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Lecture 3  Part1

Least Squares Regression (d > 1)



Last Time

Introduced linear models:

H(X) = Wg + W Xq + Wy Xy + ... + WyXy
= Aug(X) - w



Last Time
Introduced empirical risk minimization (ERM):

Step 1: choose a hypothesis class
Let’'s assume we've chosen linear predictors

Step 2: choose a loss function

Step 3: minimize expected loss (empirical risk)



Last Time

Chose the square loss.

Minimized the expected square loss for models
with one feature (predictor variable):

H(x) = wy + w; X

The least squares solutions:
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Today
Least squares solutions for > 1 feature.

What about classification?



Setting

A training set consisting of n pairs, (X, y):
X e RY is the ith feature vector;
y; € R is the ith target



Our Goal

Out of all linear functions R? — R, find the
function H* with the smallest mean squared
error w.rt. the training data.

That is, find linear H minimizing:
1 n
= 5 2 (HED) -y )
i=1

This problem is called least squares regression.



Recall

A linear function H(X; W) = Wy + WqXq + ... + WyXy IS
completely determined by its parameter vector,
W:

H(%: W) = Aug(X) - W

Updated goal: find w € R?*" minimizing:

n

Z Aug(X1) . |7|/—y,-)2

i=1

3|—\



Two Approaches
Approach #1: Vector Calculus
Approach #2: Orthogonal Projection (Geometry)

Different ways of arriving at same solutions.



ﬁ K% - 2¢2
Approach #1: Vector Calculus

Find gradient of R, ( ); set to zero; solve for w.
Essentially what was done last time.
Now: there are many more than 2 parameters.

Rely on results from vector calculus.



First Step: Rewrite Risk
Step one: rewrite Ry, in vector form.
3 )T
We'll find: - (‘ﬁ‘ Yor ¥
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Recall

So, ifd = (a1,...,ak)T and b = (by, ..., b,)":



First Step: Rewrite Risk

Define p; = Aug(X?)) - W, and let p = (p4, ..., p,)".
p is a vector of the predictions on training set.
Note: p € R", not RY!

Then:
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First Step: Rewrite Risk

Define the (augmented) design matrix, X:

1 xﬁ” xg)

2

X
Aug()?(z)).—> 1| X2 X3

1 X" X



First Step: Rewrite Risk

Observe: p = Xw.

Aug(XxV) ——— A Aug(xM) - w

Aug(xX®?) —— wy | _ [ Aug(x@). W

Aug(X(") ———— Wy Aug(X(M) . w
— . ,

X



First Step: Rewrite Risk

Therefore, the MSE can be written:
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Goal
Find w € R?*" minimizing:
- 1 - - 2
qu(W) = H"XW - y"

Step Two: find gradient, set to zero, solve.



Recall: the Risk Surface




Step Two: Find Gradient

We want to compute:
d . d[1,.,. -
v 29 “3) -y [qu(W)] = —= | =|[Xw - y"2
dw dwln

dRgq . .
- IS the gradient of Rg,.

It is the vector of partial derivatives:

dRy, [ORy ORy, ARy )\’
ow, ' ow,; " owy

dw



a—

Idea

: Ry
While we could compute each of: Rsq X

Instead use rules from vector calculus.

Example: % [yTxw] = XTy

sq

aWO ’ aW1 ) eeee



Good to know...
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Step Two: Find Gradient

Expand norm to make gradient easier.

(A%)T - gAT

X - g2

(% -3)- (<% -9)
X - X - X % 50 xf+333
(xay X - (K7 - (5§ ™3

R XX X A5
2_ %-r )(vfl



Step Two: Find Gradient

d v 1d . > 5oTy . oTo
aiy [Real)] = 7 [WTXTXW - 257X + 7T

=?
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WIXTXW ]| = 2XTXW

yTXW] = XTy

yTy] =0



d % - 220  Example

o D Expoel
Show & [V7d] = V. ERA%
ZV U, Vb(‘l VU2

General procedure AV

Expand V'i until coordinates uj, ... uk are V|S|ble
Compute od/du,, a¢t/au,, ..., ad/auk
Gather result in vector form.

2) 2 i =, év‘* Ve a—.x"’
du\ t

3) d'i\_;l\)frﬁz (VH\IZ,“')V)‘> = \7



Step Two: Find Gradient

i [qu( w)] = 1di[*TxTXvT/-237TXVT/+*T*]



Solution
We have found:
a [Ryq(W)] = 1 (2XTXr - 2X7y)
dwt =4 n
To minimize qu(|7v), set gradient to zero, solve:
2XTXW -2XTy =0 = XX =X"y

This is a system of equations in matrix form,
called the normal equations.



The Normal Equations

The least squares solutions for w are found by
solving the normal equations: H )

%
XX = X7y 9 %99
Mathematically, solved by:
= (X"X)"'XTy

In practice: don't invert! Use the Singular Value
Decomposition (SVD).



Aside

X* = (X"X)'XT is known as the Moore-Penrose
pseudoinverse of X.

A generalization of the matrix inverse for
non-square matrices.

With this, the least squares solution is: W* = X*y



Two Approaches
Approach #1: Vector Calculus
Approach #2: Orthogonal Projection (Geometry)

Different ways of arriving at same solutions.



Approach #2: Geometry
In the collinear case, y can be predicted exactly.

That is, there is a w such that Xw = y.




Approach #2: Geometry
In practice, y is not in the column space of X.

Goal: choose W so that Xw = y.

=
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Approach #2: Geometry

Idea: || XW - y| is smallest when Xw is the
orthogonal projection of y onto the column
space of X.
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Recall: Projections
Let A be a matrix and d be a vector.

The orthogonal projection of U onto the column
space of A is given by:

AATA) AT



Approach #2: Geometry

So, the orthogonal projection of y onto the
column space of X is given by:

X(XTX)'XTy
ﬁ,—l
W*



Least Squares Regression

We can now fit functions of the form:
H(X) = Wg + Wi Xq + WyXy + ... + WyXy

by minimizing expected square loss.

Example:
X,: years of experience
X,: # of interview questions missed
x5: favorite number



Procedure

Form (augmented) n x (d + 1) design matrix:

1 xﬁ” xg)

2

Aug(xn) ———

Solve the normal equations:

VT/* - (XTX)_1XT)7

Aug(x@) ——— | |1 xP X ..
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Example: Gaussian Basis Functions



Recall: Basis Functions

We can fit any function of the form:
H(% ) = Wo + Wy (X) + W (X) + . + Wyby(X)

¢:(X) : RY - Ris called a basis function.



Procedure
Define ¢ = (¢,(X1), ¢,(XD), ..., ¢, (X))

Form n x kR design matrix:

Aug(¢®) ——— ¢, (x1)
Aug(¢p®@) ——— (

D =

Aug(¢™) ———

Solve the normal equations:

W* - (CDT(D)_1 q)TV



Example: Polynomial Curve Fitting

Fit a function of the form:

) = 2 3
H(X; W) = Wy + Wy X + Wy X~ + W3X

Use basis functions:

$o()=1  d(0)=x  $(x)=x*  $3(x)=x°



Example: Polynomial Curve Fitting

Design matrix becomes:
£ =% /’I X, X3 xf\%l 2 a 2%+
1 X, x3 X3




Gaussian Basis Functions

Gaussians make for useful basis functions.

—_ . 2
Bi(x) - exp(-(x H) )

2
0;

Must specify' center y; and width g; for each
Gaussian basis function.

"You pick these; they are not learned!



Example: k = 3

A function of the form: H(x) = w,¢,(x) + w,$,(x) + w;¢;(x),
using 3 Gaussian basis functions.
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Example: k =10

The more basis functions, the more complex H can be.

2.01

1.5

1.01

0.5+

0.0

—0.51

-1.01




1.0 A

0.5 1

0.0 1

—0.5 1

—1.0 A

Example

°
0®
° °
* ‘o (] '.
® ° °
°
° °
° ° %
°
° °
. °
o ®
°
°




Example

Will use kR Gaussian basis functions, equally
spaced in interval [0, 2m].

Same width for each: o; = 0 = 2r/k.

Will fit on 50 random sinusoidal datasets.



= Average of Fits
== = Ground Truth




= Average of Fits
\ == = Ground Truth




= Average of Fits
== = Ground Truth




== Average of Fits
== = Ground Truth




== Average of Fits
== = Ground Truth




Observation #1

Mean Squared Error decreases as k increases.

0.40 1

0.35 1

0.30 1 M

0.25 1

MSE

0.20 1

0.15 1

0.10 1

0.05 A1




Observation #2

Low Variance High Variance

Low Bias

High Bias




Observation #2
When k is small: high bias, low variance
When k is large low bias, high variance

There appears to be a tradeoff.
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Linear Classification



Classification

We've been considering regression. What about
classification?

In classification, output is a discrete label.



Example: Mango Ripeness

Predict whether a mango is ripe given greenness
and hardness.

Convention: encode “yes“ as 1and “no” as -1.

Greenness Hardness \ Ripe

0.7 0.9 1
0.2 0.5 -1
0.3 0.1 -1



Binary vs. Multiclass Classification

Binary classification: predict “yes” / “no”.
E.g., is this picture of a dog? (“yes” / “no”)

Multiclass classification: predict one of k

possible labels.
E.g., what animal is in this picture?
cat, dog, giraffe, mongoose, etc.

We'll focus on binary for simplicity.



Linear Classification

Linear prediction functions output real numbers:

H(X) = Wy + Wy Xq + ... + WX

Can turn output into a “yes” / “no” answer by
thresholding:

1 z>0
sign(z)=4-1 z<0
0 otherwise

Final prediction: sign(H(X))



Interpretation: Weighted Vote

A linear decision function can be thought of as a
weighted vote:

H(X) = Wy + Wy Xq + ... + WX



Interpretation: A Simple Neuron

A linear decision function is a simple model for a
neuron.

Are the basis of modern neural networks.



Cell body

Telodendria

0

Nucleus(

Synaptic terminals

~

Golgi apparatus
Endoplasmic
reticulum

Mitochondrion Dendrite

| \ Dendritic branches






Decision Boundary

The decision boundary is the place where the
output of H(x) switches from “yes” to “no”.

IfH>0~ “yes”and H< 0 » “no”, the decision
boundary is where H = 0.

If H is a linear predictor and?
X € R', then the decision boundary is just a number.
X € R?, the boundary is a straight line.
X € RY the boundary is a d - 1 dimensional (hyper)
plane.

2when plotted in the original feature coordinate space!
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Prediction Surface

Although our final prediction uses only the sign,
the magnitude of H is useful.

Recall: the plot of a linear prediction function H
is a (hyper)plane.

The problem of binary classification can be
though of as regression where the targets are 1
and -1.



Example

5 ® ripe
not ripe

hardness

greenness



Useful Fact

|[H(X)| is proportional to the distance from the
decision boundary.

If H(X() = H(X®@), XV and X are equally far
away from the boundary.

If H(X) = 0, X is on the boundary.

|H(X)| can be used as a measure of “confidence”.
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ERM for Linear Classifiers



Learning a Classifier

We can learn a linear classifier using the same
ERM paradigm as before.



Empirical Risk Minimization

Step 1: choose a hypothesis class
Let's assume we've chosen linear predictors

Step 2: choose a loss function

Step 3: minimize expected loss (empirical risk)



Can we use the square loss for classification?

(H(XD) - y;)?




Square Loss for Classification

Yes! We can use the square loss, but it may not
be the best choice.

E.g., suppose H(XM)=11and y; = 1.
Square loss: 100. Large!

E.g., suppose H(X")= -9 and y; = 1.
Square loss: (00



While the square loss can be used for classifica-
tion, it may not be the best choice because it pe-
nalizes predictions that are “very correct”.

It is designed for regression.




Least Squares Classifier

Least squares classification is performed exactly

the same as least squares regression.
l.e., solve the normal equations: w* = (X'X) ' X"y

Except the prediction is thresholded:

H(X) = sign (Aug(X) - w*)



Least Squares and Outliers
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Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

3Bishop, Pattern Recognition and Machine Learning



Another Loss Function

What about the 0-1 loss?
Loss = 0 if prediction is correct.
Loss = 1if prediction is incorrect.

More formally:

i 0 if sign(H(X")) = y:
L0_1(H(X(l))'y’_)= g( ()-e )) Vi

1 if sign(H(X")) # y;



Expected 0-1 Loss

The expected 0-1 loss (empirical risk) has a nice
interpretation:

1 n

Ro—1(H) = n Z

i

0 if sign(H(X")) = Vi
1 if sign(H(X")) # y;

What is it?




Answer

The empirical risk with respect to the 0-1 loss is
(1 - the accuracy) of the classifier.

1 i 0 if sign(H( x(’:))) =y
n&< |1 if sign(H(XD)) = v,

_ # of incorrect predictions
n




ERM for the 0-1 Loss

Assume the 0-1 loss, linear prediction functions.

Next step: find linear H minimizing the empirical
risk.

That is: find H which maximizes the accuracy on
the training set.



Problem
The 0-1 loss is not differentiable.

Can't even use gradient descent...



Why?

The 0-1 risk surface is flat almost everywhere.
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Computationally Difficult
It is not feasible to minimize 0-1 risk in general.

More formally: NP-Hard to optimize expected 0-1
loss in general .

“1t is efficiently doable if the classes are linearly separable by finding
convex hulls of each class. If non-separable, it is difficult.



Main Idea

It is computationally difficult (NP-Hard) to maxi-
mize the accuracy of a linear classifier.




Surrogate Loss
Instead of the 0-1 loss, we use a surrogate loss.

That is, a loss that is similar in spirit, but has
better mathematical properties.



The Perceptron Loss

The perceptron loss is designed for binary

classification.
Loss = 0 if prediction is correct.
Loss > 0 if prediction incorrect.
Loss increases with distance from boundary.

More formally:

sign(H(X)) = sign(y)
%

tron( (X) y) IH(X) sign(H( )) # Slgn(Y)



ERM for the Perceptron

Goal: minimize the empirical expected
perceptron loss (risk):

o, sign(H(R)) = sign(y)
Huon X Y) =1 isy), - sign(H(R) # sign(y)



Problem
The percepton loss is not differentiable.

However:
it is not flat!
its derivative exists almost everywhere.

We can train iteratively using gradient descent
(next time).



Some History

Perceptrons were one of the first “machine
learning” models.

The basis of modern neural networks.



Rosenblatt’s Perceptron







