
Lecture 01 | Part 1

What is Machine Learning??

What is Machine Learning?

▶ Computers can do things very quickly.

▶ But must be given really specific instructions.

▶ Problem: Not all tasks are easy to dictate.

What is Machine Learning?

▶ Computers can do things very quickly.

▶ But must be given really specific instructions.

▶ Problem: Not all tasks are easy to dictate.

What is Machine Learning?

▶ Computers can do things very quickly.

▶ But must be given really specific instructions.

▶ Problem: Not all tasks are easy to dictate.

Example

How old is this person?

The Trick: Use Data

age = 28 age = 42 age = 63 age = 24

age = 37 age = 39 age = ? age = 35

What is Machine Learning?

▶ Before: Computer is told how to do a task.

▶ Instead: learn how to do a task using data.

▶ We still have to tell the computer how to learn.

What is Machine Learning?

▶ Before: Computer is told how to do a task.

▶ Instead: learn how to do a task using data.

▶ We still have to tell the computer how to learn.

A machine learning algorithm is a set of precise
instructions telling the computer how to learn from
data.

A machine learning algorithm is a set of precise
instructions telling the computer how to learn from
data.

Spoiler: the algorithms are usually pretty simple. It’s
the data that does the real work.

Machine Learning Tasks

▶ Prediction

▶ Clustering

▶ Representation Learning

▶ Reinforcement Learning

▶ Anomaly Detection

▶ …

Machine Learning Tasks

▶ Prediction

▶ Clustering

▶ Representation Learning

▶ Reinforcement Learning

▶ Anomaly Detection

▶ …

But first...

Syllabus: dsc140a.com

dsc140a.com

Lecture 01 | Part 2

A Simple Prediction Algorithm

Penguin Prediction

1

▶ Task: given a new penguin, predict its species.
1Artwork by @allison_horst

First Step: Featurization

▶ We represent each penguin as a collection of
measurements (a feature vector).

▶ Most often, features are numerical.

▶ Why?
1. Computers process numbers (not penguins).
2. Allows us to use mathematical machinery.

First Step: Featurization

▶ Chosen features should contain enough info to
distinguish between species.

▶ We will represent each penguin by two numbers:
1. Body Mass (in grams)
2. Bill Length (in millimeters)

▶ Allows us to embed penguins as point cloud in
ℝ2.

Penguin Embedding

3000 3500 4000 4500 5000 5500 6000
Body Mass (g)

35

40

45

50

55

60

Bi
ll

Le
ng

th
 (m

m
)

Penguin Embedding

3000 3500 4000 4500 5000 5500 6000
Body Mass (g)

35

40

45

50

55

60

Bi
ll

Le
ng

th
 (m

m
)

Adelie
Gentoo
Chinstrap

Exercise

We see a new penguin with body mass of 5300 g
and bill length of 46 mm. What is its species, most
likely?

3000 3500 4000 4500 5000 5500 6000
Body Mass (g)

35

40

45

50

55

60

Bi
ll

Le
ng

th
 (m

m
)

Adelie
Gentoo
Chinstrap

A Simple Intuition

▶ New penguin’s embedding is close to Gentoo
penguins ⟹ it is mostly likely also Gentoo.

▶ Our Assumption: locality. Similar inputs have
similar outputs.

A Simple Prediction Algorithm

▶ Data: a set of penguins (as feature vectors) and
their species.

▶ Given: a new penguin whose species is unknown.

▶ Predict:
1. Find the nearest penguin whose species is known.
2. Use that penguin’s species as our prediction.

Nearest Neighbor Classification

▶ Data: a set D of 𝑛 feature vectors with labels:
{(⃗𝑥(𝑖), 𝑦𝑖)} = {(⃗𝑥(1), 𝑦1), … , (⃗𝑥(𝑛), 𝑦𝑛)}

▶ Given: a new point, ⃗𝑧 with unknown label.

▶ Predict:
1. Find the closest point to ⃗𝑧 in D:

𝑖∗ = argmin
𝑖∈{1,…,𝑛}

‖ ⃗𝑥(𝑖) − ⃗𝑧‖

2. Use 𝑦𝑖∗ as the predicted label.

A Note About Distances

▶ We found the nearest neighbor with Euclidean
distance:

‖�⃗� − �⃗�‖ = √(𝑝1 − 𝑞1)2 + … + (𝑝𝑑 − 𝑞𝑑)2

= √
𝑑

∑
𝑘=1
(𝑝𝑘 − 𝑞𝑘)2

= √(�⃗� − �⃗�) ⋅ (�⃗� − �⃗�)

▶ Note that this is just one choice – there are other
valid distances. E.g., cosine distance.

Exercise

We see a new penguin with body mass of 4800 g
and bill length of 53 mm. What is its species, most
likely?

3000 3500 4000 4500 5000 5500 6000
Body Mass (g)

35

40

45

50

55

60

Bi
ll

Le
ng

th
 (m

m
)

Adelie
Gentoo
Chinstrap

Scale Matters!

▶ Not just a visual trick – Euclidean distance treats
all directions the same.

▶ Example. Suppose 𝑃 = (5000𝑔, 45𝑚𝑚). Both of
these penguins are the same distance away:

𝑄1 = (5050𝑔, 45𝑚𝑚) 𝑄2 = (5000𝑔, 95𝑚𝑚)

A Common Fix

▶ It is sometimes useful to scale each feature
independently.

▶ E.g., through standardization:

(new body mass) = (old body mass) − (mean body mass)(std. body mass)

▶ Not always the right approach, though!

Standardized Penguins

2 1 0 1 2
Body Mass (su)

2

1

0

1

2

3

Bi
ll

Le
ng

th
 (s

u)

Adelie
Gentoo
Chinstrap

The Decision Boundary
▶ We can visualize the prediction for every possible input.
▶ Decision boundary: where the prediction changes.

2 1 0 1 2
Body Mass (su)

2

1

0

1

2

3

Bi
ll

Le
ng

th
 (s

u)

Adelie
Gentoo
Chinstrap

Exercise

What will the decision boundary look like for our
NN penguin classifier?

2 1 0 1 2
Body Mass (su)

2

1

0

1

2

3

Bi
ll

Le
ng

th
 (s

u)

Adelie
Gentoo
Chinstrap

The Decision Boundary

2 1 0 1 2 3
Body Mass (su)

2

1

0

1

2

3

Bi
ll

Le
ng

th
 (s

u)

Adelie
Gentoo
Chinstrap

𝑘-Nearest Neighbors

▶ Before: single closest neighbor determined
prediction.

▶ Idea: have 𝑘 closest neighbors “vote”.

▶ Can be useful to reduce noise.

Choosing 𝑘
▶ The number of neighbors, 𝑘, is a hyperparameter
of the algorithm.

▶ We typically choose 𝑘 to be odd to break ties.

▶ One approach: choose 𝑘 with a validation set.

𝑘 and the Decision Boundary
▶ How might the decision boundary change as we
increase 𝑘?

2 1 0 1 2 3
Body Mass (su)

2

1

0

1

2

3

Bi
ll

Le
ng

th
 (s

u)

Adelie
Gentoo
Chinstrap

𝑘 = 1

𝑘 and the Decision Boundary
▶ How might the decision boundary change as we
increase 𝑘?

2 1 0 1 2 3
Body Mass (su)

2

1

0

1

2

3

Bi
ll

Le
ng

th
 (s

u)

Adelie
Gentoo
Chinstrap

𝑘 = 10

𝑘 and the Decision Boundary
▶ How might the decision boundary change as we
increase 𝑘?

2 1 0 1 2 3
Body Mass (su)

2

1

0

1

2

3

Bi
ll

Le
ng

th
 (s

u)

Adelie
Gentoo
Chinstrap

𝑘 = 20

𝑘 and “Complexity”

▶ 𝑘 controls the “complexity” of the decision
boundary.

▶ Recall overfitting: when predictor learns
patterns that do not appear outside of the
training data.

▶ 𝑘 can be used to control overfitting.

Exercise

What the prediction be if we set 𝑘 = 𝑛?

Nearest Neighbor Regression

▶ The nearest neighbor rule can be used for
regression, too.

A Simple Prediction Algorithm

3000 3500 4000 4500
Body Mass (g)

180

185

190

195

200

205

210

Fl
ip

pe
r L

en
gt

h
(m

m
)

Exercise

We see a new penguin with body mass of 4000 g.
What is a likely flipper length for this penguin?

3000 3500 4000 4500
Body Mass (g)

180

185

190

195

200

205

210

Fl
ip

pe
r L

en
gt

h
(m

m
)

A Simple Prediction Algorithm

▶ Data: a set of penguins (as feature vectors) and
their flipper lengths.

▶ Given: a new penguin whose flipper length is
unknown.

▶ Predict:
1. Find the nearest penguin whose species is known.
2. Use that penguin’s flipper length as our prediction.

Nearest Neighbor Regression

▶ Data: a set D of 𝑛 feature vectors with targets:
{(⃗𝑥(𝑖), 𝑦𝑖)} = {(⃗𝑥(1), 𝑦1), … , (⃗𝑥(𝑛), 𝑦𝑛)}

▶ Given: a new point, ⃗𝑧 with unknown target.

▶ Predict:
1. Find the closest point to ⃗𝑧 in D:

𝑖∗ = argmin
𝑖∈{1,…,𝑛}

‖ ⃗𝑥(𝑖) − ⃗𝑧‖

2. Use 𝑦𝑖∗ as the predicted target.

𝑘NN Regression

▶ As with classification, can generalize to 𝑘 nearest
neighbors.

▶ Natural prediction: the mean of the targets of
the 𝑘 closest neighbors.

𝑘𝑁𝑁 Penguin Regression

2500 3000 3500 4000 4500 5000
Body Mass (g)

180

185

190

195

200

205

210

Fl
ip

pe
r L

en
gt

h
(m

m
)

k = 1

𝑘𝑁𝑁 Penguin Regression

2500 3000 3500 4000 4500 5000
Body Mass (g)

180

185

190

195

200

205

210

Fl
ip

pe
r L

en
gt

h
(m

m
)

k = 10

𝑘𝑁𝑁 Penguin Regression

2500 3000 3500 4000 4500 5000
Body Mass (g)

180

185

190

195

200

205

210

Fl
ip

pe
r L

en
gt

h
(m

m
)

k = 20

Lecture 01 | Part 3

Demo: Classifying Handwritten Digits

The Problem

▶ Given an image of a handwritten digit.

▶ Classify the image as a one, two, three, etc.

The Machine Learning Approach

▶ Gather a training set of images with labels.

▶ Let the computer learn the underlying patterns.

▶ We’ll use a freely available data set, MNIST:

MNIST

▶ 60,000 training images and associated labels.

▶ Each image is 28 × 28 pixels.

▶ Each pixel is 8 bit grayscale (0 - 255)

kNN on MNIST

▶ We’ll use kNN to do character recognition.
▶ X = set of 28 × 28, 8-bit grayscale images
▶ Y = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

▶ How do we represent an image as a feature
vector?

Images as Feature Vectors

Images as Feature Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

Images as Feature Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

Images as Feature Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

Images as Feature Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

Images as Feature Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

Images as Feature Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

Images as Feature Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

Images as Feature Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

Images as Feature Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

Images as Feature Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

Images as Feature Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

Euclidean Distance Between Images

▶ We “unroll” a 28 × 28 image into a vector in ℝ784.

▶ Euclidean distance between two images �⃗�(1), �⃗�(2)
in ℝ784:

‖�⃗�(1) − �⃗�(2)‖ = √(𝑝(1)1 − 𝑝(2)1)
2
+ (𝑝(1)2 − 𝑝(2)2)

2
+ … + (𝑝(1)784 − 𝑝

(2)
784)

2

= √
784

∑
𝑖=1
(𝑝(1)𝑖 − 𝑝(2)𝑖)

2

How well does it work?

▶ Does this make accurate predictions?

▶ Use 1-NN to classify each image in training set.

▶ Question: What will be the accuracy?

error = # incorrect predictions60,000

How well does it work?

▶ The error will be 0!

▶ Accuracy on training set is misleading,
overly-optimistic.

▶ MNIST also includes a test set of 10,000 images
and labels. Let’s test on this set.

The Test Error

▶ Test set contains 1,000 images from each digit.

▶ Suppose our classifier always guesses 7.
Question: what will be the test error?

▶ Answer: 90%.

The Test Error

▶ Test set contains 1,000 images from each digit.

▶ Suppose our classifier always guesses 7.
Question: what will be the test error?

▶ Answer: 90%.

The Test Error

▶ Test set contains 1,000 images from each digit.

▶ Suppose our classifier guesses at random.
Question: what is the expected test error?

▶ Answer: 90%.

The Test Error

▶ Test set contains 1,000 images from each digit.

▶ Suppose our classifier guesses at random.
Question: what is the expected test error?

▶ Answer: 90%.

The Test Error

▶ The test error of nearest neighbor is only 3.09%.

▶ Examples of errors:

Input:

NN:

Does k-NN do better?

𝑘 1 3 5 7 9 11

Test Error (%): 3.09 2.94 3.13 3.10 3.43 3.34

Lecture 01 | Part 4

The End?

The End?

▶ We have developed a simple prediction
algorithm: 𝑘-nearest neighbors.

▶ Often works well!

▶ Have we “solved” machine learning?

No

▶ Nearest neighbor predictors have significant
limitations in two areas:

1. Computational efficiency

2. Predictive performance

Computational Efficiency

▶ Three main areas to consider when evaluating
efficiency:
1. Time taken to train the model.
2. Memory taken to store the trained model.
3. Time taken to predict.

Time Taken in Training

▶ “Training” a NN predictor is trivial.
▶ The training data is simply stored.

▶ Takes very little time.

Memory Taken by Trained Model

▶ In NN predictors, the model is the training data.

▶ We store the entire training data.

▶ Potentially very costly.

Time Taken in Prediction

▶ To predict, we search the entire training set for
the nearest neighbor(s): Θ(𝑛𝑑) time.

▶ Also potentially very costly.

Analogy: Studying

▶ Approach #1: do many practice problem to learn
core principles, recognize patterns.

▶ I.e., learn “compressed” knowledge.

▶ During the exam, answer unseen questions by
reasoning.

Analogy: Studying

▶ Approach #2: memorize answers to practice
problems.

▶ During the exam, answer each question by
finding most similar practice question.

Analogy: Studying

▶ Approach #2 is most similar to nearest neighbor.

▶ Can we find methods that work like approach #1?

Note

▶ There are methods for improving the efficiency
of NN predictors.
▶ Approximate NN search, 𝑘 − 𝑑 trees, thinning the data,
etc.

▶ However, they break down in high dimensions
(many features).

Predictive Performance

▶ NN predictors can work quite well.

▶ Still, often outperformed by other methods,
especially when many features are used.

The Main Problem

▶ Nearest neighbor approaches do not learn which
features are useful and which are not.

Example

▶ Suppose all Adelie penguins weigh less than all
Gentoo penguins.

▶ I.e., we can predict perfectly based on body
mass alone.

Example: One Noisy Feature
▶ Suppose we add a feature that is total noise.
▶ Still enough information to perfectly classify.
▶ 1-NN: 98% test accuracy.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Body Mass (su)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

No
ise

 Fe
at

ur
e

#1

Gentoo
Adelie

Example: Two Noisy Features
▶ Suppose we add a second feature that is total noise.
▶ Still enough information to perfectly classify.
▶ 1-NN: 95% test accuracy (-3%).

Body Mass (su)

1.0
0.5

0.0
0.5

1.0 Nois
e F

ea
tur

e #
1

1.0
0.5

0.0
0.5

1.0

No
ise

 Fe
at

ur
e

#2

1.0

0.5

0.0

0.5

1.0

Example: Noisy Features
▶ No matter how many noisy features we add, there is
enough information to classify perfectly.

▶ But 1-NN performance degrades with # of (noisy) features:

0 200 400 600 800 1000
of noise features

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Explanation

▶ Euclidean distance treats all features the same.
▶ Even those that are pure noise.

▶ NN does not learn which features are useful.2

▶ Distance becomes less meaningful as noisy
features are added.

2For extensions of kNN which learn a distance metric from data, see:
(Weinberger and Saul, 2009; Goldberger et al., 2005; Shalev-Shwartz et al.,
2004)

Summary

▶ 𝑘NN prediction is simple and can work well.

▶ It may be computationally intensive.

▶ It does not:
▶ “learn” in the sense of “compressing knowledge”.
▶ learn which features are useful.

Next time...

▶ A different approach that attempts to learn a
“weight” for each feature.

