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What is Machine Learning??



What is Machine Learning?

▶ Computers can do things very quickly.

▶ But must be given really specific instructions.

▶ Problem: Not all tasks are easy to dictate.
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▶ Computers can do things very quickly.

▶ But must be given really specific instructions.

▶ Problem: Not all tasks are easy to dictate.



Example

How old is this person?



The Trick: Use Data

age = 28 age = 42 age = 63 age = 24

age = 37 age = 39 age = ? age = 35



What is Machine Learning?

▶ Before: Computer is told how to do a task.

▶ Instead: learn how to do a task using data.

▶ We still have to tell the computer how to learn.
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A machine learning algorithm is a set of precise
instructions telling the computer how to learn from
data.



A machine learning algorithm is a set of precise
instructions telling the computer how to learn from
data.

Spoiler: the algorithms are usually pretty simple. It’s
the data that does the real work.



Machine Learning Tasks

▶ Prediction

▶ Clustering

▶ Representation Learning

▶ Reinforcement Learning

▶ Anomaly Detection

▶ …
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▶ Clustering

▶ Representation Learning

▶ Reinforcement Learning

▶ Anomaly Detection
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But first...
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A Simple Prediction Algorithm



Penguin Prediction

1

▶ Task: given a new penguin, predict its species.
1Artwork by @allison_horst



First Step: Featurization

▶ We represent each penguin as a collection of
measurements (a feature vector).

▶ Most often, features are numerical.

▶ Why?
1. Computers process numbers (not penguins).
2. Allows us to use mathematical machinery.



First Step: Featurization

▶ Chosen features should contain enough info to
distinguish between species.

▶ We will represent each penguin by two numbers:
1. Body Mass (in grams)
2. Bill Length (in millimeters)

▶ Allows us to embed penguins as point cloud in
ℝ2.



Penguin Embedding
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Exercise

We see a new penguin with body mass of 5300 g
and bill length of 46 mm. What is its species, most
likely?
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A Simple Intuition

▶ New penguin’s embedding is close to Gentoo
penguins ⟹ it is mostly likely also Gentoo.

▶ Our Assumption: locality. Similar inputs have
similar outputs.



A Simple Prediction Algorithm

▶ Data: a set of penguins (as feature vectors) and
their species.

▶ Given: a new penguin whose species is unknown.

▶ Predict:
1. Find the nearest penguin whose species is known.
2. Use that penguin’s species as our prediction.



Nearest Neighbor Classification

▶ Data: a set D of 𝑛 feature vectors with labels:
{( ⃗𝑥(𝑖), 𝑦𝑖)} = {( ⃗𝑥(1), 𝑦1), … , ( ⃗𝑥(𝑛), 𝑦𝑛)}

▶ Given: a new point, ⃗𝑧 with unknown label.

▶ Predict:
1. Find the closest point to ⃗𝑧 in D:

𝑖∗ = argmin
𝑖∈{1,…,𝑛}

‖ ⃗𝑥(𝑖) − ⃗𝑧‖

2. Use 𝑦𝑖∗ as the predicted label.



A Note About Distances

▶ We found the nearest neighbor with Euclidean
distance:

‖�⃗� − �⃗�‖ = √(𝑝1 − 𝑞1)2 + … + (𝑝𝑑 − 𝑞𝑑)2

= √
𝑑

∑
𝑘=1
(𝑝𝑘 − 𝑞𝑘)2

= √(�⃗� − �⃗�) ⋅ (�⃗� − �⃗�)

▶ Note that this is just one choice – there are other
valid distances. E.g., cosine distance.



Exercise

We see a new penguin with body mass of 4800 g
and bill length of 53 mm. What is its species, most
likely?
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Scale Matters!

▶ Not just a visual trick – Euclidean distance treats
all directions the same.

▶ Example. Suppose 𝑃 = (5000𝑔, 45𝑚𝑚). Both of
these penguins are the same distance away:

𝑄1 = (5050𝑔, 45𝑚𝑚) 𝑄2 = (5000𝑔, 95𝑚𝑚)



A Common Fix

▶ It is sometimes useful to scale each feature
independently.

▶ E.g., through standardization:

(new body mass) = (old body mass) − (mean body mass)(std. body mass)

▶ Not always the right approach, though!



Standardized Penguins
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The Decision Boundary
▶ We can visualize the prediction for every possible input.
▶ Decision boundary: where the prediction changes.
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Exercise

What will the decision boundary look like for our
NN penguin classifier?
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The Decision Boundary
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𝑘-Nearest Neighbors

▶ Before: single closest neighbor determined
prediction.

▶ Idea: have 𝑘 closest neighbors “vote”.

▶ Can be useful to reduce noise.



Choosing 𝑘
▶ The number of neighbors, 𝑘, is a hyperparameter
of the algorithm.

▶ We typically choose 𝑘 to be odd to break ties.

▶ One approach: choose 𝑘 with a validation set.



𝑘 and the Decision Boundary
▶ How might the decision boundary change as we
increase 𝑘?
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𝑘 and the Decision Boundary
▶ How might the decision boundary change as we
increase 𝑘?
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𝑘 and “Complexity”

▶ 𝑘 controls the “complexity” of the decision
boundary.

▶ Recall overfitting: when predictor learns
patterns that do not appear outside of the
training data.

▶ 𝑘 can be used to control overfitting.



Exercise

What the prediction be if we set 𝑘 = 𝑛?



Nearest Neighbor Regression

▶ The nearest neighbor rule can be used for
regression, too.



A Simple Prediction Algorithm
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Exercise

We see a new penguin with body mass of 4000 g.
What is a likely flipper length for this penguin?
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A Simple Prediction Algorithm

▶ Data: a set of penguins (as feature vectors) and
their flipper lengths.

▶ Given: a new penguin whose flipper length is
unknown.

▶ Predict:
1. Find the nearest penguin whose species is known.
2. Use that penguin’s flipper length as our prediction.



Nearest Neighbor Regression

▶ Data: a set D of 𝑛 feature vectors with targets:
{( ⃗𝑥(𝑖), 𝑦𝑖)} = {( ⃗𝑥(1), 𝑦1), … , ( ⃗𝑥(𝑛), 𝑦𝑛)}

▶ Given: a new point, ⃗𝑧 with unknown target.

▶ Predict:
1. Find the closest point to ⃗𝑧 in D:

𝑖∗ = argmin
𝑖∈{1,…,𝑛}

‖ ⃗𝑥(𝑖) − ⃗𝑧‖

2. Use 𝑦𝑖∗ as the predicted target.



𝑘NN Regression

▶ As with classification, can generalize to 𝑘 nearest
neighbors.

▶ Natural prediction: the mean of the targets of
the 𝑘 closest neighbors.



𝑘𝑁𝑁 Penguin Regression
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𝑘𝑁𝑁 Penguin Regression
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Demo: Classifying Handwritten Digits



The Problem

▶ Given an image of a handwritten digit.

▶ Classify the image as a one, two, three, etc.



The Machine Learning Approach

▶ Gather a training set of images with labels.

▶ Let the computer learn the underlying patterns.

▶ We’ll use a freely available data set, MNIST:



MNIST

▶ 60,000 training images and associated labels.

▶ Each image is 28 × 28 pixels.

▶ Each pixel is 8 bit grayscale (0 - 255)



kNN on MNIST

▶ We’ll use kNN to do character recognition.
▶ X = set of 28 × 28, 8-bit grayscale images
▶ Y = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

▶ How do we represent an image as a feature
vector?



Images as Feature Vectors



Images as Feature Vectors
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Euclidean Distance Between Images

▶ We “unroll” a 28 × 28 image into a vector in ℝ784.

▶ Euclidean distance between two images �⃗�(1), �⃗�(2)
in ℝ784:

‖�⃗�(1) − �⃗�(2)‖ = √(𝑝(1)1 − 𝑝(2)1 )
2
+ (𝑝(1)2 − 𝑝(2)2 )

2
+ … + (𝑝(1)784 − 𝑝

(2)
784)

2

= √
784

∑
𝑖=1
(𝑝(1)𝑖 − 𝑝(2)𝑖 )

2



How well does it work?

▶ Does this make accurate predictions?

▶ Use 1-NN to classify each image in training set.

▶ Question: What will be the accuracy?

error = # incorrect predictions60,000



How well does it work?

▶ The error will be 0!

▶ Accuracy on training set is misleading,
overly-optimistic.

▶ MNIST also includes a test set of 10,000 images
and labels. Let’s test on this set.



The Test Error

▶ Test set contains 1,000 images from each digit.

▶ Suppose our classifier always guesses 7.
Question: what will be the test error?

▶ Answer: 90%.
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The Test Error

▶ Test set contains 1,000 images from each digit.

▶ Suppose our classifier guesses at random.
Question: what is the expected test error?

▶ Answer: 90%.



The Test Error

▶ Test set contains 1,000 images from each digit.

▶ Suppose our classifier guesses at random.
Question: what is the expected test error?

▶ Answer: 90%.



The Test Error

▶ The test error of nearest neighbor is only 3.09%.

▶ Examples of errors:

Input:

NN:



Does k-NN do better?

𝑘 1 3 5 7 9 11

Test Error (%): 3.09 2.94 3.13 3.10 3.43 3.34
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The End?



The End?

▶ We have developed a simple prediction
algorithm: 𝑘-nearest neighbors.

▶ Often works well!

▶ Have we “solved” machine learning?



No

▶ Nearest neighbor predictors have significant
limitations in two areas:

1. Computational efficiency

2. Predictive performance



Computational Efficiency

▶ Three main areas to consider when evaluating
efficiency:
1. Time taken to train the model.
2. Memory taken to store the trained model.
3. Time taken to predict.



Time Taken in Training

▶ “Training” a NN predictor is trivial.
▶ The training data is simply stored.

▶ Takes very little time.



Memory Taken by Trained Model

▶ In NN predictors, the model is the training data.

▶ We store the entire training data.

▶ Potentially very costly.



Time Taken in Prediction

▶ To predict, we search the entire training set for
the nearest neighbor(s): Θ(𝑛𝑑) time.

▶ Also potentially very costly.



Analogy: Studying

▶ Approach #1: do many practice problem to learn
core principles, recognize patterns.

▶ I.e., learn “compressed” knowledge.

▶ During the exam, answer unseen questions by
reasoning.



Analogy: Studying

▶ Approach #2: memorize answers to practice
problems.

▶ During the exam, answer each question by
finding most similar practice question.



Analogy: Studying

▶ Approach #2 is most similar to nearest neighbor.

▶ Can we find methods that work like approach #1?



Note

▶ There are methods for improving the efficiency
of NN predictors.
▶ Approximate NN search, 𝑘 − 𝑑 trees, thinning the data,
etc.

▶ However, they break down in high dimensions
(many features).



Predictive Performance

▶ NN predictors can work quite well.

▶ Still, often outperformed by other methods,
especially when many features are used.



The Main Problem

▶ Nearest neighbor approaches do not learn which
features are useful and which are not.



Example

▶ Suppose all Adelie penguins weigh less than all
Gentoo penguins.

▶ I.e., we can predict perfectly based on body
mass alone.



Example: One Noisy Feature
▶ Suppose we add a feature that is total noise.
▶ Still enough information to perfectly classify.
▶ 1-NN: 98% test accuracy.
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Example: Two Noisy Features
▶ Suppose we add a second feature that is total noise.
▶ Still enough information to perfectly classify.
▶ 1-NN: 95% test accuracy (-3%).
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Example: Noisy Features
▶ No matter how many noisy features we add, there is
enough information to classify perfectly.

▶ But 1-NN performance degrades with # of (noisy) features:
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Explanation

▶ Euclidean distance treats all features the same.
▶ Even those that are pure noise.

▶ NN does not learn which features are useful.2

▶ Distance becomes less meaningful as noisy
features are added.

2For extensions of kNN which learn a distance metric from data, see:
(Weinberger and Saul, 2009; Goldberger et al., 2005; Shalev-Shwartz et al.,
2004)



Summary

▶ 𝑘NN prediction is simple and can work well.

▶ It may be computationally intensive.

▶ It does not:
▶ “learn” in the sense of “compressing knowledge”.
▶ learn which features are useful.



Next time...

▶ A different approach that attempts to learn a
“weight” for each feature.


