
Lecture 3 | Part 1

Least Squares Regression (𝑑 > 1)

Last Time▶ Introduced linear models:𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑= Aug(⃗𝑥) ⋅ 𝑤⃗

Last Time▶ Introduced empirical risk minimization (ERM):▶ Step 1: choose a hypothesis class▶ Let’s assume we’ve chosen linear predictors▶ Step 2: choose a loss function▶ Step 3: minimize expected loss (empirical risk)

Last Time▶ Chose the square loss.▶ Minimized the expected square loss for models
with one feature (predictor variable):𝐻(𝑥) = 𝑤0 + 𝑤1𝑥▶ The least squares solutions:

𝑤1 = 𝑛∑𝑖=1 (𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)𝑛∑𝑖=1 (𝑥𝑖 − 𝑥̄)2 𝑤0 = 𝑦̄ − 𝑤1𝑥̄

Today▶ Least squares solutions for > 1 feature.▶ What about classification?

Setting▶ A training set consisting of 𝑛 pairs, (⃗𝑥(𝑖), 𝑦𝑖):▶ ⃗𝑥(𝑖) ∈ ℝ𝑑 is the 𝑖th feature vector;▶ 𝑦𝑖 ∈ ℝ is the 𝑖th target

Our Goal▶ Out of all linear functions ℝ𝑑 → ℝ, find the
function 𝐻∗ with the smallest mean squared
error w.r.t. the training data.▶ That is, find linear 𝐻 minimizing:𝑅sq(𝐻) = 1𝑛 𝑛∑𝑖=1 (𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)2▶ This problem is called least squares regression.

Recall▶ A linear function 𝐻(⃗𝑥; 𝑤⃗) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑 is
completely determined by its parameter vector,𝑤⃗: 𝐻(⃗𝑥; 𝑤⃗) = Aug(⃗𝑥) ⋅ 𝑤⃗▶ Updated goal: find 𝑤⃗ ∈ ℝ𝑑+1 minimizing:𝑅sq(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 (Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)2

Two Approaches▶ Approach #1: Vector Calculus▶ Approach #2: Orthogonal Projection (Geometry)▶ Different ways of arriving at same solutions.

Approach #1: Vector Calculus▶ Find gradient of 𝑅sq(𝑤⃗); set to zero; solve for 𝑤⃗.▶ Essentially what was done last time.▶ Now: there are many more than 2 parameters.▶ Rely on results from vector calculus.

,x3 =3xz

First Step: Rewrite Risk▶ Step one: rewrite 𝑅sq in vector form.▶ We’ll find:𝑅sq(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 (Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)2= 1𝑛‖𝑋𝑤⃗ − ⃗𝑦‖2
y =(y,y,,... ,y.)

+

Recall▶ If 𝑢⃗ = (𝑢1, 𝑢2, … , 𝑢𝑘)𝑇, then:‖𝑢⃗‖2 = 𝑢⃗ ⋅ 𝑢⃗ = 𝑘∑𝑖=1 𝑢2𝑖▶ So, if 𝑎⃗ = (𝑎1, … , 𝑎𝑘)𝑇 and 𝑏⃗ = (𝑏1, … , 𝑏𝑘)𝑇:‖𝑎⃗ − 𝑏⃗‖2 = (𝑎⃗ − 𝑏⃗) ⋅ (𝑎⃗ − 𝑏⃗)= 𝑘∑𝑖=1 (𝑎𝑖 − 𝑏𝑖)2

First Step: Rewrite Risk▶ Define 𝑝𝑖 = Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗, and let 𝑝⃗ = (𝑝1, … , 𝑝𝑛)𝑇.▶ 𝑝⃗ is a vector of the predictions on training set.▶ Note: 𝑝⃗ ∈ ℝ𝑛, not ℝ𝑑!▶ Then: 𝑅sq(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 (Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)2= 1𝑛 𝑛∑𝑖=1 (𝑝𝑖 − 𝑦𝑖)2= 1𝑛‖𝑝⃗ − ⃗𝑦‖2

First Step: Rewrite Risk▶ Define the (augmented) design matrix, 𝑋:
𝑋 = (Aug(⃗𝑥(1))

Aug(⃗𝑥(2)) ⋮ ⋮
Aug(⃗𝑥(𝑛))) = ⎛⎜⎜⎜⎝

1 𝑥(1)1 𝑥(1)2 … 𝑥(1)𝑑1 𝑥(2)1 𝑥(2)2 … 𝑥(2)𝑑⋮ ⋮ ⋮ ⋮ ⋮1 𝑥(𝑛)1 𝑥(𝑛)2 … 𝑥(𝑛)𝑑
⎞⎟⎟⎟⎠

First Step: Rewrite Risk▶ Observe: 𝑝⃗ = 𝑋𝑤⃗.
(Aug(⃗𝑥(1))
Aug(⃗𝑥(2)) ⋮ ⋮
Aug(⃗𝑥(𝑛)))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝑋

(𝑤0𝑤1⋮𝑤𝑑)⏟⃗𝑤
= (Aug(⃗𝑥(1)) ⋅ 𝑤⃗

Aug(⃗𝑥(2)) ⋅ 𝑤⃗⋮
Aug(⃗𝑥(𝑛)) ⋅ 𝑤⃗)⏟⏟⏟⏟⏟⏟⏟𝑝⃗

First Step: Rewrite Risk▶ Therefore, the MSE can be written:𝑅sq(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 (Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)2= 1𝑛 𝑛∑𝑖=1 (𝑝𝑖 − 𝑦𝑖)2= 1𝑛‖𝑝⃗ − ⃗𝑦‖2= 1𝑛‖𝑋𝑤⃗ − ⃗𝑦‖2

Goal▶ Find 𝑤⃗ ∈ ℝ𝑑+1 minimizing:𝑅sq(𝑤⃗) = 1𝑛‖𝑋𝑤⃗ − ⃗𝑦‖2▶ Step Two: find gradient, set to zero, solve.

Recall: the Risk Surface

Step Two: Find Gradient▶ We want to compute:𝑑𝑑𝑤⃗ [𝑅sq(𝑤⃗)] = 𝑑𝑑𝑤⃗ [1𝑛‖𝑋𝑤⃗ − ⃗𝑦‖2]▶ 𝑑𝑅sq𝑑𝑤⃗ is the gradient of 𝑅sq.▶ It is the vector of partial derivatives:𝑑𝑅sq𝑑𝑤⃗ = (𝜕𝑅sq𝜕𝑤0 , 𝜕𝑅sq𝜕𝑤1 , … , 𝜕𝑅sq𝜕𝑤𝑑)𝑇
TRss(w)

Idea▶ While we could compute each of: 𝜕𝑅sq𝜕𝑤0 , 𝜕𝑅sq𝜕𝑤1 , ….▶ Instead use rules from vector calculus.▶ Example: 𝑑𝑑𝑤⃗ [⃗𝑦𝑇𝑋𝑤⃗] = 𝑋𝑇 ⃗𝑦

ax =a

Good to know...

(𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇(𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇𝑢⃗ ⋅ ⃗𝑣 = ⃗𝑣 ⋅ 𝑢⃗ = 𝑢⃗𝑇 ⃗𝑣 = ⃗𝑣𝑇𝑢⃗(𝑢⃗ + ⃗𝑣) ⋅ (𝑤⃗ + ⃗𝑧) = 𝑢⃗ ⋅ 𝑤⃗ + 𝑢⃗ ⋅ ⃗𝑥 + ⃗𝑣 ⋅ 𝑤⃗ + ⃗𝑣 ⋅ ⃗𝑧‖𝑢⃗‖2 = 𝑢⃗ ⋅ 𝑢⃗

Step Two: Find Gradient▶ Expand norm to make gradient easier.‖𝑋𝑤⃗ − ⃗𝑦‖2 ====
(xi - y). (Xi - y)

LAB)=B"AT Xi.Xir-Xir.y-y.Xi +j.y
(Xw)+Xw-(Xu)

+

y - (xw)"y
+y
+y

in+x
+XwXTy +y+y
2z +xw

Step Two: Find Gradient

𝑑𝑑𝑤⃗ [𝑅sq(𝑤⃗)] = 1𝑛 𝑑𝑑𝑤⃗ [𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗ − 2 ⃗𝑦𝑇𝑋𝑤⃗ + ⃗𝑦𝑇 ⃗𝑦]= ?

Claims▶ 𝑑𝑑𝑤⃗ [𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗] = 2𝑋𝑇𝑋𝑤⃗▶ 𝑑𝑑𝑤⃗ [⃗𝑦𝑇𝑋𝑤⃗] = 𝑋𝑇 ⃗𝑦▶ 𝑑𝑑𝑤⃗ [⃗𝑦𝑇 ⃗𝑦] = 0

ax) =2ax

Example▶ Show 𝑑𝑑𝑢⃗ [⃗𝑣𝑇𝑢⃗] = ⃗𝑣.▶ General procedure:
1. Expand ⃗𝑣𝑇𝑢⃗ until coordinates 𝑢1, … , 𝑢𝑘 are visible.
2. Compute 𝜕𝑑/𝜕𝑢1, 𝜕𝑑/𝜕𝑢2, …, 𝜕𝑑/𝜕𝑢𝑘.
3. Gather result in vector form.

-dax
y

=2ax

D Expand
-.

v
+u =

viMv.ui =v,yve+...fVkUK

1/ /

2)(,v+i
=V,yv-h =vej =Vi

3) d i+i =(V,v,,...,vk)
T
=E

Step Two: Find Gradient

𝑑𝑑𝑤⃗ [𝑅sq(𝑤⃗)] = 1𝑛 𝑑𝑑𝑤⃗ [𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗ − 2 ⃗𝑦𝑇𝑋𝑤⃗ + ⃗𝑦𝑇 ⃗𝑦]=↓[2x+xz - 2xy +0]

Solution▶ We have found:𝑑𝑑𝑤⃗ [𝑅sq(𝑤⃗)] = 1𝑛 (2𝑋𝑇𝑋𝑤⃗ − 2𝑋𝑇 ⃗𝑦)▶ To minimize 𝑅sq(𝑤⃗), set gradient to zero, solve:2𝑋𝑇𝑋𝑤⃗ − 2𝑋𝑇 ⃗𝑦 = 0 ⟹ 𝑋𝑇𝑋𝑤⃗ = 𝑋𝑇 ⃗𝑦▶ This is a system of equations in matrix form,
called the normal equations.

The Normal Equations▶ The least squares solutions for 𝑤⃗ are found by
solving the normal equations:𝑋𝑇𝑋𝑤⃗ = 𝑋𝑇 ⃗𝑦▶ Mathematically, solved by:𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦▶ In practice: don’t invert! Use the Singular Value
Decomposition (SVD).

up.linaly.lstsq
(is)

Aside▶ 𝑋+ = (𝑋𝑇𝑋)−1𝑋𝑇 is known as the Moore-Penrose
pseudoinverse of 𝑋.▶ A generalization of the matrix inverse for
non-square matrices.▶ With this, the least squares solution is: 𝑤⃗∗ = 𝑋+ ⃗𝑦

Two Approaches▶ Approach #1: Vector Calculus▶ Approach #2: Orthogonal Projection (Geometry)▶ Different ways of arriving at same solutions.

Approach #2: Geometry▶ In the collinear case, ⃗𝑦 can be predicted exactly.▶ That is, there is a 𝑤⃗ such that 𝑋𝑤⃗ = ⃗𝑦.
I

Approach #2: Geometry▶ In practice, ⃗𝑦 is not in the column space of 𝑋.▶ Goal: choose 𝑤⃗ so that 𝑋𝑤⃗ ≈ ⃗𝑦.

Approach #2: Geometry▶ Idea: ‖𝑋𝑤⃗ − ⃗𝑦‖ is smallest when 𝑋𝑤⃗ is the
orthogonal projection of ⃗𝑦 onto the column
space of 𝑋.

Recall: Projections▶ Let 𝐴 be a matrix and 𝑢⃗ be a vector.▶ The orthogonal projection of 𝑢⃗ onto the column
space of 𝐴 is given by:𝐴(𝐴𝑇𝐴)−1𝐴𝑇𝑢⃗

Approach #2: Geometry▶ So, the orthogonal projection of ⃗𝑦 onto the
column space of 𝑋 is given by:𝑋 (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦⏟⃗𝑤∗

Least Squares Regression▶ We can now fit functions of the form:𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑
by minimizing expected square loss.▶ Example:▶ 𝑥1: years of experience▶ 𝑥2: # of interview questions missed▶ 𝑥3: favorite number

Procedure
1. Form (augmented) 𝑛 × (𝑑 + 1) design matrix:

𝑋 = (Aug(⃗𝑥(1))
Aug(⃗𝑥(2)) ⋮ ⋮
Aug(⃗𝑥(𝑛))) = ⎛⎜⎜⎜⎝

1 𝑥(1)1 𝑥(1)2 … 𝑥(1)𝑑1 𝑥(2)1 𝑥(2)2 … 𝑥(2)𝑑⋮ ⋮ ⋮ ⋮ ⋮1 𝑥(𝑛)1 𝑥(𝑛)2 … 𝑥(𝑛)𝑑
⎞⎟⎟⎟⎠

2. Solve the normal equations:𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦

Lecture 3 | Part 2

Example: Gaussian Basis Functions

Recall: Basis Functions▶ We can fit any function of the form:𝐻(⃗𝑥; 𝑤⃗) = 𝑤0 + 𝑤1𝜙1(⃗𝑥) + 𝑤2𝜙2(⃗𝑥) + … + 𝑤𝑘𝜙𝑘(⃗𝑥)▶ 𝜙𝑖(⃗𝑥) ∶ ℝ𝑑 → ℝ is called a basis function.

Procedure
1. Define 𝜙⃗(𝑖) = (𝜙1(⃗𝑥(𝑖)), 𝜙2(⃗𝑥(𝑖)), … , 𝜙𝑘(⃗𝑥(𝑖)))𝑇
2. Form 𝑛 × 𝑘 design matrix:Φ = (Aug(𝜙⃗(1))Aug(𝜙⃗(2)) ⋮ ⋮

Aug(𝜙⃗(𝑛))) = (𝜙1(⃗𝑥(1)) 𝜙2(⃗𝑥(1)) … 𝜙𝑘(⃗𝑥(1))𝜙1(⃗𝑥(2)) 𝜙2(⃗𝑥(2)) … 𝜙𝑘(⃗𝑥(2))⋮ ⋮ ⋮ ⋮𝜙1(⃗𝑥(𝑛)) 𝜙2(⃗𝑥(𝑛)) … 𝜙𝑘(⃗𝑥(𝑛)))
3. Solve the normal equations:𝑤⃗∗ = (Φ𝑇Φ)−1Φ𝑇 ⃗𝑦

Example: Polynomial Curve Fitting▶ Fit a function of the form:𝐻(𝑥; 𝑤⃗) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + 𝑤3𝑥3▶ Use basis functions:𝜙0(𝑥) = 1 𝜙1(𝑥) = 𝑥 𝜙2(𝑥) = 𝑥2 𝜙3(𝑥) = 𝑥3

Example: Polynomial Curve Fitting▶ Design matrix becomes:

Φ = ⎛⎜⎜⎜⎜⎝
1 𝑥1 𝑥21 𝑥311 𝑥2 𝑥22 𝑥32… … ⋱ ⋮1 𝑥𝑛 𝑥2𝑛 𝑥3𝑛

⎞⎟⎟⎟⎟⎠
X. =3

-> 13927

Gaussian Basis Functions▶ Gaussians make for useful basis functions.𝜙𝑖(𝑥) = exp (−(𝑥 − 𝜇𝑖)2𝜎2𝑖)▶ Must specify1 center 𝜇𝑖 and width 𝜎𝑖 for each
Gaussian basis function.

1You pick these; they are not learned!

Example: 𝑘 = 3▶ A function of the form: 𝐻(𝑥) = 𝑤1𝜙1(𝑥) + 𝑤2𝜙2(𝑥) + 𝑤3𝜙3(𝑥),
using 3 Gaussian basis functions.

Example: 𝑘 = 10▶ The more basis functions, the more complex 𝐻 can be.

Example

Example▶ Will use 𝑘 Gaussian basis functions, equally
spaced in interval [0, 2𝜋].▶ Same width for each: 𝜎𝑖 = 𝜎 = 2𝜋/𝑘.▶ Will fit on 50 random sinusoidal datasets.

H=w,d, w-4z

Observation #1▶ Mean Squared Error decreases as 𝑘 increases.
⑥

Observation #2

Observation #2▶ When 𝑘 is small: high bias, low variance▶ When 𝑘 is large low bias, high variance▶ There appears to be a tradeoff.

Lecture 3 | Part 3

Linear Classification

Classification▶ We’ve been considering regression. What about
classification?▶ In classification, output is a discrete label.

Example: Mango Ripeness▶ Predict whether a mango is ripe given greenness
and hardness.▶ Convention: encode “yes“ as 1 and “no” as -1.

Greenness Hardness Ripe

0.7 0.9 1
0.2 0.5 -1
0.3 0.1 -1⋮ ⋮ ⋮

Binary vs. Multiclass Classification▶ Binary classification: predict “yes” / “no”.▶ E.g., is this picture of a dog? (“yes” / “no”)▶ Multiclass classification: predict one of 𝑘
possible labels.▶ E.g., what animal is in this picture?▶ cat, dog, giraffe, mongoose, etc.▶ We’ll focus on binary for simplicity.

Linear Classification▶ Linear prediction functions output real numbers:𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑▶ Can turn output into a “yes” / “no” answer by
thresholding:sign(𝑧) = {1 𝑧 > 0−1 𝑧 < 00 otherwise▶ Final prediction: sign(𝐻(⃗𝑥))

Interpretation: Weighted Vote▶ A linear decision function can be thought of as a
weighted vote:𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑

Interpretation: A Simple Neuron▶ A linear decision function is a simple model for a
neuron.▶ Are the basis of modern neural networks.

Decision Boundary▶ The decision boundary is the place where the
output of 𝐻(𝑥) switches from “yes” to “no”.▶ If 𝐻 > 0 ↦ “yes” and 𝐻 < 0 ↦ “no”, the decision

boundary is where 𝐻 = 0.▶ If 𝐻 is a linear predictor and2▶ ⃗𝑥 ∈ 𝑅1, then the decision boundary is just a number.▶ ⃗𝑥 ∈ ℝ2, the boundary is a straight line.▶ ⃗𝑥 ∈ ℝ𝑑, the boundary is a 𝑑 − 1 dimensional (hyper)
plane.

2when plotted in the original feature coordinate space!

Example

Prediction Surface▶ Although our final prediction uses only the sign,
the magnitude of 𝐻 is useful.▶ Recall: the plot of a linear prediction function 𝐻
is a (hyper)plane.▶ The problem of binary classification can be
though of as regression where the targets are 1
and -1.

Example

FX

Useful Fact▶ |𝐻(⃗𝑥)| is proportional to the distance from the
decision boundary.▶ If 𝐻(⃗𝑥(1)) = 𝐻(⃗𝑥(2)), ⃗𝑥(1) and ⃗𝑥(2) are equally far
away from the boundary.▶ If 𝐻(⃗𝑥) = 0, ⃗𝑥 is on the boundary.▶ |𝐻(⃗𝑥)| can be used as a measure of “confidence”.

Lecture 3 | Part 4

ERM for Linear Classifiers

Learning a Classifier▶ We can learn a linear classifier using the same
ERM paradigm as before.

Empirical Risk Minimization▶ Step 1: choose a hypothesis class▶ Let’s assume we’ve chosen linear predictors▶ Step 2: choose a loss function▶ Step 3: minimize expected loss (empirical risk)

Exercise
Can we use the square loss for classification?(𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)2

Square Loss for Classification▶ Yes! We can use the square loss, but it may not
be the best choice.▶ E.g., suppose 𝐻(⃗𝑥(𝑖)) = 11 and 𝑦𝑖 = 1.▶ Square loss: 100. Large!▶ E.g., suppose 𝐻(⃗𝑥(𝑖)) = −9 and 𝑦𝑖 = 1.▶ Square loss: 100

Main Idea
While the square loss can be used for classifica-
tion, it may not be the best choice because it pe-
nalizes predictions that are “very correct”.

It is designed for regression.

Least Squares Classifier▶ Least squares classification is performed exactly
the same as least squares regression.▶ I.e., solve the normal equations: 𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦▶ Except the prediction is thresholded:𝐻(⃗𝑥) = sign (Aug (⃗𝑥) ⋅ 𝑤⃗∗)

Least Squares and Outliers

3

3Bishop, Pattern Recognition and Machine Learning

Another Loss Function▶ What about the 0-1 loss?▶ Loss = 0 if prediction is correct.▶ Loss = 1 if prediction is incorrect.▶ More formally:𝐿0-1(𝐻(⃗𝑥(𝑖)), 𝑦𝑖) = {0 if sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖1 if sign(𝐻(⃗𝑥(𝑖))) ≠ 𝑦𝑖

Expected 0-1 Loss▶ The expected 0-1 loss (empirical risk) has a nice
interpretation:𝑅0-1(𝐻) = 1𝑛 𝑛∑𝑖=1 {0 if sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖1 if sign(𝐻(⃗𝑥(𝑖))) ≠ 𝑦𝑖
Exercise
What is it?

Answer▶ The empirical risk with respect to the 0-1 loss is
(1 - the accuracy) of the classifier.

𝑅0-1(𝐻) = 1𝑛 𝑛∑𝑖=1 {0 if sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖1 if sign(𝐻(⃗𝑥(𝑖))) ≠ 𝑦𝑖= # of incorrect predictions𝑛

ERM for the 0-1 Loss▶ Assume the 0-1 loss, linear prediction functions.▶ Next step: find linear 𝐻 minimizing the empirical
risk.▶ That is: find 𝐻 which maximizes the accuracy on
the training set.

Problem▶ The 0-1 loss is not differentiable.▶ Can’t even use gradient descent...

Why?▶ The 0-1 risk surface is flat almost everywhere.

Computationally Difficult▶ It is not feasible to minimize 0-1 risk in general.▶ More formally: NP-Hard to optimize expected 0-1
loss in general.4

4It is efficiently doable if the classes are linearly separable by finding
convex hulls of each class. If non-separable, it is difficult.

Main Idea
It is computationally difficult (NP-Hard) to maxi-
mize the accuracy of a linear classifier.

Surrogate Loss▶ Instead of the 0-1 loss, we use a surrogate loss.▶ That is, a loss that is similar in spirit, but has
better mathematical properties.

The Perceptron Loss▶ The perceptron loss is designed for binary
classification.▶ Loss = 0 if prediction is correct.▶ Loss > 0 if prediction incorrect.▶ Loss increases with distance from boundary.▶ More formally:𝐿tron(𝐻(⃗𝑥), 𝑦) = {0, sign(𝐻(⃗𝑥)) = sign(𝑦)|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ sign(𝑦)

ERM for the Perceptron▶ Goal: minimize the empirical expected
perceptron loss (risk):𝐻tron(𝐻(⃗𝑥), 𝑦) = {0, sign(𝐻(⃗𝑥)) = sign(𝑦)|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ sign(𝑦)

Problem▶ The percepton loss is not differentiable.▶ However:▶ it is not flat!▶ its derivative exists almost everywhere.▶ We can train iteratively using gradient descent
(next time).

Some History▶ Perceptrons were one of the first “machine
learning” models.▶ The basis of modern neural networks.

Rosenblatt’s Perceptron

