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News



News
Lab 01 released. Due Sunday @ 11:59 pm.

HW 01 released. Due Wednesday @ 11:59 pm.
BTEX template available (optional).
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Linear Models



Last Time: Nearest Neighbors

Nearest neighbor methods are simple; can work
well.

However, they:
“memorize” the training data (inefficient);
do not learn relative important of features.



Example: Predicting Salary

Goal: predict a data scientist’s salary from three

features:
X,: years of experience
X,: # of interview questions missed
x5: favorite number

Observations:
X, is positively associated with salary
X, is negatively associated with salary
X5 IS not associated with salary



Prediction Functions

Informally: we think years of experience, etc., are
predictive of salary.

Formally: we think there is a function H that
takes X = (x4, X5, X3) and outputs a good
prediction of salary.

H(X) — prediction

H is called a prediction function.

'0r, sometimes, a hypothesis function



Prediction Functions
Goal: find an accurate prediction function.
What should our prediction function look like?

That is, we must choose a model.
In context of prediction functions: a hypothesis class.



Occam’s Razor

Occam'’s Razor: when faced with two competing
explanations (models), favor the simpler one.?

2As long as it works, of course.



Linear Functions
Idea: model salary as a weighted sum of factors.

That is, as a linear function:

Wy, W, ..., W5 are the parameters or weights.

TODO: how do we choose the weights?



Recall: w, =
. - o
X,: years of experience TUNE 500
X,: # of interview questions missed Wy = /epo
x,: favorite number W,,= O

What are reasonable values of the weights in the
linear prediction function H(X) = wy + w, X, + W,X, +
w5 X, if it is to be a good predictor of salary?




Parameter Vectors

The parameters of a linear function can be
packaged into a parameter vector, w.

Example if H(X) = wy + WX, + W, X, + W5X5 then
w = (W, ... W3)T



Parameterization

A linear function H(X) is completely determined
by its parameter vector.
Can work either with the function, H, or vector, w.

Sometimes write H(X; W).

-

Example: w = (8,3,1,5,-2,-7)" specifies

H(X; W) = 8 + 3X; + 1X, + 5X3 - 2X, - 7Xs



Number of Parameters

If a linear predictor H(X; W) takes in
d-dimensional feature vectors, it has d + 1
parameters.

H(X; W) = Wy + WiXq + WoXy + . + WyXy
d
=W+ Z Wi X;
i=1

That is, if X € RY, then w € R9*7.



Visualization

Linear prediction rules have linear graphs.?

Example: A linear prediction function for salary.

H,(X) = $50,000 + (experience) x $8,000
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3When visualized in feature space.



Visualization (d > 1)

The surface of a prediction function H is made by
plotting H(X) for all X.

If H is a linear prediction function, and
X € R, then H(x) is a straight line.
X € R?, then H(X) is a plane.
X € RY then H(X) is a d-dimensional hyperplane.



Note: Compact Form

Recall the dot product of vectors a and b:
d=(a, ay,..,a;)  b=(by,by...,by)T
a°B=a1b1 +azb2+...+adbd

Observe:

H(X; W) = Wy + Wy Xq + ... + WX,




Note: Compact Form

The augmented feature vector Aug(X) is the
vector obtained by adding a 1 to the front of X:
1
X
X

Aug()?) =1 x

X =%

X
Xg
With augmentation, we can write:
H(X) = Wy + Wy Xq + WyXy + oo + WyXy
= w - Aug(X)



Classification?

We have been focusing on regression.

Linear prediction functions can be used for
classification, too.

We will come back to this.
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Empirical Risk Minimization



Picking a Prediction Function

Suppose we model salary as a linear function:

H(X; W) = Wy + Wi X + Wy X, + X3X5

Question: how do we choose weights wy, ..., W,
so that H makes good predictions?



Learning
Assumption: the future will look like the past.

If so, we should pick a prediction function that
worked well on past data.

That is, we should learn a function from data.
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Training Data
To learn, we gather training data.

A set D of n pairs: (X1, y;)
X is the ith feature vector
y; is its label (the correct answer)

In regression, y; is a continuous number; in
classification, it is discrete.

This regime is called supervised learning.



An Optimization Problem

Some prediction functions
“fit” the data better than
others.

Idea: find the function
that “fits best”

3
o

exper.‘ ence



Quantifying Fit
How do we measure “fit"?

Formally: meas.ure difference between our
prediction H(X()) and the “right answer”, y..

A loss function quantifies how wrong a single
prediction is.

Example the absolute loss
Lops(HXD), ;) = [H(XD) - y;]



Quantifying Overall Fit

Idea: a good H makes good predictions on
average over entire data set.

Find H minimizing the expected loss, also called
the empirical risk:

R(H) =1 HHGEO), )
i

Note: R depends on both H and the data!



Empirical Risk Minimization

This strategy is called empirical risk
minimization (ERM).

Step 1: choose a hypothesis class
Let's assume we've chosen linear predictors

Step 2: choose a loss function

Step 3: minimize expected loss (empirical risk)



ERM for Regression

We have chosen as our hypothesis class the set
of linear functions R? - R.

Suppose we choose absolute loss:
Laps(H(XD), y;) = [H(XD) - ;|

Goal: find H minimizing mean absolute error:

n
Raps(H) = > [H(ZD) - y|
i=1



Minimizing Mean Absolute Error

Goal: out of all linear functions R? - R, find the
function H* with the smallest mean absolute
error on the training set.

That is, find:

linear H

RS
H* = argmin Z |H(x;) - vi]
i



Minimizing Mean Absolute Error

Assume for now that d = 1 (one feature). Then
w € R? and:

H(x; W) = wy + w, X
Recall that H is completely determined by w,, w;.

Equivalent goal: find w, and w, minimizing

n

1
ﬁz |H(X;W07W1)‘yi|

i=1



Minimizing Mean Absolute Error

To find optimal w, and w,, might use calculus.
Set aR/ow, = 0 and oR/ow, = 0 and solve.

Problem: absolute value is not differentiable!
It is hard to minimize the mean absolute error.*

What can we do?

“Though it can be done with linear programming.



Minimizing Mean Squared Error

The square loss is differentiable:
Psq(H()-%)r y) = (H()?) - y)Z

Let’s try minimizing the mean squared error
instead.



Main Idea

We often choose a loss function out of practical
considerations.
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Our Goal

Out of all linear functions R = R, find the
function H* with the smallest mean squared
error.

That is, find:

n

H* = argmin 1 Z (H(x;) - y,-)2

i n ¢
linear H i1

This problem is called least squares regression.



For now...

For simplicity, assume that there is only one

feature (predictor variable).
H(x; W) = wq + w, X
l.e., one-dimensional linear regression.

We will come back to multi-dimensional case in
the next lecture.



Minimizing the MSE

The MSE is a function of a function:

1< 2
qu(H) = H Z (H(Xi) - yi)
|=
But since H is linear, H(x) = w; X + w,,.

n

1
Rsq(Wq, Wp) = n z ((W1 Xj + Wo) - yi)z
i=1

Now it's a function of w,, w,,.



Updated Goal

Find slope w, and intercept w, which minimize
the MSE, Ry, (w,, Wy):

BIA

n

2
sq(W1rW0 Z Wi X; + W0 yi)
i=1

Strategy: multivariate calculus.



L
EC N

Suppose we plotted R, (w;, w,). What would it look
like? 2
o u).z + pw, +.
1< 2
Req(Wy, Wo) = n Z ((W1Xi + W) - yi)
Can Ry, be negative? N0

Can it be zero? :a;m n %‘(W
/

How many mini maX|ma?




Answer




Recall: the gradient

If f(x,y)is a function of two variables, the
gradient of f at the point (xg, y,) is a vector of
partial derivatives:

F(Xr o) )
Vi(XgYo) =
T (o)

Key Fact: gradient is zero at critical points.



Strategy

To minimize R(w,, w,): compute the gradient, set
equal to zero, solve.









Strategy

n
W1 ;+ W) y:
7

n

W1X + W) - :
-

3|I\)
3|I\.)

i= i=

Solve for w, in second equation.

Plug solution for w, into first equation, solve for
W,.



Solve for w,
0= i((W1Xi+Wo)‘yi)
0= zw\yfl + zwo - Z‘a\,
Zwo: Z‘au - ZW‘X;

nw, < Z‘é.‘ - W.Z"‘&
;'-wlgé
v 5Ty Wik D0

%)




3|M

i=

Solve for w,

n
((wyx; + wo) - v;)
1



Define

Then

i=1



Solve for w,

%i (W1X +W0 , Wy =Y - WX
D= Z‘(w‘yﬁ\z—w‘x —%)x;
= Z(w\(\(e -%) Ay -y K
) KZ)U\(*&”—() X, + Z'(‘a -‘3;)%
W, Z (5((, °§>)(C - z (3 _\9{> XL'



Solve for w,

2 < _ _
—Z (WyX; + Wo) - Vi) X; W =¥ - WX

0, 5 (-~ - TGy %

;(‘3;' DX
T (x; ~% )%,

S




Solve for w,




Least Squares Solutions

The least squares solutions for the slope w, and
intercept w, are:

> (- 3)y; - 9

_ = - _
Wi="—"a Wo =Y - WqX

Z(X,’ - X)?

i=1

= _1<n = _ 1 <n
wherex =231 X,  V=sYl,V;



Interpretation of Slope
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What is the sign of (x; - x)(y; - y) when:

x;>xandy; >y?



Interpretation of Slope
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What is the sign of (x; - x)(y; - y) when:
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Interpretation of Slope
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What is the sign of (x; - x)(y; - y) when:

x;>xandy; <y?



Interpretation of Slope
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What is the sign of (x; - x)(y; - y) when:

x;<xandy;>y?



Interpretation of Intercept
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What is H(x)? = "5



Question

We fit a linear prediction rule for salary given years of
experience. Then everyone gets a $5,000 raise. What
happens to slope/intercept?



Example

X =
=
n
R
J=
wy =
5 -5
i=1
Wy = ¥ - WX

Xi Y (=X -9 (-Xi-9) (% -X)?
3 7

4 3

8
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Non-Linear Trends

We have fit a straight line of the form:

H(x) = wy + w; X

What if we believe, e.g., salary grows with the
square of experience?

l.e., how do we fit a function of the form:

H(X) = wy + w,x2?



“Linear” Models

The linear in linear prediction function refers to
the weights, not the features.

These are all linear prediction functions:
H(x) = Wy + W, X + W, x>
H(x) = w, + w,e*
H(X) = w,, + w,y/X + w, sin x

These are not:
H(x) = w, + w,e"
H(x) = w, + w, sin(w,x)



In General

H(x) = wy + w,¢(x) is a linear model, no matter
what ¢ is.”

¢ is called a basis function (or feature map).

Example: ¢(x) = x?

>Provided ¢ does not involve w, and w,



Minimizing Mean Squared Error
Fix a basis function ¢(x).

Goal: pick w, and w, so as to minimize the mean
squared error of H:

o(Wo, W) Z[<w0+w1 N-v]



Minimizing Mean Squared Error
Notation: define z; = ¢(x;).

Strategy: compute oR,,/ow, and dR,,/ow,, set to
zero, solve.



Solution

Observation: This is the exact same calculation
we've done, but with x; replaced by z;.

The least squares solutions:




Intuition

v
v




Interpretation
To fit a function H(x) = wy + w,$(x):
Create new data set {(z;, y;)}, where z; = ¢(x;).
Fit a straight line H(z) = w, + w,z on this new data.

Use w, and w, in H(x) = wy + w;$(x)



Summary

We have seen how to fit linear prediction
functions of the form:

H(x) = wy + w,¢(x)
Next time: how do we fit functions of the form:
H(Xq, X5, ...) = Wo + W1d(X) + Wy 0(X5) + ...

How does this compare to nearest neighbor
methods?



