DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 02 | Part 1

News

News

- ► Lab 01 released. Due Sunday @ 11:59 pm.
- ► HW 01 released. Due Wednesday @ 11:59 pm.
 - ► 上TEX template available (optional).

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 02 | Part 2

Linear Models

Last Time: Nearest Neighbors

Nearest neighbor methods are simple; can work well.

- ► However, they:
 - 1. "memorize" the training data (inefficient);
 - 2. do not learn relative important of features.

Example: Predicting Salary

- Goal: predict a data scientist's salary from three features:
 - \triangleright x_1 : years of experience
 - x_2 : # of interview questions missed
 - \triangleright x_3 : favorite number

Observations:

- \triangleright x_1 is **positively** associated with salary
- \triangleright x_2 is **negatively** associated with salary
- \triangleright x_3 is **not** associated with salary

Prediction Functions

- ► **Informally:** we think years of experience, etc., are predictive of salary.
- Formally: we think there is a function H that takes $\vec{x} = (x_1, x_2, x_3)$ and outputs a good prediction of salary.

$$H(\vec{x}) \rightarrow \text{prediction}$$

► H is called a prediction function.¹

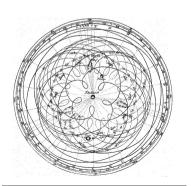
¹Or, sometimes, a hypothesis function

Prediction Functions

- Goal: find an accurate prediction function.
- What should our prediction function look like?
- ► That is, we must choose a **model**.
 - In context of prediction functions: a hypothesis class.

Occam's Razor

Occam's Razor: when faced with two competing explanations (models), favor the simpler one.²



²As long as it works, of course.

Linear Functions

- Idea: model salary as a weighted sum of factors.
- ► That is, as a **linear function**:

$$H(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

- \triangleright $w_0, w_1, ..., w_3$ are the parameters or weights.
- ► **TODO:** how do we choose the weights?

Exercise

Recall:

- \triangleright x_1 : years of experience
- \triangleright x_2 : # of interview questions missed
- $\triangleright x_3$: favorite number

What are reasonable values of the weights in the linear prediction function $H(\vec{x}) = w_0 + w_1x_1 + w_2x_2 + w_3x_3$ if it is to be a good predictor of salary?

Parameter Vectors

- The parameters of a linear function can be packaged into a parameter vector, \vec{w} .
- **Example:** if $H(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$ then $\vec{w} = (w_0, ..., w_3)^T$.

Parameterization

- A linear function $H(\vec{x})$ is **completely determined** by its parameter vector.
 - ightharpoonup Can work either with the function, H, or vector, \vec{w} .
- ► Sometimes write $H(\vec{x}; \vec{w})$.
- Example: $\vec{w} = (8, 3, 1, 5, -2, -7)^T$ specifies

$$H(\vec{x}; \vec{w}) = 8 + 3x_1 + 1x_2 + 5x_3 - 2x_4 - 7x_5$$

Number of Parameters

If a linear predictor $H(\vec{x}; \vec{w})$ takes in d-dimensional feature vectors, it has d + 1 parameters.

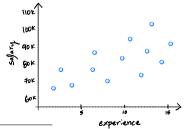
$$H(\vec{x}; \vec{w}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d$$
$$= w_0 + \sum_{i=1}^d w_i x_i$$

▶ That is, if $\vec{x} \in \mathbb{R}^d$, then $\vec{w} \in \mathbb{R}^{d+1}$.

Visualization

- ► Linear prediction rules have linear graphs.³
- **Example:** A linear prediction function for salary.

$$H_1(\vec{x}) = $50,000 + (experience) \times $8,000$$



³When visualized in feature space.

Visualization (d > 1)

- The surface of a prediction function H is made by plotting $H(\vec{x})$ for all \vec{x} .
- ▶ If H is a linear prediction function, and
 - $\vec{x} \in R^1$, then H(x) is a straight line.
 - $\vec{x} \in \mathbb{R}^2$, then $H(\vec{x})$ is a plane.
 - $\vec{x} \in \mathbb{R}^d$, then $H(\vec{x})$ is a d-dimensional hyperplane.

Note: Compact Form

ightharpoonup Recall the **dot product** of vectors \vec{a} and \vec{b} :

$$\vec{a} = (a_1, a_2, ..., a_d)^T$$
 $\vec{b} = (b_1, b_2, ..., b_d)^T$
 $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + ... + a_d b_d$

Observe:

$$H(\vec{x}; \vec{w}) = w_0 + w_1 x_1 + \dots + w_d x_d$$

$$= \underbrace{(w_0, w_1, \dots, w_d)^T}_{\vec{w}} \cdot \underbrace{(1, x_1, \dots, x_d)^T}_{?}$$

Note: Compact Form

The augmented feature vector $Aug(\vec{x})$ is the vector obtained by adding a 1 to the front of \vec{x} :

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix} \quad \text{Aug}(\vec{x}) = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix}$$

With augmentation, we can write:

$$H(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2 + ... + w_d x_d$$

= $\vec{w} \cdot \text{Aug}(\vec{x})$

Classification?

- We have been focusing on regression.
- Linear prediction functions can be used for classification, too.
- ▶ We will come back to this.

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 02 | Part 3

Empirical Risk Minimization

Picking a Prediction Function

Suppose we model salary as a linear function:

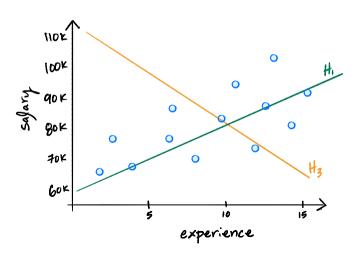
$$H(\vec{x}; \vec{w}) = w_0 + w_1 x_1 + w_2 x_2 + x_3 x_3$$

Question: how do we choose weights $w_0, ..., w_3$ so that H makes good predictions?

Learning

- ► **Assumption:** the future will look like the past.
- If so, we should pick a prediction function that worked well on past data.
- ► That is, we should **learn** a function from data.

Example

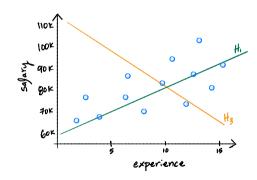


Training Data

- ► To learn, we gather **training data**.
- A set \mathcal{D} of n pairs: $(\vec{x}^{(i)}, y_i)$
 - $\vec{x}^{(i)}$ is the *i*th **feature vector**
 - \triangleright y_i is its label (the correct answer)
- In regression, y_i is a continuous number; in classification, it is discrete.
- ► This regime is called **supervised learning**.

An Optimization Problem

- Some prediction functions "fit" the data better than others.
- ► **Idea:** find the function that "fits best"



Quantifying Fit

- ► How do we measure "fit"?
- Formally: measure difference between our prediction $H(\vec{x}^{(i)})$ and the "right answer", y_i .
- ► A **loss function** quantifies how wrong a single prediction is.
- **Example:** the **absolute loss** $\ell_{abs}(H(\vec{x}^{(i)}), y_i) = |H(\vec{x}^{(i)}) y_i|$

Quantifying Overall Fit

- Idea: a good H makes good predictions on average over entire data set.
- Find *H* minimizing the **expected loss**, also called the **empirical risk**:

$$R(H) = \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}), y_i)$$

Note: R depends on both H and the data!

Empirical Risk Minimization

- This strategy is called empirical risk minimization (ERM).
- Step 1: choose a hypothesis class
 - Let's assume we've chosen linear predictors
- Step 2: choose a loss function
- Step 3: minimize expected loss (empirical risk)

ERM for Regression

We have chosen as our hypothesis class the set of **linear functions** $\mathbb{R}^d \to \mathbb{R}$.

Suppose we choose absolute loss:

$$\ell_{abs}(H(\vec{x}^{(i)}), y_i) = |H(\vec{x}^{(i)}) - y_i|$$

► **Goal:** find *H* minimizing mean absolute error:

$$R_{abs}(H) = \sum_{i=1}^{n} |H(\vec{x}^{(i)}) - y_i|$$

Minimizing Mean Absolute Error

- ▶ **Goal:** out of all **linear** functions $\mathbb{R}^d \to \mathbb{R}$, find the function H^* with the smallest mean absolute error on the training set.
- ► That is, find:

$$H^* = \underset{\text{linear } H}{\text{arg min}} \frac{1}{n} \sum_{i=1}^{n} |H(x_i) - y_i|$$

Minimizing Mean Absolute Error

Assume for now that d = 1 (one feature). Then $w \in \mathbb{R}^2$ and:

$$H(x; \vec{w}) = w_0 + w_1 x$$

- ▶ Recall that H is completely determined by w_0 , w_1 .
- ► Equivalent goal: find w_0 and w_1 minimizing

$$\frac{1}{n}\sum_{i=1}^{n}\left|H(x; w_0, w_1) - y_i\right|$$

Minimizing Mean Absolute Error

- ▶ To find optimal w_0 and w_1 , might use calculus.
 - Set $\partial R/\partial w_0 = 0$ and $\partial R/\partial w_1 = 0$ and solve.
- Problem: absolute value is not differentiable!
- ▶ It is hard to minimize the mean absolute error.⁴

► What can we do?

⁴Though it can be done with linear programming.

Minimizing Mean Squared Error

► The **square loss** *is* differentiable:

$$\ell_{sq}(H(\vec{x}), y) = (H(\vec{x}) - y)^2$$

Let's try minimizing the mean squared error instead.

Main Idea

We often choose a loss function out of practical considerations.

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 02 | Part 4

Minimizing the MSE

Our Goal

Out of all **linear** functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean squared error.

► That is, find:

$$H^* = \underset{\text{linear } H}{\text{arg min}} \frac{1}{n} \sum_{i=1}^{n} (H(x_i) - y_i)^2$$

This problem is called least squares regression.

For now...

- For simplicity, assume that there is only one feature (predictor variable).
 - $H(x; \dot{\vec{W}}) = W_0 + W_1 X$
 - ► I.e., one-dimensional linear regression.
- We will come back to multi-dimensional case in the next lecture.

Minimizing the MSE

► The MSE is a function of a function:

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (H(x_i) - y_i)^2$$

▶ But since H is linear, $H(x) = w_1x + w_0$.

$$R_{\text{sq}}(w_1, w_0) = \frac{1}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i)^2$$

Now it's a function of w_1, w_0 .

Updated Goal

Find slope w_1 and intercept w_0 which minimize the MSE, $R_{sq}(w_1, w_0)$:

$$R_{\text{sq}}(w_1, w_0) = \frac{1}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i)^2$$

Strategy: multivariate calculus.

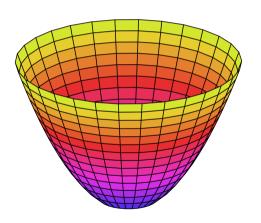
Exercise

Suppose we plotted $R_{sq}(w_1, w_0)$. What would it look like?

$$R_{sq}(w_1, w_0) = \frac{1}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i)^2$$

- Can R_{sq} be negative?
 Can it he zero?
 - Can it be zero?
- ► How many minima / maxima?

Answer



Recall: the gradient

If f(x, y) is a function of two variables, the gradient of f at the point (x_0, y_0) is a vector of partial derivatives:

$$\nabla f(x_0, y_0) = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0) \\ \frac{\partial f}{\partial y}(y_0) \end{pmatrix}$$

Key Fact: gradient is zero at critical points.

Strategy

To minimize $R(w_1, w_0)$: compute the gradient, set equal to zero, solve.

$$R_{\text{sq}}(w_1, w_0) = \frac{1}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i)^2$$

 ∂R_{sq}

$$R_{\text{sq}}(w_1, w_0) = \frac{1}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i)^2$$

 ∂R_{sq}

Strategy

$$0 = \frac{2}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i) x_i \quad 0 = \frac{2}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i)$$

- 1. Solve for w_0 in second equation.
- 2. Plug solution for w_0 into first equation, solve for w_1 .

Solve for W_0

$$0 = \frac{2}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i)$$

Solve for W_0

$$0 = \frac{2}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i)$$

Key Fact

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

$$\sum_{i=1} (x_i - \bar{x}) = 0 \qquad \sum_{i=1} (y_i - \bar{y}) = 0$$

Solve for w₁

$$0 = \frac{2}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i) x_i \qquad w_0 = \bar{y} - w_1 \bar{x}$$

Solve for w₁

$$0 = \frac{2}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i) x_i \qquad w_0 = \bar{y} - w_1 \bar{x}$$

Least Squares Solutions

► The **least squares solutions** for the slope w_1 and intercept w_0 are:

$$w_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$w_0 = \bar{y} - w_1 \bar{x}$$

where
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$

$$N_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

- ▶ What is the sign of $(x_i \bar{x})(y_i \bar{y})$ when:
 - $\rightarrow x_i > \bar{x}$ and $y_i > \bar{y}$?

$$W_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

- ▶ What is the sign of $(x_i \bar{x})(y_i \bar{y})$ when:
 - $\rightarrow x_i < \bar{x} \text{ and } y_i < \bar{y}?$

$$N_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

- ▶ What is the sign of $(x_i \bar{x})(y_i \bar{y})$ when:
 - $\rightarrow x_i > \bar{x}$ and $y_i < \bar{y}$?

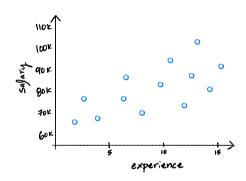
$$N_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

- ▶ What is the sign of $(x_i \bar{x})(y_i \bar{y})$ when:
 - $\rightarrow x_i < \bar{x} \text{ and } y_i > \bar{y}?$

Interpretation of Intercept

$$w_0 = \bar{y} - w_1 \bar{x}$$



▶ What is $H(\bar{x})$?

Question

We fit a linear prediction rule for salary given years of experience. Then everyone gets a \$5,000 raise. What happens to slope/intercept?

0

Example

$$\bar{x} =$$

$$\bar{y} =$$

$$W_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$w_0 = \bar{y} - w_1 \bar{x}$$

x _i y	$(x_i - \bar{x})$	$(y_i - \bar{y})$	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i - \bar{x})^2$
3 7 4 3 8 2				

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 02 | Part 5

Fitting Non-Linear Trends

Non-Linear Trends

We have fit a straight line of the form:

$$H(x) = w_0 + w_1 x$$

- What if we believe, e.g., salary grows with the square of experience?
- ▶ I.e., how do we fit a function of the form:

$$H(x) = W_0 + W_1 x^2$$
?

"Linear" Models

- ► The **linear** in **linear prediction function** refers to the weights, not the features.
- These are all linear prediction functions:

$$H(x) = W_0 + W_1 x + W_2 x^2$$

$$\vdash H(x) = W_0 + W_1 e^x$$

$$H(x) = W_0 + W_1 \sqrt{x} + W_2 \sin x$$

- ► These are **not**:
 - $\vdash H(x) = W_0 + W_1 e^{W_2 x}$
 - $H(x) = w_0 + w_1 \sin(w_2 x)$

In General

- ► $H(x) = w_0 + w_1 \phi(x)$ is a linear model, no matter what ϕ is.⁵
- \triangleright ϕ is called a **basis function** (or **feature map**).
- ightharpoonup Example: $\phi(x) = x^2$

⁵Provided ϕ does not involve w_0 and w_1

Minimizing Mean Squared Error

- Fix a basis function $\phi(x)$.
- ▶ **Goal:** pick w_0 and w_1 so as to minimize the mean squared error of H:

$$R_{\text{sq}}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} \left[(w_0 + w_1 \phi(x_i)) - y_i \right]^2$$

Minimizing Mean Squared Error

- Notation: define $z_i = \phi(x_i)$.
- Strategy: compute $\partial R_{sq}/\partial w_0$ and $\partial R_{sq}/\partial w_1$, set to zero, solve.

Solution

- **Observation:** This is the **exact same** calculation we've done, but with x_i replaced by z_i .
- ► The **least squares solutions**:

$$w_1 = \frac{\sum_{i=1}^{n} (z_i - \bar{z})(y_i - \bar{y})}{\sum_{i=1}^{n} (z_i - \bar{z})^2}$$

$$w_0 = \bar{y} - w_1 \bar{z}$$

where $\bar{z} = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i)$

Intuition

Interpretation

- ► To fit a function $H(x) = w_0 + w_1 \phi(x)$:
- 1. Create new data set $\{(z_i, y_i)\}$, where $z_i = \phi(x_i)$.
- 2. Fit a straight line $H(z) = w_0 + w_1 z$ on this new data.
- 3. Use w_0 and w_1 in $H(x) = w_0 + w_1 \phi(x)$

Summary

We have seen how to fit linear prediction functions of the form:

$$H(x) = w_0 + w_1 \phi(x)$$

Next time: how do we fit functions of the form:

$$H(x_1, x_2, ...) = w_0 + w_1 \phi(x_1) + w_2 \phi(x_2) + ...$$

How does this compare to nearest neighbor methods?