

140A
Probatilistic Modeling $\&$ Machine Learning
Lecture 02 Part 1
News

News

- Lab 01 released. Due Sunday @ 11:59 pm.
- HW 01 released. Due Wednesday @ 11:59 pm.
- ETEX 2 template available (optional).

$$
D S C 140 A
$$

Last Time: Nearest Neighbors

- Nearest neighbor methods are simple; can work well.
- However, they:

1. "memorize" the training data (inefficient);
2. do not learn relative important of features.

Example: Predicting Salary

- Goal: predict a data scientist's salary from three features:
> x_{1} : years of experience
- x_{2} : \# of interview questions missed
- x_{3} : favorite number
- Observations:
- x_{1} is positively associated with salary
x_{2} is negatively associated with salary
x_{3} is not associated with salary

Prediction Functions

- Informally: we think years of experience, etc., are predictive of salary.
- Formally: we think there is a function H that takes $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and outputs a good prediction of salary.

$$
H(\vec{x}) \rightarrow \text { prediction }
$$

$\Rightarrow H$ is called a prediction function. ${ }^{1}$

Prediction Functions

- Goal: find an accurate prediction function.
- What should our prediction function look like?
- That is, we must choose a model.
- In context of prediction functions: a hypothesis class.

Occam's Razor

- Occam's Razor: when faced with two competing explanations (models), favor the simpler one. ${ }^{2}$

${ }^{2}$ As long as it works, of course.

Linear Functions

- Idea: model salary as a weighted sum of factors.
- That is, as a linear function:

$$
H(\vec{x})=w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}
$$

- $w_{0}, w_{1}, \ldots, w_{3}$ are the parameters or weights.
- TODO: how do we choose the weights?

Exercise

Recall: $\quad \omega_{D}=$
x_{1} : years of experience $\omega_{1}=5000$
x_{2} : \# of interview questions missed $W_{2}=1000$
x_{3} : favorite number $\omega_{3}=0$
What are reasonable values of the weights in the linear prediction function $H(\vec{x})=w_{0}+w_{1} x_{1}+w_{2} x_{2}+$ $w_{3} x_{3}$ if it is to be a good predictor of salary?

Parameter Vectors

- The parameters of a linear function can be packaged into a parameter vector, \vec{w}.
\Rightarrow Example: if $H(\vec{x})=w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}$ then $\vec{w}=\left(w_{0}, \ldots, w_{3}\right)^{T}$.

Parameterization

- A linear function $H(\vec{x})$ is completely determined by its parameter vector.
- Can work either with the function, H, or vector, \vec{w}.
- Sometimes write $H(\vec{x} ; \vec{w})$.
- Example: $\vec{w}=(8,3,1,5,-2,-7)^{\top}$ specifies

$$
H(\vec{x} ; \vec{w})=8+3 x_{1}+1 x_{2}+5 x_{3}-2 x_{4}-7 x_{5}
$$

Number of Parameters

- If a linear predictor $H(\vec{x} ; \vec{w})$ takes in d-dimensional feature vectors, it has $d+1$ parameters.

$$
\begin{aligned}
H(\vec{x} ; \vec{w}) & =w_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{d} x_{d} \\
& =w_{0}+\sum_{i=1}^{d} w_{i} x_{i}
\end{aligned}
$$

- That is, if $\vec{x} \in \mathbb{R}^{d}$, then $\vec{w} \in \mathbb{R}^{d+1}$.

Visualization

- Linear prediction rules have linear graphs. ${ }^{3}$
- Example: A linear prediction function for salary.

$$
H_{1}(\vec{x})=\$ 50,000+\text { (experience) } \times \$ 8,000
$$

${ }^{3}$ When visualized in feature space.

Visualization ($d>1$)

- The surface of a prediction function H is made by plotting $H(\vec{x})$ for all \vec{x}.
- If H is a linear prediction function, and
- $\vec{x} \in R^{1}$, then $H(x)$ is a straight line.
$-\vec{x} \in \mathbb{R}^{2}$, then $H(\vec{x})$ is a plane.
- $\vec{x} \in \mathbb{R}^{d}$, then $H(\vec{x})$ is a d-dimensional hyperplane.

Note: Compact Form

- Recall the dot product of vectors \vec{a} and \vec{b} :

$$
\begin{gathered}
\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{d}\right)^{T} \quad \vec{b}=\left(b_{1}, b_{2}, \ldots, b_{d}\right)^{T} \\
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{d} b_{d}
\end{gathered}
$$

> Observe:

$$
\begin{aligned}
H(\vec{x} ; \vec{w}) & =w_{0}+w_{1} x_{1}+\ldots+w_{d} x_{d} \\
& =\underbrace{\left(w_{0}, w_{1}, \ldots, w_{d}\right)^{T}}_{\vec{w}} \cdot \underbrace{\left(1, x_{1}, \ldots, x_{d}\right)^{T}}_{?}
\end{aligned}
$$

Note: Compact Form

- The augmented feature vector $\operatorname{Aug}(\vec{x})$ is the vector obtained by adding a 1 to the front of \vec{x} :

$$
\vec{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right) \quad \operatorname{Aug}(\vec{x})=\left(\begin{array}{c}
1 \\
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right)
$$

- With augmentation, we can write:

$$
\begin{aligned}
H(\vec{x}) & =w_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{d} x_{d} \\
& =\vec{w} \cdot \operatorname{Aug}(\vec{x})
\end{aligned}
$$

Classification?

- We have been focusing on regression.
- Linear prediction functions can be used for classification, too.
- We will come back to this.

Probatilistic Modeling $\&$ Machine Learning
Lecture 02 Part 3
Empirical Risk Minimization

Picking a Prediction Function

- Suppose we model salary as a linear function:

$$
H(\vec{x} ; \vec{w})=w_{0}+w_{1} x_{1}+w_{2} x_{2}+x_{3} x_{3}
$$

- Question: how do we choose weights w_{0}, \ldots, w_{3} so that H makes good predictions?

Learning

- Assumption: the future will look like the past.
- If so, we should pick a prediction function that worked well on past data.
- That is, we should learn a function from data.

Example

Training Data

- To learn, we gather training data.
- A set \mathcal{D} of n pairs: $\left(\vec{x}^{(i)}, y_{i}\right)$
$\downarrow \vec{x}^{(i)}$ is the ith feature vector
> y_{i} is its label (the correct answer)
- In regression, y_{i} is a continuous number; in classification, it is discrete.
- This regime is called supervised learning.

An Optimization Problem

- Some prediction functions "fit" the data better than others.
- Idea: find the function that "fits best"

Quantifying Fit

- How do we measure "fit"?
- Formally: measure difference between our prediction $H\left(\vec{x}^{(i)}\right)$ and the "right answer", y_{i}.
- A loss function quantifies how wrong a single prediction is.
- Example: the absolute loss $\ell_{\mathrm{abs}}\left(H\left(\vec{x}^{(i)}\right), y_{i}\right)=\left|H\left(\vec{x}^{(i)}\right)-y_{i}\right|$

Quantifying Overall Fit

- Idea: a good H makes good predictions on average over entire data set.
- Find H minimizing the expected loss, also called the empirical risk:

$$
R(H)=\frac{1}{n} \sum_{i=1}^{n} l\left(H\left(\vec{x}^{(i)}\right), y_{i}\right)
$$

- Note: R depends on both H and the data!

Empirical Risk Minimization

- This strategy is called empirical risk minimization (ERM).
- Step 1: choose a hypothesis class
- Let's assume we've chosen linear predictors
- Step 2: choose a loss function
- Step 3: minimize expected loss (empirical risk)

ERM for Regression

- We have chosen as our hypothesis class the set of linear functions $\mathbb{R}^{d} \rightarrow \mathbb{R}$.
- Suppose we choose absolute loss:

$$
\ell_{\mathrm{abs}}\left(H\left(\vec{x}^{(i)}\right), y_{i}\right)=\left|H\left(\vec{x}^{(i)}\right)-y_{i}\right|
$$

\downarrow Goal: find H minimizing mean absolute error:

$$
R_{\mathrm{abs}}(H)=\sum_{i=1}^{n}\left|H\left(\vec{x}^{(i)}\right)-y_{i}\right|
$$

Minimizing Mean Absolute Error

- Goal: out of all linear functions $\mathbb{R}^{d} \rightarrow \mathbb{R}$, find the function H^{*} with the smallest mean absolute error on the training set.
- That is, find:

$$
H^{*}=\underset{\text { linear } H}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left|H\left(x_{i}\right)-y_{i}\right|
$$

Minimizing Mean Absolute Error

- Assume for now that $d=1$ (one feature). Then $w \in \mathbb{R}^{2}$ and:

$$
H(x ; \vec{w})=w_{0}+w_{1} x
$$

\Rightarrow Recall that H is completely determined by w_{0}, w_{1}.
$>$ Equivalent goal: find w_{0} and w_{1} minimizing

$$
\frac{1}{n} \sum_{i=1}^{n}\left|H\left(x ; w_{0}, w_{1}\right)-y_{i}\right|
$$

Minimizing Mean Absolute Error

- To find optimal w_{0} and w_{1}, might use calculus. Set $\partial R / \partial w_{0}=0$ and $\partial R / \partial w_{1}=0$ and solve.
- Problem: absolute value is not differentiable!
- It is hard to minimize the mean absolute error. ${ }^{4}$
- What can we do?
${ }^{4}$ Though it can be done with linear programming.

Minimizing Mean Squared Error

- The square loss is differentiable:

$$
\ell_{\mathrm{sq}}(H(\vec{x}), y)=(H(\vec{x})-y)^{2}
$$

- Let's try minimizing the mean squared error instead.

Main Idea

We often choose a loss function out of practical considerations.

140A
Probatilistic Modeling $\&$ Machine Learning
Lecture 02 Part 4
Minimizing the MSE

Our Goal

- Out of all linear functions $\mathbb{R} \rightarrow \mathbb{R}$, find the function H^{*} with the smallest mean squared error.
- That is, find:

$$
H^{*}=\underset{\text { linear } H}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(H\left(x_{i}\right)-y_{i}\right)^{2}
$$

- This problem is called least squares regression.

For now...

- For simplicity, assume that there is only one feature (predictor variable).
$\Rightarrow H(x ; \vec{w})=w_{0}+w_{1} x$
$>$ l.e., one-dimensional linear regression.
- We will come back to multi-dimensional case in the next lecture.

Minimizing the MSE

- The MSE is a function of a function:

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(H\left(x_{i}\right)-y_{i}\right)^{2}
$$

- But since H is linear, $H(x)=w_{1} x+w_{0}$.

$$
R_{\mathrm{sq}}\left(w_{1}, w_{0}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right)^{2}
$$

$>$ Now it's a function of w_{1}, w_{0}.

Updated Goal

- Find slope w_{1} and intercept w_{0} which minimize the MSE, $R_{\text {sq }}\left(w_{1}, w_{0}\right)$:

$$
R_{\mathrm{sq}}\left(w_{1}, w_{0}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right)^{2}
$$

- Strategy: multivariate calculus.

Exercise

Suppose we plotted $R_{\text {sq }}\left(w_{1}, w_{0}\right)$. What would it look like?

$$
\begin{array}{r}
\alpha w_{1}^{2}+\beta w_{2}^{2}+\ldots \\
R_{\mathrm{sq}}\left(w_{1}, w_{0}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right)^{2}
\end{array}
$$

- Can $R_{s q}$ be negative? no
- Can it be zero? yes in theory
- How many minima / maxima?

Answer

Recall: the gradient

- If $f(x, y)$ is a function of two variables, the gradient of f at the point $\left(x_{0}, y_{0}\right)$ is a vector of partial derivatives:

$$
\nabla f\left(x_{0}, y_{0}\right)=\binom{\frac{\partial f}{\partial x}\left(x_{0}\right)}{\frac{\partial f}{\partial y}\left(y_{0}\right)}
$$

- Key Fact: gradient is zero at critical points.

Strategy

To minimize $R\left(w_{1}, w_{0}\right)$: compute the gradient, set equal to zero, solve.

$$
\begin{aligned}
& R_{s q}\left(w_{1}, w_{0}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right)^{2} \quad \frac{d}{d u} g(f(u))=g^{\prime}(f(u)) \\
& \frac{\partial R_{s q}}{\partial w_{1}}=\frac{\partial}{\partial w_{1}} \frac{1}{n} \sum_{i=1}^{n}\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right)^{2} \\
&=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{1}}\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right)^{2} \\
&=\frac{1}{n} \sum 2\left(\left(w_{1} x_{i}+w_{0}\right)-y_{2}\right) \frac{\partial}{\partial w_{1}}\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right) \\
&=\frac{2}{n} \sum\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right) x_{i}
\end{aligned}
$$

$$
\begin{aligned}
& R_{s q}\left(w_{1}, w_{0}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right)^{2} \\
& \frac{\partial R_{s q}}{\partial w_{0}}=\frac{\partial}{\partial w_{0}} \frac{1}{n} \sum\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right)^{2} \\
& =\frac{1}{n} \sum 2\left(\left(w_{1} x_{i}+w_{0}\right) \cdot y_{i}\right) \frac{\partial}{\partial w_{0}}\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right) \\
& =\frac{2}{n} \sum\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right)
\end{aligned}
$$

Strategy

$$
0=\frac{2}{n} \sum_{i=1}^{n}\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right) x_{i} \quad 0=\frac{2}{n} \sum_{i=1}^{n}\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right)
$$

1. Solve for w_{0} in second equation.
2. Plug solution for w_{0} into first equation, solve for W_{1}.

Solve for w_{0}

$$
\begin{array}{ll}
0=\frac{2}{n} \sum_{i=1}^{n}\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right) & \bar{y}=\frac{1}{n} \sum y_{i} \\
0 & =\sum w_{1} x_{i}+\sum w_{0}-\sum y_{i} \\
\sum w_{0}=\sum y_{i}-\sum w_{1} x_{i} & \bar{x}=\frac{1}{n} \sum x_{i} \\
n w_{0}=\sum y_{i}-w_{1} \sum x_{i} \\
w_{0}=\frac{1}{n} \sum y_{i}-\frac{w_{1}}{n} \sum x_{i} \Rightarrow \omega_{0}=\bar{y}-w_{1} \bar{x}
\end{array}
$$

Solve for w_{0}

$$
0=\frac{2}{n} \sum_{i=1}^{n}\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right)
$$

Key Fact

- Define

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

Then

$$
\sum_{i=1}\left(x_{i}-\bar{x}\right)=0 \quad \sum_{i=1}\left(y_{i}-\bar{y}\right)=0
$$

Solve for w_{1}

$$
\begin{aligned}
0 & =\frac{2}{n} \sum_{i=1}^{n}\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right) x_{i} \quad w_{0}=\bar{y}-w_{1} \bar{x} \\
0 & =\sum\left(w_{1} x_{i}+\bar{y}-w_{1} \bar{x} \quad-y_{i}\right) x_{i} \\
& =\sum\left(w_{1}\left(x_{i}-\bar{x}\right)+\bar{y}-y_{i}\right) x_{i} \\
& =\sum w_{1}\left(x_{i}-\bar{x}\right) x_{i}+\sum\left(\bar{y}-y_{i}\right) x_{i} \\
& w_{1} \sum\left(x_{i}-\bar{x}\right) x_{i}=-\sum\left(\bar{y}-y_{i}\right) x_{i}
\end{aligned}
$$

Solve for w_{1}

$$
\begin{aligned}
0= & \frac{2}{n} \sum_{i=1}^{n}\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right) x_{i} \quad w_{0}=\bar{y}-w_{1} \bar{x} \\
& w_{1} \sum\left(x_{i}-\bar{x}\right) x_{i}=-\sum\left(\bar{y}-y_{i}\right) x_{i} \\
w_{1}= & \frac{\sum\left(y_{i}-\bar{y}\right) x_{i}}{\sum\left(x_{i}-\bar{x}\right) x_{i}}
\end{aligned}
$$

Solve for w_{1}

$$
\begin{aligned}
& \quad 0=\frac{2}{n} \sum_{i=1}^{n}\left(\left(w_{1} x_{i}+w_{0}\right)-y_{i}\right) x_{i} \quad w_{0}=\bar{y}-w_{1} \bar{x} \\
& w_{1}=\frac{\sum\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}+\bar{x}\right)}{\sum\left(x_{i}-\bar{x}\right) x_{i}} \\
& =\frac{\sum\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)+\sum \bar{x}\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right) x_{i}}
\end{aligned}
$$

Least Squares Solutions

\Rightarrow The least squares solutions for the slope w_{1} and intercept w_{0} are:

$$
w_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad w_{0}=\bar{y}-w_{1} \bar{x}
$$

where $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$

Interpretation of Slope

$$
w_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

- What is the sign of $\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$ when:
$\Rightarrow x_{i}>\bar{x}$ and $y_{i}>\bar{y}$?

Interpretation of Slope

$$
w_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

\Rightarrow What is the sign of $\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$ when:
$\Rightarrow x_{i}<\bar{x}$ and $y_{i}<\bar{y}$?

Interpretation of Slope

$$
w_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

- What is the sign of $\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$ when:
$\Rightarrow x_{i}>\bar{x}$ and $y_{i}<\bar{y}$?

Interpretation of Slope

$$
w_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

\Rightarrow What is the sign of $\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$ when:
$\Rightarrow x_{i}<\bar{x}$ and $y_{i}>\bar{y}$?

Interpretation of Intercept

$$
w_{0}=\bar{y}-w_{1} \bar{x}
$$

- What is $H(\bar{x})$? $=\bar{y}$

Question

We fit a linear prediction rule for salary given years of experience. Then everyone gets a $\$ 5,000$ raise. What happens to slope/intercept?

Example

$$
\begin{aligned}
& \bar{x}= \\
& \bar{y}= \\
& w_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=
\end{aligned}
$$

$$
w_{0}=\bar{y}-w_{1} \bar{x}
$$

x_{i}	y_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(y_{i}-\bar{y}\right)$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$
3	7				
4	3				
8	2				

140A
Probatilistic Modeling $\&$ Machine Learning
Lecture 02 Part 5
Fitting Non-Linear Trends

Non-Linear Trends

- We have fit a straight line of the form:

$$
H(x)=w_{0}+w_{1} x
$$

- What if we believe, e.g., salary grows with the square of experience?
- I.e., how do we fit a function of the form:

$$
H(x)=w_{0}+w_{1} x^{2} ?
$$

"Linear" Models

- The linear in linear prediction function refers to the weights, not the features.
- These are all linear prediction functions:
$\Rightarrow H(x)=w_{0}+w_{1} x+w_{2} x^{2}$
$\Rightarrow H(x)=w_{0}+w_{1} e^{x}$
$\Rightarrow H(x)=w_{0}+w_{1} \sqrt{x}+w_{2} \sin x$
- These are not:
$\Rightarrow H(x)=w_{0}+w_{1} e^{w_{2} x}$
$\Rightarrow H(x)=w_{0}+w_{1} \sin \left(w_{2} x\right)$

In General

- $H(x)=w_{0}+w_{1} \phi(x)$ is a linear model, no matter what ϕ is. ${ }^{5}$
- ϕ is called a basis function (or feature map).
- Example: $\phi(x)=x^{2}$
${ }^{5}$ Provided ϕ does not involve w_{0} and w_{1}

Minimizing Mean Squared Error

- Fix a basis function $\phi(x)$.
- Goal: pick w_{0} and w_{1} so as to minimize the mean squared error of H :

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left[\left(w_{0}+w_{1} \phi\left(x_{i}\right)\right)-y_{i}\right]^{2}
$$

Minimizing Mean Squared Error

- Notation: define $z_{i}=\phi\left(x_{i}\right)$.
- Strategy: compute $\partial R_{\text {sq }} / \partial w_{0}$ and $\partial R_{\text {sq }} / \partial w_{1}$, set to zero, solve.

Solution

Observation: This is the exact same calculation we've done, but with x_{i} replaced by z_{i}.

- The least squares solutions:

$$
w_{1}=\frac{\sum_{i=1}^{n}\left(z_{i}-\bar{z}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(z_{i}-\bar{z}\right)^{2}} \quad w_{0}=\bar{y}-w_{1} \bar{z}
$$

\Rightarrow where $\bar{z} \equiv \frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)$

Intuition

$$
\begin{aligned}
& \underset{x}{y}{ }_{x}{ }^{\circ}{ }^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c|cccc}
x & 1 & 2 & 3 & 4 \\
\hline y & 2 & 8 & 18 & 32 \\
\hline z=x^{2} & 1 & 4 & 9 & 16
\end{array}
\end{aligned}
$$

Interpretation

- To fit a function $H(x)=w_{0}+w_{1} \phi(x)$:

1. Create new data set $\left\{\left(z_{i}, y_{i}\right)\right\}$, where $z_{i}=\phi\left(x_{i}\right)$.
2. Fit a straight line $H(z)=w_{0}+w_{1} z$ on this new data.
3. Use w_{0} and w_{1} in $H(x)=w_{0}+w_{1} \phi(x)$

Summary

- We have seen how to fit linear prediction functions of the form:

$$
H(x)=w_{0}+w_{1} \phi(x)
$$

- Next time: how do we fit functions of the form:

$$
H\left(x_{1}, x_{2}, \ldots\right)=w_{0}+w_{1} \phi\left(x_{1}\right)+w_{2} \phi\left(x_{2}\right)+\ldots
$$

- How does this compare to nearest neighbor methods?

