$$
\text { DSC } 140 A
$$

Last Time

- Introduced linear models:

$$
\begin{aligned}
H(\vec{x}) & =w_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{d} x_{d} \\
& =\operatorname{Aug}(\vec{x}) \cdot \vec{w}
\end{aligned}
$$

Last Time

- Introduced empirical risk minimization (ERM):
- Step 1: choose a hypothesis class
- Let's assume we've chosen linear predictors
- Step 2: choose a loss function
- Step 3: minimize expected loss (empirical risk)

Last Time

- Chose the square loss.
- Minimized the expected square loss for models with one feature (predictor variable):

$$
H(x)=w_{0}+w_{1} x
$$

- The least squares solutions:

$$
w_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad w_{0}=\bar{y}-w_{1} \bar{x}
$$

Today

- Least squares solutions for >1 feature.

What about classification?

Setting

- A training set consisting of n pairs, $\left(\vec{x}^{(i)}, y_{i}\right)$:
$\Rightarrow \vec{x}^{(i)} \in \mathbb{R}^{d}$ is the ith feature vector;
$\Rightarrow y_{i} \in \mathbb{R}$ is the ith target

Our Goal

- Out of all linear functions $\mathbb{R}^{d} \rightarrow \mathbb{R}$, find the function H^{*} with the smallest mean squared error w.r.t. the training data.
- That is, find linear H minimizing:

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(H\left(\vec{x}^{(i)}\right)-y_{i}\right)^{2}
$$

- This problem is called least squares regression.

Recall

- A linear function $H(\vec{x} ; \vec{w})=w_{0}+w_{1} x_{1}+\ldots+w_{d} x_{d}$ is completely determined by its parameter vector, \vec{w} :

$$
H(\vec{x} ; \vec{w})=\operatorname{Aug}(\vec{x}) \cdot \vec{w}
$$

- Updated goal: find $\vec{w} \in \mathbb{R}^{d+1}$ minimizing:

$$
R_{\mathrm{sq}}(\vec{w})=\frac{1}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2}
$$

Two Approaches

- Approach \#1: Vector Calculus
- Approach \#2: Orthogonal Projection (Geometry)
- Different ways of arriving at same solutions.

Approach \#1: Vector Calculus

Find gradient of $R_{\text {sq }}(\vec{w})$; set to zero; solve for \vec{w}.

- Essentially what was done last time.
- Now: there are many more than 2 parameters.
- Rely on results from vector calculus.

First Step: Rewrite Risk

- Step one: rewrite $R_{\text {sq }}$ in vector form.
- We'll find:

$$
\begin{aligned}
R_{\mathrm{sq}}(\vec{w}) & =\frac{1}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2} \\
& =\frac{1}{n}\|X \vec{w}-\vec{y}\|^{2}
\end{aligned}
$$

Recall

- If $\vec{u}=\left(u_{1}, u_{2}, \ldots, u_{k}\right)^{T}$, then:

$$
\|\vec{u}\|^{2}=\vec{u} \cdot \vec{u}=\sum_{i=1}^{k} u_{i}^{2}
$$

So, if $\vec{a}=\left(a_{1}, \ldots, a_{k}\right)^{T}$ and $\vec{b}=\left(b_{1}, \ldots, b_{k}\right)^{T}$:

$$
\begin{aligned}
\|\vec{a}-\vec{b}\|^{2} & =(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b}) \\
& =\sum_{i=1}^{k}\left(a_{i}-b_{i}\right)^{2}
\end{aligned}
$$

First Step: Rewrite Risk

- Define $p_{i}=\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}$, and let $\vec{p}=\left(p_{1}, \ldots, p_{n}\right)^{T}$.
$\checkmark \vec{p}$ is a vector of the predictions on training set.
- Note: $\vec{p} \in \mathbb{R}^{n}$, not \mathbb{R}^{d} !
- Then:

$$
\begin{aligned}
R_{\mathrm{sq}}(\vec{w}) & =\frac{1}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(p_{i}-y_{i}\right)^{2} \\
& =\frac{1}{n}\|\vec{p}-\vec{y}\|^{2}
\end{aligned}
$$

First Step: Rewrite Risk

- Define the (augmented) design matrix, X :

$$
x=\left(\begin{array}{l}
\operatorname{Aug}\left(\vec{x}^{(1)}\right) \longrightarrow \\
\operatorname{Aug}\left(\left(^{(2)}\right)\right. \\
\vdots \\
\operatorname{Aug}\left(\vec{x}^{(n)}\right) \longrightarrow
\end{array}\right)=\left(\begin{array}{ccccc}
1 & x_{1}^{(1)} & x_{2}^{(1)} & \ldots & x_{d}^{(1)} \\
1 & x_{1}^{(2)} & x_{2}^{(2)} & \ldots & x_{d}^{(2)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{1}^{(n)} & x_{2}^{(n)} & \ldots & x_{d}^{(n)}
\end{array}\right)
$$

First Step: Rewrite Risk

- Observe: $\vec{p}=X \vec{w}$.

First Step: Rewrite Risk

- Therefore, the MSE can be written:

$$
\begin{aligned}
R_{\mathrm{sq}}(\vec{w}) & =\frac{1}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(p_{i}-y_{i}\right)^{2} \\
& =\frac{1}{n}\|\vec{p}-\vec{y}\|^{2} \\
& =\frac{1}{n}\|X \vec{w}-\vec{y}\|^{2}
\end{aligned}
$$

Goal

- Find $\vec{W} \in \mathbb{R}^{d+1}$ minimizing:

$$
R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|X \vec{w}-\vec{y}\|^{2}
$$

- Step Two: find gradient, set to zero, solve.

Recall: the Risk Surface

Step Two: Find Gradient

- We want to compute:

$$
\frac{d}{d \vec{w}}\left[R_{\mathrm{sq}}(\vec{w})\right]=\frac{d}{d \vec{w}}\left[\frac{1}{n}\|X \vec{w}-\vec{y}\|^{2}\right]
$$

$\frac{d R_{\mathrm{sq}}}{d \vec{w}}$ is the gradient of R_{sq}.
\Rightarrow It is the vector of partial derivatives:

$$
\frac{d R_{\mathrm{sq}}}{d \vec{w}}=\left(\frac{\partial R_{\mathrm{sq}}}{\partial w_{0}}, \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}, \ldots, \frac{\partial R_{\mathrm{sq}}}{\partial w_{d}}\right)^{\top}
$$

Idea

- While we could compute each of: $\frac{\partial R_{s q}}{\partial w_{0}}, \frac{\partial R_{s q}}{\partial w_{1}}, \ldots$.
- Instead use rules from vector calculus.
- Example: $\frac{d}{d \vec{w}}\left[\vec{y}^{\top} X \vec{w}\right]=X^{\top} \vec{y}$

Good to know...

$$
\begin{aligned}
& (A+B)^{T}=A^{T}+B^{\top} \\
& (A B)^{T}=B^{\top} A^{T} \\
& \vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}=\vec{u}^{T} \vec{v}=\vec{v}^{T} \vec{u} \\
& (\vec{u}+\vec{v}) \cdot(\vec{w}+\vec{z})=\vec{u} \cdot \vec{w}+\vec{u} \cdot \vec{x}+\vec{v} \cdot \vec{w}+\vec{v} \cdot \vec{z} \\
& \|\vec{u}\|^{2}=\vec{u} \cdot \vec{u}
\end{aligned}
$$

Step Two: Find Gradient

Expand norm to make gradient easier.

$$
\|x \vec{w}-\vec{y}\|^{2}=
$$

$$
=
$$

$$
=
$$

$$
=
$$

Step Two: Find Gradient

$$
\begin{aligned}
\frac{d}{d \vec{w}}\left[R_{\mathrm{sq}}(\vec{w})\right] & =\frac{1}{n} \frac{d}{d \vec{w}}\left[\vec{w}^{\top} X^{\top} X \vec{w}-2 \vec{y}^{\top} X \vec{w}+\vec{y}^{\top} \vec{y}\right] \\
& =?
\end{aligned}
$$

Claims

$$
\begin{aligned}
& \frac{d}{d \overrightarrow{\vec{k}}}\left[\vec{w}^{\top} X^{\top} X \vec{w}\right]=2 X^{\top} X \vec{w} \\
& \frac{d}{d \vec{w}}\left[\dot{y}^{\top} X \vec{w}\right]=x^{\top} \vec{y} \\
& \frac{d}{d \vec{w}}\left[\dot{y}^{\top} \vec{y}\right]=0
\end{aligned}
$$

Example

\Rightarrow Show $\frac{d}{d u}\left[\vec{v}^{\top} \vec{u}\right]=\vec{v}$.

- General procedure:

1. Expand $\vec{v}^{\top} \vec{u}$ until coordinates u_{1}, \ldots, u_{k} are visible.
2. Compute $\partial d / \partial u_{1}, \partial d / \partial u_{2}, \ldots, \partial d / \partial u_{k}$.
3. Gather result in vector form.

Step Two: Find Gradient

$$
\begin{aligned}
\frac{d}{d \vec{w}}\left[R_{\mathrm{sq}}(\vec{w})\right] & =\frac{1}{n} \frac{d}{d \vec{w}}\left[\vec{w}^{\top} X^{\top} X \vec{w}-2 \vec{y}^{\top} X \vec{w}+\vec{y}^{\top} \vec{y}\right] \\
& =
\end{aligned}
$$

Solution

- We have found:

$$
\frac{d}{d \vec{w}}\left[R_{\mathrm{sq}}(\vec{w})\right]=\frac{1}{n}\left(2 X^{\top} X \vec{w}-2 X^{\top} \vec{y}\right)
$$

- To minimize $R_{\text {sq }}(\vec{w})$, set gradient to zero, solve:

$$
2 x^{\top} X \vec{w}-2 x^{\top} \vec{y}=0 \Longrightarrow X^{\top} X \vec{w}=X^{\top} \vec{y}
$$

- This is a system of equations in matrix form, called the normal equations.

The Normal Equations

- The least squares solutions for \vec{w} are found by solving the normal equations:

$$
X^{\top} X \vec{w}=X^{\top} \vec{y}
$$

- Mathematically, solved by:

$$
\vec{w}^{*}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}
$$

- In practice: don't invert! Use the Singular Value Decomposition (SVD).

Aside

- $X^{+}=\left(X^{\top} X\right)^{-1} X^{\top}$ is known as the Moore-Penrose pseudoinverse of X.
- A generalization of the matrix inverse for non-square matrices.
- With this, the least squares solution is: $\vec{w}^{*}=X^{+} \vec{y}$

Two Approaches

- Approach \#1: Vector Calculus
- Approach \#2: Orthogonal Projection (Geometry)
- Different ways of arriving at same solutions.

Approach \#2: Geometry

- In the collinear case, \vec{y} can be predicted exactly.
- That is, there is a \vec{w} such that $X \vec{w}=\vec{y}$.

Approach \#2: Geometry

- In practice, \vec{y} is not in the column space of X.
- Goal: choose \vec{w} so that $X \vec{w} \approx \vec{y}$.

Approach \#2: Geometry

- Idea: $\|X \vec{w}-\vec{y}\|$ is smallest when $X \vec{w}$ is the orthogonal projection of \vec{y} onto the column space of X.

Recall: Projections

- Let A be a matrix and \vec{u} be a vector.
- The orthogonal projection of \vec{u} onto the column space of A is given by:

$$
A\left(A^{\top} A\right)^{-1} A^{\top} \vec{u}
$$

Approach \#2: Geometry

- So, the orthogonal projection of \vec{y} onto the column space of X is given by:

$$
X \underbrace{\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}}_{\tilde{w}^{*}}
$$

Least Squares Regression

- We can now fit functions of the form:

$$
H(\vec{x})=w_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{d} x_{d}
$$

by minimizing expected square loss.

- Example:
> x_{1} : years of experience
- x_{2} : \# of interview questions missed
- x_{3} : favorite number

Procedure

1. Form (augmented) $n \times(d+1)$ design matrix:

$$
X=\left(\begin{array}{l}
\operatorname{Aug}\left(\vec{x}^{(1)}\right) \longrightarrow \\
\operatorname{Aug}\left(\vec{x}^{(2)}\right) \longrightarrow \\
\vdots \\
\operatorname{Aug}\left(\vec{x}^{(n)}\right) \longrightarrow
\end{array}\right)=\left(\begin{array}{ccccc}
1 & x_{1}^{(1)} & x_{2}^{(1)} & \ldots & x_{d}^{(1)} \\
1 & x_{1}^{(2)} & x_{2}^{(2)} & \ldots & x_{d}^{(2)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{1}^{(n)} & x_{2}^{(n)} & \ldots & x_{d}^{(n)}
\end{array}\right)
$$

2. Solve the normal equations:

$$
\vec{w}^{*}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}
$$

$$
\text { DSC } 140 \mathrm{~A}
$$

Recall: Basis Functions

- We can fit any function of the form:

$$
H(\vec{x} ; \vec{w})=w_{0}+w_{1} \phi_{1}(\vec{x})+w_{2} \phi_{2}(\vec{x})+\ldots+w_{k} \phi_{k}(\vec{x})
$$

$\phi_{i}(\vec{x}): \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called a basis function.

Procedure

1. Define $\vec{\phi}^{(i)}=\left(\phi_{1}\left(\vec{x}^{(i)}\right), \phi_{2}\left(\vec{x}^{(i)}\right), \ldots, \phi_{k}\left(\vec{x}^{(i)}\right)\right)^{T}$
2. Form $n \times k$ design matrix:

$$
\Phi=\left(\begin{array}{lll}
\operatorname{Aug}\left(\vec{\phi}^{(1)}\right) \longrightarrow \\
\operatorname{Aug}\left(\vec{\phi}^{(2)}\right) \longrightarrow & \vdots \\
\operatorname{Aug}\left(\vec{\phi}^{(n)}\right) \longrightarrow & \vdots
\end{array}\right)=\left(\begin{array}{cccc}
\phi_{1}\left(\vec{x}^{(1)}\right) & \phi_{2}\left(\vec{x}^{(1)}\right) & \ldots & \phi_{k}\left(\vec{x}^{(1)}\right) \\
\phi_{1}\left(\vec{x}^{(2)}\right) & \phi_{2}\left(\vec{x}^{(2)}\right) & \ldots & \phi_{k}\left(\vec{x}^{(2)}\right) \\
\vdots & \vdots & \vdots \\
\phi_{1}\left(\dot{x}^{(n)}\right) & \phi_{2}\left(\dot{x}^{(n)}\right) & \cdots & \phi_{k}\left(\dot{x}^{(n)}\right)
\end{array}\right)
$$

3. Solve the normal equations:

$$
\vec{w}^{*}=\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} \vec{y}
$$

Example: Polynomial Curve Fitting

- Fit a function of the form:

$$
H(x ; \vec{w})=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}
$$

- Use basis functions:

$$
\phi_{0}(x)=1 \quad \phi_{1}(x)=x \quad \phi_{2}(x)=x^{2} \quad \phi_{3}(x)=x^{3}
$$

Example: Polynomial Curve Fitting

- Design matrix becomes:

$$
\Phi=\left(\begin{array}{cccc}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} \\
\ldots & \ldots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & x_{n}^{3}
\end{array}\right)
$$

Gaussian Basis Functions

- Gaussians make for useful basis functions.

$$
\phi_{i}(x)=\exp \left(-\frac{\left(x-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}\right)
$$

- Must specify ${ }^{1}$ center μ_{i} and width σ_{i} for each Gaussian basis function.

Example: $k=3$

- A function of the form: $H(x)=w_{1} \phi_{1}(x)+w_{2} \phi_{2}(x)+w_{3} \phi_{3}(x)$, using 3 Gaussian basis functions.

Example: $k=10$

- The more basis functions, the more complex H can be.

Example

Example

- Will use k Gaussian basis functions, equally spaced in interval $[0,2 \pi]$.
- Same width for each: $\sigma_{i}=\sigma=2 \pi / k$.
- Will fit on 50 random sinusoidal datasets.

$$
k=4
$$

$$
k=8
$$

$$
k=16
$$

Observation \#1

Mean Squared Error decreases as k increases.

Observation \#2

Observation \#2

- When k is small: high bias, low variance
- When k is large low bias, high variance
- There appears to be a tradeoff.

$$
\text { DSC } 140 A
$$

Classification

- We've been considering regression. What about classification?
- In classification, output is a discrete label.

Example: Mango Ripeness

- Predict whether a mango is ripe given greenness and hardness.
- Convention: encode "yes" as 1 and "no" as -1.

Greenness	Hardness	
0.7 Ripe		
0.7	0.9	1
0.2	0.5	-1
0.3	0.1	-1
\vdots	\vdots	\vdots

Binary vs. Multiclass Classification

- Binary classification: predict "yes" / "no".
- E.g., is this picture of a dog? ("yes" / "no")
- Multiclass classification: predict one of k possible labels.
- E.g., what animal is in this picture?
- cat, dog, giraffe, mongoose, etc.
- We'll focus on binary for simplicity.

Linear Classification

- Linear prediction functions output real numbers:

$$
H(\vec{x})=w_{0}+w_{1} x_{1}+\ldots+w_{d} x_{d}
$$

- Can turn output into a "yes" / "no" answer by thresholding:

$$
\operatorname{sign}(z)= \begin{cases}1 & z>0 \\ -1 & z<0 \\ 0 & \text { otherwise }\end{cases}
$$

- Final prediction: $\operatorname{sign}(H(\vec{x}))$

Interpretation: Weighted Vote

- A linear decision function can be thought of as a weighted vote:

$$
H(\vec{x})=w_{0}+w_{1} x_{1}+\ldots+w_{d} x_{d}
$$

Interpretation: A Simple Neuron

- A linear decision function is a simple model for a neuron.
- Are the basis of modern neural networks.

Decision Boundary

- The decision boundary is the place where the output of $H(x)$ switches from "yes" to "no".
- If $\mathrm{H}>0 \mapsto$ "yes" and $\mathrm{H}<0 \mapsto$ "no", the decision boundary is where $H=0$.
- If H is a linear predictor and ${ }^{2}$
- $\vec{x} \in R^{1}$, then the decision boundary is just a number.
$\nabla \vec{x} \in \mathbb{R}^{2}$, the boundary is a straight line.
$\Rightarrow \vec{x} \in \mathbb{R}^{d}$, the boundary is a d-1 dimensional (hyper) plane.
${ }^{2}$ when plotted in the original feature coordinate space!

Example

Prediction Surface

- Although our final prediction uses only the sign, the magnitude of H is useful.
- Recall: the plot of a linear prediction function H is a (hyper)plane.
- The problem of binary classification can be though of as regression where the targets are 1 and -1 .

Example

Useful Fact

- $|H(\vec{x})|$ is proportional to the distance from the decision boundary.
- If $H\left(\vec{x}^{(1)}\right)=H\left(\vec{x}^{(2)}\right), \vec{x}^{(1)}$ and $\vec{x}^{(2)}$ are equally far away from the boundary.
- If $H(\vec{x})=0, \vec{x}$ is on the boundary.
- $|H(\vec{x})|$ can be used as a measure of "confidence".

$$
\text { DSC } 140 A
$$

Learning a Classifier

We can learn a linear classifier using the same ERM paradigm as before.

Empirical Risk Minimization

- Step 1: choose a hypothesis class
- Let's assume we've chosen linear predictors
- Step 2: choose a loss function
- Step 3: minimize expected loss (empirical risk)

Exercise

Can we use the square loss for classification?

$$
\left(H\left(\vec{x}^{(i)}\right)-y_{i}\right)^{2}
$$

Square Loss for Classification

- Yes! We can use the square loss, but it may not be the best choice.
E.g., suppose $H\left(\vec{x}^{(i)}\right)=11$ and $y_{i}=1$.
- Square loss: 100. Large!
E.g., suppose $H\left(\vec{x}^{(i)}\right)=-9$ and $y_{i}=1$.

Square loss:

Main Idea

While the square loss can be used for classification, it may not be the best choice because it penalizes predictions that are "very correct".

It is designed for regression.

Least Squares Classifier

- Least squares classification is performed exactly the same as least squares regression.
- I.e., solve the normal equations: $\vec{w}^{*}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}$
- Except the prediction is thresholded:

$$
H(\vec{x})=\operatorname{sign}\left(\operatorname{Aug}(\vec{x}) \cdot \vec{w}^{*}\right)
$$

Least Squares and Outliers

Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive to outliers, unlike logistic regression.

Another Loss Function

- What about the 0-1 loss?

Loss $=0$ if prediction is correct.
L Loss $=1$ if prediction is incorrect.
> More formally:

$$
L_{0-1}\left(H\left(\vec{x}^{(i)}\right), y_{i}\right)= \begin{cases}0 & \text { if } \operatorname{sign}\left(H\left(\vec{x}^{(i)}\right)\right)=y_{i} \\ 1 & \text { if } \operatorname{sign}\left(H\left(\vec{x}^{(i)}\right)\right) \neq y_{i}\end{cases}
$$

Expected 0-1 Loss

- The expected 0-1 loss (empirical risk) has a nice interpretation:

$$
R_{0-1}(H)=\frac{1}{n} \sum_{i=1}^{n} \begin{cases}0 & \text { if } \operatorname{sign}\left(H\left(\vec{x}^{(i)}\right)\right)=y_{i} \\ 1 & \text { if } \operatorname{sign}\left(H\left(\vec{x}^{(i)}\right)\right) \neq y_{i}\end{cases}
$$

Exercise

What is it?

Answer

- The empirical risk with respect to the 0-1 loss is (1 - the accuracy) of the classifier.

$$
\begin{aligned}
R_{0-1}(H) & =\frac{1}{n} \sum_{i=1}^{n} \begin{cases}0 & \text { if } \operatorname{sign}\left(H\left(\vec{x}^{(i)}\right)\right)=y_{i} \\
1 & \text { if } \operatorname{sign}\left(H\left(\vec{x}^{(i)}\right)\right) \neq y_{i}\end{cases} \\
& =\frac{\# \text { of incorrect predictions }}{n}
\end{aligned}
$$

ERM for the 0-1 Loss

- Assume the 0-1 loss, linear prediction functions.
- Next step: find linear H minimizing the empirical risk.
- That is: find H which maximizes the accuracy on the training set.

Problem

- The 0-1 loss is not differentiable.
- Can't even use gradient descent...

Why?

- The 0-1 risk surface is flat almost everywhere.

Computationally Difficult

- It is not feasible to minimize 0-1 risk in general.
- More formally: NP-Hard to optimize expected 0-1 loss in general. ${ }^{4}$

[^0]
Main Idea

It is computationally difficult (NP-Hard) to maximize the accuracy of a linear classifier.

Surrogate Loss

- Instead of the 0-1 loss, we use a surrogate loss.
- That is, a loss that is similar in spirit, but has better mathematical properties.

The Perceptron Loss

- The perceptron loss is designed for binary classification.

Loss $=0$ if prediction is correct.

- Loss > 0 if prediction incorrect.
- Loss increases with distance from boundary.
- More formally:

$$
L_{\text {tron }}(H(\vec{x}), y)= \begin{cases}0, & \operatorname{sign}(H(\vec{x}))=\operatorname{sign}(y) \\ |H(\vec{x})|, & \operatorname{sign}(H(\vec{x})) \neq \operatorname{sign}(y)\end{cases}
$$

ERM for the Perceptron

- Goal: minimize the empirical expected perceptron loss (risk):

$$
H_{\text {tron }}(H(\vec{x}), y)= \begin{cases}0, & \operatorname{sign}(H(\vec{x}))=\operatorname{sign}(y) \\ |H(\vec{x})|, & \operatorname{sign}(H(\vec{x})) \neq \operatorname{sign}(y)\end{cases}
$$

Problem

$>$ The percepton loss is not differentiable.

- However:
- it is not flat!
- its derivative exists almost everywhere.
- We can train iteratively using gradient descent (next time).

Some History

- Perceptrons were one of the first "machine learning" models.
- The basis of modern neural networks.

Rosenblatt's Perceptron

[^0]: ${ }^{4}$ It is efficiently doable if the classes are linearly separable by finding convex hulls of each class. If non-separable, it is difficult.

