

Lecture 02 | Part 1

News

News

Lab 01 released. Due Sunday @ 11:59 pm.

► HW 01 released. Due Wednesday @ 11:59 pm.
 ▷ ੴ_EX template available (optional).

Lecture 02 | Part 2 Linear Models

Last Time: Nearest Neighbors

- Nearest neighbor methods are simple; can work well.
- However, they:
 - 1. "memorize" the training data (inefficient);
 - 2. do not learn relative important of features.

Example: Predicting Salary

- Goal: predict a data scientist's salary from three features:
 - > x_1 : years of experience
 - x_2 : # of interview questions missed
 - \blacktriangleright x_3 : favorite number

Observations:

- x₁ is **positively** associated with salary
- x_2 is **negatively** associated with salary
- x_3 is **not** associated with salary

Prediction Functions

- Informally: we think years of experience, etc., are predictive of salary.
- Formally: we think there is a function *H* that takes $\vec{x} = (x_1, x_2, x_3)$ and outputs a good prediction of salary.

 $H(\vec{x}) \rightarrow \text{prediction}$

H is called a prediction function.¹

¹Or, sometimes, a hypothesis function

Prediction Functions

- **Goal:** find an accurate prediction function.
- What should our prediction function look like?
- That is, we must choose a model.
 In context of prediction functions: a hypothesis class.

Occam's Razor

Occam's Razor: when faced with two competing explanations (models), favor the simpler one.²

²As long as it works, of course.

Linear Functions

- Idea: model salary as a weighted sum of factors.
- ► That is, as a **linear function**:

$$H(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

- \blacktriangleright w_0, w_1, \dots, w_3 are the **parameters** or **weights**.
- **TODO:** how do we choose the weights?

Exercise

Recall: $W_0 =$ x_1 : years of experience $W_1 = 5000$ x_2 : # of interview questions missed $W_2 = 1000$ x_3 : favorite number $W_3 = 0$

What are reasonable values of the weights in the linear prediction function $H(\vec{x}) = w_0 + w_1x_1 + w_2x_2 + w_3x_3$ if it is to be a good predictor of salary?

Parameter Vectors

The parameters of a linear function can be packaged into a parameter vector, \vec{w} .

Example: if
$$H(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$
 then $\vec{w} = (w_0, ..., w_3)^T$.

Parameterization

A linear function $H(\vec{x})$ is **completely determined** by its parameter vector.

• Can work either with the function, *H*, or vector, \vec{w} .

Sometimes write $H(\vec{x}; \vec{w})$.

Number of Parameters

If a linear predictor H(x; w) takes in d-dimensional feature vectors, it has d + 1 parameters.

$$H(\vec{x}; \vec{w}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d$$
$$= w_0 + \sum_{i=1}^d w_i x_i$$

▶ That is, if $\vec{x} \in \mathbb{R}^d$, then $\vec{w} \in \mathbb{R}^{d+1}$.

Visualization

Linear prediction rules have linear graphs.³

Example: A linear prediction function for salary.

 $H_1(\vec{x}) = \$50,000 + (experience) \times \$8,000$ INDE 100K Salary q0 ¥ 90K 0 70K 601 experience ³When visualized in feature space.

Visualization (*d* > 1)

- The surface of a prediction function H is made by plotting $H(\vec{x})$ for all \vec{x} .
- ▶ If *H* is a linear prediction function, and
 - ▶ $\vec{x} \in R^1$, then H(x) is a straight line.
 - ▶ $\vec{x} \in \mathbb{R}^2$, then $H(\vec{x})$ is a plane.
 - ▶ $\vec{x} \in \mathbb{R}^d$, then $H(\vec{x})$ is a *d*-dimensional hyperplane.

Note: Compact Form

Recall the **dot product** of vectors \vec{a} and \vec{b} :

$$\vec{a} = (a_1, a_2, ..., a_d)^T$$
 $\vec{b} = (b_1, b_2, ..., b_d)^T$
 $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + ... + a_d b_d$

Observe:

$$H(\vec{x}; \vec{w}) = w_0 + w_1 x_1 + \dots + w_d x_d$$

= $\underbrace{(w_0, w_1, \dots, w_d)^T}_{\vec{w}} \cdot \underbrace{(1, x_1, \dots, x_d)^T}_?$

Note: Compact Form

The augmented feature vector Aug(x) is the vector obtained by adding a 1 to the front of x:

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix} \quad \text{Aug}(\vec{x}) = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix}$$

With augmentation, we can write:

$$H(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2 + ... + w_d x_d$$

= $\vec{w} \cdot \text{Aug}(\vec{x})$

Classification?

We have been focusing on regression.

Linear prediction functions can be used for classification, too.

We will come back to this.

Lecture 02 | Part 3

Empirical Risk Minimization

Picking a Prediction Function

Suppose we model salary as a linear function:

$$H(\vec{x};\vec{w}) = w_0 + w_1 x_1 + w_2 x_2 + x_3 x_3$$

Question: how do we choose weights w₀, ..., w₃ so that H makes good predictions?

Learning

- **Assumption:** the future will look like the past.
- If so, we should pick a prediction function that worked well on past data.
- That is, we should learn a function from data.

Example

Training Data

- ► To learn, we gather training data.
- A set \mathcal{D} of *n* pairs: $(\vec{x}^{(i)}, y_i)$ $\vec{x}^{(i)}$ is the *i*th feature vector y_i is its label (the correct answer)
- In regression, y_i is a continuous number; in classification, it is discrete.
- This regime is called supervised learning.

An Optimization Problem

- Some prediction functions "fit" the data better than others.
- Idea: find the function that "fits best"

Quantifying Fit

- How do we measure "fit"?
- Formally: measure difference between our prediction $H(\vec{x}^{(i)})$ and the "right answer", y_i .
- A loss function quantifies how wrong a single prediction is.
- **Example:** the **absolute loss** $\ell_{abs}(H(\vec{x}^{(i)}), y_i) = |H(\vec{x}^{(i)}) y_i|$

Quantifying Overall Fit

- Idea: a good H makes good predictions on average over entire data set.
- Find H minimizing the expected loss, also called the empirical risk:

$$R(H) = \prod_{i=1}^{n} \ell(H(\vec{x}^{(i)}), y_i)$$

Note: *R* depends on both *H* and the data!

Empirical Risk Minimization

This strategy is called empirical risk minimization (ERM).

- Step 1: choose a hypothesis class
 Let's assume we've chosen linear predictors
- Step 2: choose a loss function
- Step 3: minimize expected loss (empirical risk)

ERM for Regression

- ▶ We have chosen as our hypothesis class the set of **linear functions** $\mathbb{R}^d \to \mathbb{R}$.
- Suppose we choose **absolute loss**:

$$\ell_{abs}(H(\vec{x}^{(i)}), y_i) = |H(\vec{x}^{(i)}) - y_i|$$

Goal: find *H* minimizing **mean absolute error**:

$$R_{abs}(H) = \sum_{i=1}^{n} |H(\vec{x}^{(i)}) - y_i|$$

Minimizing Mean Absolute Error

- ▶ **Goal:** out of all **linear** functions $\mathbb{R}^d \to \mathbb{R}$, find the function H^* with the smallest mean absolute error on the training set.
- ► That is, find:

$$H^* = \underset{\text{linear } H}{\operatorname{arg min}} \frac{1}{n} \sum_{i=1}^{n} |H(x_i) - y_i|$$

Minimizing Mean Absolute Error

Assume for now that d = 1 (one feature). Then $w \in \mathbb{R}^2$ and:

$$H(x;\vec{w}) = w_0 + w_1 x$$

- Recall that H is completely determined by w_0, w_1 .
- Equivalent goal: find w_0 and w_1 minimizing

$$\frac{1}{n} \sum_{i=1}^{n} |H(x; w_0, w_1) - y_i|$$

Minimizing Mean Absolute Error

- ► To find optimal w_0 and w_1 , might use calculus. ► Set $\partial R / \partial w_0 = 0$ and $\partial R / \partial w_1 = 0$ and solve.
- Problem: absolute value is not differentiable!
- It is hard to minimize the mean absolute error.⁴
- What can we do?

⁴Though it can be done with linear programming.

Minimizing Mean Squared Error

► The **square loss** *is* differentiable:

$$\ell_{sq}(H(\vec{x}), y) = (H(\vec{x}) - y)^2$$

Let's try minimizing the mean squared error instead.

Main Idea

We often choose a loss function out of practical considerations.

Lecture 02 Part 4

Minimizing the MSE

Our Goal

- Out of all linear functions ℝ → ℝ, find the function H* with the smallest mean squared error.
- ► That is, find:

$$H^* = \underset{\text{linear } H}{\operatorname{arg min}} \frac{1}{n} \sum_{i=1}^{n} (H(x_i) - y_i)^2$$

This problem is called least squares regression.

For now...

For simplicity, assume that there is only one feature (predictor variable).

- $\vdash H(x; \dot{\vec{w}}) = w_0 + w_1 x$
- I.e., one-dimensional linear regression.
- We will come back to multi-dimensional case in the next lecture.

Minimizing the MSE

The MSE is a function of a function:

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (H(x_i) - y_i)^2$$

But since H is linear, $H(x) = w_1 x + w_0$.

$$R_{sq}(w_1, w_0) = \frac{1}{n} \sum_{i=1}^{n} \left((w_1 x_i + w_0) - y_i \right)^2$$

Now it's a function of w_1, w_0 .

Updated Goal

Find slope w₁ and intercept w₀ which minimize the MSE, R_{sq}(w₁, w₀):

$$R_{sq}(w_1, w_0) = \frac{1}{n} \sum_{i=1}^{n} \left((w_1 x_i + w_0) - y_i \right)^2$$

Strategy: multivariate calculus.

Exercise

Suppose we plotted $R_{sq}(w_1, w_0)$. What would it look like? $w W_i^2 + \beta W_2^2 + \cdots$ $R_{sq}(w_1, w_0) = \frac{1}{n} \sum_{i=1}^n ((w_1 x_i + w_0) - y_i)^2$ \triangleright Can R_{sq} be negative? **no** \triangleright Can it be zero? **yes** in **Heavy** \triangleright How many minima / maxima?

Answer

Recall: the gradient

If f(x, y) is a function of two variables, the gradient of f at the point (x₀, y₀) is a vector of partial derivatives:

$$\nabla f(x_0, y_0) = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0) \\ \\ \frac{\partial f}{\partial y}(y_0) \end{pmatrix}$$

Key Fact: gradient is zero at critical points.

Strategy

To minimize $R(w_1, w_0)$: compute the gradient, set equal to zero, solve.

$$R_{sq}(w_{1},w_{0}) = \frac{1}{n} \sum_{i=1}^{n} \left((w_{1}x_{i}+w_{0})-y_{i} \right)^{2} \qquad \frac{d}{du} g(f(w)) = g'(f(w))$$

$$\frac{\partial R_{sq}}{\partial w_{1}} = \frac{\partial}{\partial w}, \quad \frac{1}{n} \sum_{i=1}^{n} \left((w_{i}x_{i}+w_{0})-y_{i} \right)^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{i}} \left((w_{i}x_{i}+w_{0})-y_{i} \right)^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} 2 \left((w_{i}x_{i}+w_{0})-y_{i} \right) \frac{\partial}{\partial w_{i}} \left((w_{i}x_{i}+w_{0})-y_{i} \right)$$

$$= \frac{2}{n} \sum_{i=1}^{n} \left((w_{i}x_{i}+w_{0})-y_{i} \right) \times i$$

$$R_{sq}(w_{1},w_{0}) = \frac{1}{n} \sum_{i=1}^{n} \left((w_{1}x_{i}+w_{0})-y_{i} \right)^{2}$$

$$\frac{\partial R_{sq}}{\partial w_{0}} = \frac{\partial}{\partial w_{0}} \frac{1}{n} \sum \left(\left(w_{1}x_{1}+w_{0} \right)-y_{1} \right)^{2} \right)^{2}$$

$$= \frac{1}{n} \sum 2 \left(\left(w_{1}x_{1}+w_{0} \right) + y_{1} \right) \frac{\partial}{\partial w_{0}} \left(\left(w_{1}x_{1}+w_{0} \right)-y_{1} \right)^{2} \right)^{2}$$

 $= \frac{2}{n} \sum_{i=1}^{n} \left(\left(W_{i} \times_{i}^{i} + W_{o} \right) - y_{i} \right)$

Strategy

$$0 = \frac{2}{n} \sum_{i=1}^{n} \left((w_1 x_i + w_0) - y_i \right) x_i \quad 0 = \frac{2}{n} \sum_{i=1}^{n} \left((w_1 x_i + w_0) - y_i \right)$$

- 1. Solve for w_0 in second equation.
- 2. Plug solution for w_0 into first equation, solve for w_1 .

Solve for w_0 5= - Zy $0 = \frac{2}{n} \sum_{i=1}^{n} \left((w_1 x_i + w_0) - y_i \right)$ x = the Z xi $0 = \sum w_{1} x_{1} + \sum w_{0} - \sum y_{1}$ $\Sigma w_{o} = \Sigma y_{i} - \Sigma w_{i} \times i$ nwo = Zy; - w, Z x; $w_{o} = \frac{1}{n} \sum y_{i} - \frac{w_{i}}{n} \sum x_{i} \gg w_{o} = \overline{y} - w_{i} \overline{x}$

Solve for w₀

$$0 = \frac{2}{n} \sum_{i=1}^{n} \left((w_1 x_i + w_0) - y_i \right)$$

Key Fact

Then

$$\sum_{i=1}^{\infty} (x_i - \bar{x}) = 0 \qquad \sum_{i=1}^{\infty} (y_i - \bar{y}) = 0$$

Solve for w₁

Solve for w₁

$$0 = \frac{2}{n} \sum_{i=1}^{n} ((w_{1}x_{i} + w_{0}) - y_{i})x_{i} \qquad w_{0} = \bar{y} - w_{1}\bar{x}$$

$$w_{1} \sum_{i} (x_{i} - \bar{x})x_{i} - \sum_{i} (\bar{y} - y_{i})x_{i}$$

$$W_{1} = \frac{\sum_{i} (y_{i} - \bar{y})x_{i}}{\sum_{i} (x_{i} - \bar{x})x_{i}}$$

Solve for w₁

Least Squares Solutions

The least squares solutions for the slope w₁ and intercept w₀ are:

where $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

▶ What is the sign of $(x_i - \bar{x})(y_i - \bar{y})$ when:

 \blacktriangleright $x_i > \bar{x}$ and $y_i > \bar{y}$?

▶ What is the sign of $(x_i - \bar{x})(y_i - \bar{y})$ when:

► $x_i < \bar{x}$ and $y_i < \bar{y}$?

▶ What is the sign of $(x_i - \bar{x})(y_i - \bar{y})$ when:

► $x_i > \bar{x}$ and $y_i < \bar{y}$?

▶ What is the sign of $(x_i - \bar{x})(y_i - \bar{y})$ when:

► $x_i < \bar{x}$ and $y_i > \bar{y}$?

Interpretation of Intercept

Question

We fit a linear prediction rule for salary given years of experience. Then everyone gets a \$5,000 raise. What happens to slope/intercept?

Example

 $\bar{x} =$

<u></u>*y* =

 $w_0 = \bar{y} - w_1 \bar{x}$

x _i	Уi	$(x_i - \bar{x})$	$(y_i - \bar{y})$	$(x_i-\bar{x})(y_i-\bar{y})$	$(x_i - \bar{x})^2$
3 4 8	7 3 2				

Lecture 02 | Part 5

Fitting Non-Linear Trends

Non-Linear Trends

We have fit a straight line of the form:

 $H(x) = w_0 + w_1 x$

- What if we believe, e.g., salary grows with the square of experience?
- I.e., how do we fit a function of the form:

$$H(x) = w_0 + w_1 x^2$$
?

"Linear" Models

- The linear in linear prediction function refers to the weights, not the features.
- ► These are all **linear** prediction functions: ► $H(x) = w_0 + w_1 x + w_2 x^2$ ► $H(x) = w_0 + w_1 e^x$ ► $H(x) = w_0 + w_1 \sqrt{x} + w_2 \sin x$

These are not:
 H(x) = w₀ + w₁e^{w₂x}
 H(x) = w₀ + w₁sin(w₂x)

In General

- $H(x) = w_0 + w_1 \phi(x)$ is a linear model, no matter what ϕ is.⁵
- ϕ is called a **basis function** (or **feature map**).
- Example: $\phi(x) = x^2$

⁵Provided ϕ does not involve w_0 and w_1

Minimizing Mean Squared Error

Fix a basis function $\phi(x)$.

Goal: pick w₀ and w₁ so as to minimize the mean squared error of H:

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} \left[(w_0 + w_1 \phi(x_i)) - y_i \right]^2$$

Minimizing Mean Squared Error

Notation: define $z_i = \phi(x_i)$.

Strategy: compute $\partial R_{sq} / \partial w_0$ and $\partial R_{sq} / \partial w_1$, set to zero, solve.

Solution

- Observation: This is the exact same calculation we've done, but with x_i replaced by z_i.
- The least squares solutions:

$$w_1 = \frac{\sum_{i=1}^n (z_i - \bar{z})(y_i - \bar{y})}{\sum_{i=1}^n (z_i - \bar{z})^2}$$

 $w_0=\bar{y}-w_1\bar{z}$

• where
$$\bar{z} \equiv \frac{1}{n} \sum_{i=1}^{n} \phi(x_i)$$

Intuition

Interpretation

- To fit a function $H(x) = w_0 + w_1 \phi(x)$:
- 1. Create new data set $\{(z_i, y_i)\}$, where $z_i = \phi(x_i)$.
- 2. Fit a straight line $H(z) = w_0 + w_1 z$ on this new data.

3. Use w_0 and w_1 in $H(x) = w_0 + w_1 \phi(x)$

Summary

We have seen how to fit linear prediction functions of the form:

$$H(x) = w_0 + w_1 \phi(x)$$

Next time: how do we fit functions of the form:

$$H(x_1, x_2, ...) = w_0 + w_1 \phi(x_1) + w_2 \phi(x_2) + ...$$

How does this compare to nearest neighbor methods?