*}=$ red-green contrast
$b^{*}=$ yellow-blue contrast

CIE LAB Color Space

Axes correspond to opponent signals:
$\mathrm{L}^{*}=$ luminance
$\mathrm{a}^{*}=$ red-green contrast
$b^{*}=$ yellow-blue contrast

CIE LAB Color Space

More perceptually uniform than sRGB.
Scaling of axes such that distance in color space is proportional to perceptual distance.

A happier rainbow in LAB.

Modeling Color Perception

Low-Level
Abstraction

Physical World

Visual System

Opponent Encoding

Mental Models

Appearance
Models
"Teal"

Cognitive Models

Modeling Color Perception

Low-Level

Mental Models

Perceptual
Models

Appearance Models
"Teal"

Cognitive Models

Simultaneous Contrast

The inner and outer thin rings are, in fact, the same physical purple!

Simultaneous Contrast

When two colors are side-by-side, they interact and affect our perception

Simultaneous Contrast

When two colors are side-by-side, they interact and affect our perception

Simultaneous Contrast

When two colors are side-by-side, they interact and affect our perception

Bezold Effect

Color appearance depends on adjacent colors
E.g., adding a dark border around a color can the color appear darker.

Chromatic Adaptation

Our ability to adjust to color perception based on illumination

Chromatic Adaptation

Our ability to adjust to color perception based on illumination

Chromatic Adaptation

Our ability to adjust to color perception based on illumination

Quantitative Color Encoding

Sequential Color Scale

Ramp in luminance, possibly also hue.
Typically higher values map to darker colors.

Diverging Color Scale
Useful when data has a meaningful "midpoint." Use neutral color (e.g., gray) for midpoint. Use saturated colors for endpoints.

Limit number of steps in color to 3-9

Modeling Color Perception

Low-Level

Mental Models

Visible
Light

Cone
Response

Opponent Encoding

Perceptual Models

Appearance Models
"Teal"

Cognitive Models

Modeling Color Perception

Low-Level
High-Level

Physical World

Visual System

Mental Models

Appearance
Models

What color is this?

"Yellow"

What color is this?

What color is this?

"Blue"

What color is this?

Color Naming

Is color naming universal? Do languages evolve color terms in similar ways?

Berlin \& Kay, Basic Color Terms. 1969.
Surveyed speakers from 20 languages. Literature from 69 languages.

World Color Survey. 1976.
110 languages (including tribal), 25
speakers each.
Analysis published in 2009.

Color Naming

Is color naming universal? Do languages evolve color terms in similar ways?

Berlin \& Kay, Basic Color Terms. 1969.
Surveyed speakers from 20 languages. Literature from 69 languages.

World Color Survey. 1976.
110 languages (including tribal), 25 speakers each.
Analysis published in 2009.

Name 320 Munsell color chips. (Shares perceptual properties with CIE LAB, but predates it.)

Color Naming

Is color naming universal? Do languages evolve color terms in similar ways?

Berlin \& Kay, Basic Color Terms. 1969.
Surveyed speakers from 20 languages. Literature from 69 languages.

World Color Survey. 1976.
110 languages (including tribal), 25 speakers each.
Analysis published in 2009.

+10 achromatic chips

Color Naming

Is color naming universal? Do languages evolve color terms in similar ways?

WCS stimulus array. For each basic color term (t) participants named, they were asked:

1. Mark all chips that you would call t.
2. Which chip is the best example(s) of t.

Color Naming

Is color naming universal? Do languages evolve color terms in similar ways?

Color Naming

Is color naming universal? Do languages evolve color terms in similar ways?

Basic color terms recur across languages:
\square White \square Black \square Grey
\square Red $\quad \square$ Yellow
\square Green \square Blue
\square Pink \square Brown
\square Orange \square Purple

Color Naming

Is color naming universal? Do languages evolve color terms in similar ways?

Winawer et al, 2007.
Russian makes obligatory distinction between lighter blues ("goluboy") and darker blues ("siniy").

Russian speakers were faster at discriminating 2 colors if they fell into different categories (1 siniy, 1 goluboy) than if they were both from the same category (both siniy, or both goluboy).

Color Naming Effects Perception

Color Naming Effects Perception

Minimize overlap and ambiguity of colors.

Color Name Distance										Salience	Name
0.00	1.00	1.00	1.00	0.96	1.00	1.00	0.99	1.00	0.19	. 47	blue 65.3\%
1.00	0.00	1.00	0.98	1.00	1.100	1.00	1.00	0.97	1.00	. 87	orange 92.2\%
1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.70	0.99	. 70	green 81.3\%
1.00	0.98	1.00	0.00	1.00	0.96	0.99	1.00	1.00	1.00	. 64	red 79.3\%
0.96	1.00	1.00	1.00	0.00	0.95	0.83	0.98	1.00	0.97	. 43	purple 52.5\%
1.00	1.00	1.00	0.96	0.95	0.00	0.99	0.96	0.96	1.00	. 47	brown 60.5\%
1.00	1.00	1.00	0.99	0.83	0.99	0.00	1.00	1.00	1.00	. 47	pink 60.3\%
0.99	1.00	1.00	1.00	0.98	0.96	1.00	0.00	1.00	0.99	. 74	grey 83.7\%
1.00	0.97	0.70	1.00	1.00	0.96	1.00	1.00	0.00	1.00	. 11	yellow 20.1%
0.19	1.00	0.99	1.00	0.97	1.00	1.00	0.99	1.00	0.00	. 25	blue 27.2\%
Tableau-10							Average 0.96			. 52	

Color Naming Effects Perception

Minimize overlap and ambiguity of colors.

http://vis.stanford.edu/color-names/analyzer/

Color Naming Effects Perception

Minimize overlap and ambiguity of colors. Select semantically resonant colors.

Fruits	A	E	Vegetables	A	E
Apple			Carrot		
Banana			Celery		
Blueberry			Corn		
Cherry			Eggplant		
Grape			Mushroom		
Peach			Olive		
Tangerine			Tomato		
Drinks	A	E	Brands	A	E
A\&W Root Beer			Apple		
Coca-Cola			AT\&T		
Dr. Pepper			Home Depot		
Pepsi			Kodak		
Sprite			Starbucks		
Sunkist			Target		
Welch's Grape			Yahoo!		

Figure 6: Color assignments for categorical values in Experiment 1. $(A=$ Algorithm, $E=$ Expert $)$
https://github.com/StanfordHCl/semantic-colors

Putting it together: Designing colormaps

Discrete (binary, categorical)

Symbol Legend

Continuous (sequential, diverging, cyclic)

Gradient Legend

0	10	20	30	40	50	60	70	80	90	100

Discretized Continuous

Discrete Gradient

Categorical Color

Color Naming Effects Perception

Minimize overlap and ambiguity of colors.

Color Name Distance										Salience	Name
0.00	1.00	1.00	1.00	0.96	1.00	1.00	0.99	1.00	0.19	. 47	blue 65.3\%
1.00	0.00	1.00	0.98	1.00	1.100	1.00	1.00	0.97	1.00	. 87	orange 92.2\%
1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.70	0.99	. 70	green 81.3\%
1.00	0.98	1.00	0.00	1.00	0.96	0.99	1.00	1.00	1.00	. 64	red 79.3\%
0.96	1.00	1.00	1.00	0.00	0.95	0.83	0.98	1.00	0.97	. 43	purple 52.5\%
1.00	1.00	1.00	0.96	0.95	0.00	0.99	0.96	0.96	1.00	. 47	brown 60.5\%
1.00	1.00	1.00	0.99	0.83	0.99	0.00	1.00	1.00	1.00	. 47	pink 60.3\%
0.99	1.00	1.00	1.00	0.98	0.96	1.00	0.00	1.00	0.99	. 74	grey 83.7\%
1.00	0.97	0.70	1.00	1.00	0.96	1.00	1.00	0.00	1.00	. 11	yellow 20.1%
0.19	1.00	0.99	1.00	0.97	1.00	1.00	0.99	1.00	0.00	. 25	blue 27.2\%
Tableau-10							Average 0.96			. 52	

Quantitative Color

Be Wary of Naive Rainbows!

Recommend using quantiles instead of even bins

ICD-9 Can sories 390-398
$402,404-42$)
402, 404-4

Quantitative Color Encoding

Sequential Color Scale

Ramp in luminance, possibly also hue.
Typically higher values map to darker colors.

Diverging Color Scale
Useful when data has a meaningful "midpoint." Use neutral color (e.g., gray) for midpoint. Use saturated colors for endpoints.

Limit number of steps in color to 3-9

Sequential Scales: Multi-Hue

Perceptual deltas (total: 141.79)

Moderate deuteranomaly

Complete deuteranopia

Viridis, https://bids.github.io/colormap/

Diverging Color Schemes

Summary

Use only a few colors (~6 ideally).
Colors should be distinctive and named.
Strive for color harmony (natural colors?).
Use/respect cultural conventions; appreciate symbolism.
Get it right in black and white.
Respect the color blind.
Take advantage of perceptual color spaces.

