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News



News▶ Lab 01 released. Due Sunday @ 11:59 pm.▶ HW 01 released. Due Wednesday @ 11:59 pm.▶ LATEX template available (optional).
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Linear Models



Last Time: Nearest Neighbors▶ Nearest neighbor methods are simple; can work
well.▶ However, they:
1. “memorize” the training data (inefficient);
2. do not learn relative important of features.



Example: Predicting Salary▶ Goal: predict a data scientist’s salary from three
features:▶ 𝑥1: years of experience▶ 𝑥2: # of interview questions missed▶ 𝑥3: favorite number▶ Observations:▶ 𝑥1 is positively associated with salary▶ 𝑥2 is negatively associated with salary▶ 𝑥3 is not associated with salary



Prediction Functions▶ Informally: we think years of experience, etc., are
predictive of salary.▶ Formally: we think there is a function 𝐻 that
takes ⃗𝑥 = (𝑥1, 𝑥2, 𝑥3) and outputs a good
prediction of salary.𝐻( ⃗𝑥) → prediction▶ 𝐻 is called a prediction function.1

1Or, sometimes, a hypothesis function



Prediction Functions▶ Goal: find an accurate prediction function.▶ What should our prediction function look like?▶ That is, we must choose a model.▶ In context of prediction functions: a hypothesis class.



Occam’s Razor▶ Occam’s Razor: when faced with two competing
explanations (models), favor the simpler one.2

2As long as it works, of course.



Linear Functions▶ Idea: model salary as a weighted sum of factors.▶ That is, as a linear function:𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3▶ 𝑤0, 𝑤1, … , 𝑤3 are the parameters or weights.▶ TODO: how do we choose the weights?



Exercise
Recall:▶ 𝑥1: years of experience▶ 𝑥2: # of interview questions missed▶ 𝑥3: favorite number
What are reasonable values of the weights in the
linear prediction function 𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 +𝑤3𝑥3 if it is to be a good predictor of salary?

No =
W. = 5000

W2 =1000
Wz =0



Parameter Vectors▶ The parameters of a linear function can be
packaged into a parameter vector, �⃗�.▶ Example: if 𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 then�⃗� = (𝑤0, … , 𝑤3)𝑇.



Parameterization▶ A linear function 𝐻( ⃗𝑥) is completely determined
by its parameter vector.▶ Can work either with the function, 𝐻, or vector, �⃗�.▶ Sometimes write 𝐻( ⃗𝑥; �⃗�).▶ Example: �⃗� = (8, 3, 1, 5, −2, −7)𝑇 specifies𝐻( ⃗𝑥; �⃗�) = 8 + 3𝑥1 + 1𝑥2 + 5𝑥3 − 2𝑥4 − 7𝑥5



Number of Parameters▶ If a linear predictor 𝐻( ⃗𝑥; �⃗�) takes in𝑑-dimensional feature vectors, it has 𝑑 + 1
parameters.𝐻( ⃗𝑥; �⃗�) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑= 𝑤0 + 𝑑∑𝑖=1 𝑤𝑖𝑥𝑖▶ That is, if ⃗𝑥 ∈ ℝ𝑑, then �⃗� ∈ ℝ𝑑+1.



Visualization▶ Linear prediction rules have linear graphs.3▶ Example: A linear prediction function for salary.𝐻1( ⃗𝑥) = $50,000 + (experience) × $8,000
3When visualized in feature space.

#



Visualization (𝑑 > 1)▶ The surface of a prediction function 𝐻 is made by
plotting 𝐻( ⃗𝑥) for all ⃗𝑥.▶ If 𝐻 is a linear prediction function, and▶ ⃗𝑥 ∈ 𝑅1, then 𝐻(𝑥) is a straight line.▶ ⃗𝑥 ∈ ℝ2, then 𝐻( ⃗𝑥) is a plane.▶ ⃗𝑥 ∈ ℝ𝑑, then 𝐻( ⃗𝑥) is a 𝑑-dimensional hyperplane.



Note: Compact Form▶ Recall the dot product of vectors �⃗� and �⃗�:�⃗� = (𝑎1, 𝑎2, … , 𝑎𝑑)𝑇 �⃗� = (𝑏1, 𝑏2, … , 𝑏𝑑)𝑇�⃗� ⋅ �⃗� = 𝑎1𝑏1 + 𝑎2𝑏2 + … + 𝑎𝑑𝑏𝑑▶ Observe:𝐻( ⃗𝑥; �⃗�) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑= (𝑤0, 𝑤1, … , 𝑤𝑑)𝑇⏟⏟⏟⏟⏟⏟⏟�⃗� ⋅ (1, 𝑥1, … , 𝑥𝑑)𝑇⏟?



Note: Compact Form▶ The augmented feature vector Aug( ⃗𝑥) is the
vector obtained by adding a 1 to the front of ⃗𝑥:

⃗𝑥 = (𝑥1𝑥2⋮𝑥𝑑) Aug( ⃗𝑥) = ( 1𝑥1𝑥2⋮𝑥𝑑
)

▶ With augmentation, we can write:𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑= �⃗� ⋅ Aug( ⃗𝑥)



Classification?▶ We have been focusing on regression.▶ Linear prediction functions can be used for
classification, too.▶ We will come back to this.
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Empirical Risk Minimization



Picking a Prediction Function▶ Suppose we model salary as a linear function:𝐻( ⃗𝑥; �⃗�) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑥3𝑥3▶ Question: how do we choose weights 𝑤0, … , 𝑤3
so that 𝐻 makes good predictions?



Learning▶ Assumption: the future will look like the past.▶ If so, we should pick a prediction function that
worked well on past data.▶ That is, we should learn a function from data.



Example



Training Data▶ To learn, we gather training data.▶ A set D of 𝑛 pairs: ( ⃗𝑥(𝑖), 𝑦𝑖)▶ ⃗𝑥(𝑖) is the 𝑖th feature vector▶ 𝑦𝑖 is its label (the correct answer)▶ In regression, 𝑦𝑖 is a continuous number; in
classification, it is discrete.▶ This regime is called supervised learning.



An Optimization Problem

▶ Some prediction functions
“fit” the data better than
others.▶ Idea: find the function
that “fits best”

111,,..,



Quantifying Fit▶ How do we measure “fit”?▶ Formally: measure difference between our
prediction 𝐻( ⃗𝑥(𝑖)) and the “right answer”, 𝑦𝑖.▶ A loss function quantifies how wrong a single
prediction is.▶ Example: the absolute lossℓabs(𝐻( ⃗𝑥(𝑖)), 𝑦𝑖) = |𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖|



Quantifying Overall Fit▶ Idea: a good 𝐻 makes good predictions on
average over entire data set.▶ Find 𝐻 minimizing the expected loss, also called
the empirical risk:𝑅(𝐻) = 𝑛∑𝑖=1 ℓ(𝐻( ⃗𝑥(𝑖)), 𝑦𝑖)▶ Note: 𝑅 depends on both 𝐻 and the data!I

M



Empirical Risk Minimization▶ This strategy is called empirical risk
minimization (ERM).▶ Step 1: choose a hypothesis class▶ Let’s assume we’ve chosen linear predictors▶ Step 2: choose a loss function▶ Step 3: minimize expected loss (empirical risk)



ERM for Regression▶ We have chosen as our hypothesis class the set
of linear functions ℝ𝑑 → ℝ.▶ Suppose we choose absolute loss:ℓabs(𝐻( ⃗𝑥(𝑖)), 𝑦𝑖) = |𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖|▶ Goal: find 𝐻 minimizing mean absolute error:𝑅abs(𝐻) = 𝑛∑𝑖=1 |𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖|



Minimizing Mean Absolute Error▶ Goal: out of all linear functions ℝ𝑑 → ℝ, find the
function 𝐻∗ with the smallest mean absolute
error on the training set.▶ That is, find:𝐻∗ = argmin

linear 𝐻 1𝑛 𝑛∑𝑖=1 |𝐻(𝑥𝑖) − 𝑦𝑖|



Minimizing Mean Absolute Error▶ Assume for now that 𝑑 = 1 (one feature). Then𝑤 ∈ ℝ2 and: 𝐻(𝑥; �⃗�) = 𝑤0 + 𝑤1𝑥▶ Recall that 𝐻 is completely determined by 𝑤0, 𝑤1.▶ Equivalent goal: find 𝑤0 and 𝑤1 minimizing1𝑛 𝑛∑𝑖=1 |𝐻(𝑥; 𝑤0, 𝑤1) − 𝑦𝑖|



Minimizing Mean Absolute Error▶ To find optimal 𝑤0 and 𝑤1, might use calculus.▶ Set 𝜕𝑅/𝜕𝑤0 = 0 and 𝜕𝑅/𝜕𝑤1 = 0 and solve.▶ Problem: absolute value is not differentiable!▶ It is hard to minimize the mean absolute error.4▶ What can we do?

4Though it can be done with linear programming.



Minimizing Mean Squared Error▶ The square loss is differentiable:ℓsq(𝐻( ⃗𝑥), 𝑦) = (𝐻( ⃗𝑥) − 𝑦)2▶ Let’s try minimizing the mean squared error
instead.



Main Idea
We often choose a loss function out of practical
considerations.
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Minimizing the MSE



Our Goal▶ Out of all linear functions ℝ → ℝ, find the
function 𝐻∗ with the smallest mean squared
error.▶ That is, find:𝐻∗ = argmin

linear 𝐻 1𝑛 𝑛∑𝑖=1 (𝐻(𝑥𝑖) − 𝑦𝑖)2▶ This problem is called least squares regression.



For now...▶ For simplicity, assume that there is only one
feature (predictor variable).▶ 𝐻(𝑥; �⃗�) = 𝑤0 + 𝑤1𝑥▶ I.e., one-dimensional linear regression.▶ We will come back to multi-dimensional case in
the next lecture.



Minimizing the MSE▶ The MSE is a function of a function:𝑅sq(𝐻) = 1𝑛 𝑛∑𝑖=1 (𝐻(𝑥𝑖) − 𝑦𝑖)2▶ But since 𝐻 is linear, 𝐻(𝑥) = 𝑤1𝑥 + 𝑤0.𝑅sq(𝑤1, 𝑤0) = 1𝑛 𝑛∑𝑖=1 ((𝑤1𝑥𝑖 + 𝑤0) − 𝑦𝑖)2▶ Now it’s a function of 𝑤1, 𝑤0.



Updated Goal▶ Find slope 𝑤1 and intercept 𝑤0 which minimize
the MSE, 𝑅sq(𝑤1, 𝑤0):𝑅sq(𝑤1, 𝑤0) = 1𝑛 𝑛∑𝑖=1 ((𝑤1𝑥𝑖 + 𝑤0) − 𝑦𝑖)2▶ Strategy: multivariate calculus.



Exercise
Suppose we plotted 𝑅𝑠𝑞(𝑤1, 𝑤0). What would it look
like? 𝑅sq(𝑤1, 𝑤0) = 1𝑛 𝑛∑𝑖=1 ((𝑤1𝑥𝑖 + 𝑤0) − 𝑦𝑖)2▶ Can 𝑅𝑠𝑞 be negative?▶ Can it be zero?▶ How many minima / maxima?

#

xW, +Bult...

yes in"Theory



Answer



Recall: the gradient▶ If 𝑓(𝑥, 𝑦) is a function of two variables, the
gradient of 𝑓 at the point (𝑥0, 𝑦0) is a vector of
partial derivatives:

∇𝑓(𝑥0, 𝑦0) = (𝜕𝑓𝜕𝑥(𝑥0)𝜕𝑓𝜕𝑦(𝑦0))▶ Key Fact: gradient is zero at critical points.



Strategy
To minimize 𝑅(𝑤1, 𝑤0): compute the gradient, set
equal to zero, solve.



𝑅sq(𝑤1, 𝑤0) = 1𝑛 𝑛∑𝑖=1 ((𝑤1𝑥𝑖 + 𝑤0) − 𝑦𝑖)2𝜕𝑅sq𝜕𝑤1 = d.g(f(n)) =g(plusin
8 zv((w,xi+wo) -y.)

=

:+ *%,((w,Xi+wa) -yi)=

:+22 (w,xitwo) -y), ((w,xitw) -yi)
=Ez((w,Xi+w.-yi)xi



𝑅sq(𝑤1, 𝑤0) = 1𝑛 𝑛∑𝑖=1 ((𝑤1𝑥𝑖 + 𝑤0) − 𝑦𝑖)2𝜕𝑅sq𝜕𝑤0 = 80. z((w,xitwo) -yi)=
=22 (w,xi +wo) y.)ow (wixiter)-3.)
=I z(w,xitwo) -yi)



Strategy

0 = 2𝑛 𝑛∑𝑖=1 ((𝑤1𝑥𝑖 + 𝑤0) − 𝑦𝑖) 𝑥𝑖 0 = 2𝑛 𝑛∑𝑖=1 ((𝑤1𝑥𝑖 + 𝑤0) − 𝑦𝑖)
1. Solve for 𝑤0 in second equation.
2. Plug solution for 𝑤0 into first equation, solve for𝑤1.



Solve for w00 = 2𝑛 𝑛∑𝑖=1 ((𝑤1𝑥𝑖 + 𝑤0) − 𝑦𝑖) y
=2yi

I 7 =HZxi
0 =2w,xi +zw.

- zy:

Zw =[y
=

- zw,X:

nw =[y, - w,Zxi

we
=2yi- yzx.Ewix



Solve for w00 = 2𝑛 𝑛∑𝑖=1 ((𝑤1𝑥𝑖 + 𝑤0) − 𝑦𝑖)



Key Fact▶ Define �̄� = 1𝑛 𝑛∑𝑖=1 𝑥𝑖 �̄� = 1𝑛 𝑛∑𝑖=1 𝑦𝑖▶ Then ∑𝑖=1 (𝑥𝑖 − �̄�) = 0 ∑𝑖=1 (𝑦𝑖 − �̄�) = 0



Solve for w10 = 2𝑛 𝑛∑𝑖=1 ((𝑤1𝑥𝑖 + 𝑤0) − 𝑦𝑖) 𝑥𝑖 𝑤0 = �̄� − 𝑤1�̄�I
0 =I(w,xi +y - w,x

-yi)xi
=2(w,(Xi- x) +y -yi) xi
=zw.(Xi - x) Xi+2(y - y))Xi
&

w,Zi(xi -x)Xi = - 2(y -yi)Xi



Solve for w10 = 2𝑛 𝑛∑𝑖=1 ((𝑤1𝑥𝑖 + 𝑤0) − 𝑦𝑖) 𝑥𝑖 𝑤0 = �̄� − 𝑤1�̄�
w,Zi(xi -x)Xi = - 2(y -yi)Xi

w, = ln:
-

y)e



Solve for w10 = 2𝑛 𝑛∑𝑖=1 ((𝑤1𝑥𝑖 + 𝑤0) − 𝑦𝑖) 𝑥𝑖 𝑤0 = �̄� − 𝑤1�̄�
w, = (yi-y)(--

-ie
0

->

)(xi-x)+Zi



Least Squares Solutions▶ The least squares solutions for the slope 𝑤1 and
intercept 𝑤0 are:

𝑤1 = 𝑛∑𝑖=1 (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)𝑛∑𝑖=1 (𝑥𝑖 − �̄�)2 𝑤0 = �̄� − 𝑤1�̄�
where �̄� = 1𝑛 ∑𝑛𝑖=1 𝑥𝑖 �̄� = 1𝑛 ∑𝑛𝑖=1 𝑦𝑖



Interpretation of Slope

𝑤1 = 𝑛∑𝑖=1 (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)𝑛∑𝑖=1 (𝑥𝑖 − �̄�)2
▶ What is the sign of (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�) when:▶ 𝑥𝑖 > �̄� and 𝑦𝑖 > �̄�?



Interpretation of Slope

𝑤1 = 𝑛∑𝑖=1 (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)𝑛∑𝑖=1 (𝑥𝑖 − �̄�)2
▶ What is the sign of (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�) when:▶ 𝑥𝑖 < �̄� and 𝑦𝑖 < �̄�?



Interpretation of Slope

𝑤1 = 𝑛∑𝑖=1 (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)𝑛∑𝑖=1 (𝑥𝑖 − �̄�)2
▶ What is the sign of (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�) when:▶ 𝑥𝑖 > �̄� and 𝑦𝑖 < �̄�?



Interpretation of Slope

𝑤1 = 𝑛∑𝑖=1 (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)𝑛∑𝑖=1 (𝑥𝑖 − �̄�)2
▶ What is the sign of (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�) when:▶ 𝑥𝑖 < �̄� and 𝑦𝑖 > �̄�?



Interpretation of Intercept

𝑤0 = �̄� − 𝑤1�̄�
▶ What is 𝐻(�̄�)?
-- (x,y)1

= G



Question
We fit a linear prediction rule for salary given years of
experience. Then everyone gets a $5,000 raise. What
happens to slope/intercept?



Example�̄� =�̄� =
𝑤1 = 𝑛∑𝑖=1 (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)𝑛∑𝑖=1 (𝑥𝑖 − �̄�)2 =
𝑤0 = �̄� − 𝑤1�̄�𝑥𝑖 𝑦𝑖 (𝑥𝑖 − �̄�) (𝑦𝑖 − �̄�) (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�) (𝑥𝑖 − �̄�)2

3 7
4 3
8 2
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Fitting Non-Linear Trends



Non-Linear Trends▶ We have fit a straight line of the form:𝐻(𝑥) = 𝑤0 + 𝑤1𝑥▶ What if we believe, e.g., salary grows with the
square of experience?▶ I.e., how do we fit a function of the form:𝐻(𝑥) = 𝑤0 + 𝑤1𝑥2?



“Linear” Models▶ The linear in linear prediction function refers to
the weights, not the features.▶ These are all linear prediction functions:▶ 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2▶ 𝐻(𝑥) = 𝑤0 + 𝑤1𝑒𝑥▶ 𝐻(𝑥) = 𝑤0 + 𝑤1√𝑥 + 𝑤2 sin 𝑥▶ These are not:▶ 𝐻(𝑥) = 𝑤0 + 𝑤1𝑒𝑤2𝑥▶ 𝐻(𝑥) = 𝑤0 + 𝑤1 sin(𝑤2𝑥)



In General▶ 𝐻(𝑥) = 𝑤0 + 𝑤1𝜙(𝑥) is a linear model, no matter
what 𝜙 is.5▶ 𝜙 is called a basis function (or feature map).▶ Example: 𝜙(𝑥) = 𝑥2

5Provided 𝜙 does not involve 𝑤0 and 𝑤1



Minimizing Mean Squared Error▶ Fix a basis function 𝜙(𝑥).▶ Goal: pick 𝑤0 and 𝑤1 so as to minimize the mean
squared error of 𝐻:𝑅sq(𝑤0, 𝑤1) = 1𝑛 𝑛∑𝑖=1 [(𝑤0 + 𝑤1𝜙(𝑥𝑖)) − 𝑦𝑖]2



Minimizing Mean Squared Error▶ Notation: define 𝑧𝑖 = 𝜙(𝑥𝑖).▶ Strategy: compute 𝜕𝑅sq/𝜕𝑤0 and 𝜕𝑅sq/𝜕𝑤1, set to
zero, solve.



Solution▶ Observation: This is the exact same calculation
we’ve done, but with 𝑥𝑖 replaced by 𝑧𝑖.▶ The least squares solutions:

𝑤1 = 𝑛∑𝑖=1 (𝑧𝑖 − �̄�)(𝑦𝑖 − �̄�)𝑛∑𝑖=1 (𝑧𝑖 − �̄�)2 𝑤0 = �̄� − 𝑤1�̄�
▶ where �̄� ≡ 1𝑛 ∑𝑛𝑖=1 𝜙(𝑥𝑖)



Intuition

𝑥 1 2 3 4𝑦 2 8 18 32𝑧 = 𝑥2 1 4 9 16

d

↑

&

2



Interpretation▶ To fit a function 𝐻(𝑥) = 𝑤0 + 𝑤1𝜙(𝑥):
1. Create new data set {(𝑧𝑖, 𝑦𝑖)}, where 𝑧𝑖 = 𝜙(𝑥𝑖).
2. Fit a straight line 𝐻(𝑧) = 𝑤0 +𝑤1𝑧 on this new data.
3. Use 𝑤0 and 𝑤1 in 𝐻(𝑥) = 𝑤0 + 𝑤1𝜙(𝑥)



Summary▶ We have seen how to fit linear prediction
functions of the form:𝐻(𝑥) = 𝑤0 + 𝑤1𝜙(𝑥)▶ Next time: how do we fit functions of the form:𝐻(𝑥1, 𝑥2, …) = 𝑤0 + 𝑤1𝜙(𝑥1) + 𝑤2𝜙(𝑥2) + …▶ How does this compare to nearest neighbor
methods?


