
Lecture 3 | Part 1

Least Squares Regression (𝑑 > 1)



Last Time

▶ Introduced linear models:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑
= Aug( ⃗𝑥) ⋅ �⃗�



Last Time

▶ Introduced empirical risk minimization (ERM):

▶ Step 1: choose a hypothesis class
▶ Let’s assume we’ve chosen linear predictors

▶ Step 2: choose a loss function

▶ Step 3: minimize expected loss (empirical risk)



Last Time
▶ Chose the square loss.

▶ Minimized the expected square loss for models
with one feature (predictor variable):

𝐻(𝑥) = 𝑤0 + 𝑤1𝑥

▶ The least squares solutions:

𝑤1 =

𝑛

∑
𝑖=1
(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)

𝑛

∑
𝑖=1
(𝑥𝑖 − �̄�)2

𝑤0 = �̄� − 𝑤1�̄�



Today

▶ Least squares solutions for > 1 feature.

▶ What about classification?



Setting

▶ A training set consisting of 𝑛 pairs, ( ⃗𝑥(𝑖), 𝑦𝑖):
▶ ⃗𝑥(𝑖) ∈ ℝ𝑑 is the 𝑖th feature vector;
▶ 𝑦𝑖 ∈ ℝ is the 𝑖th target



Our Goal

▶ Out of all linear functions ℝ𝑑 → ℝ, find the
function 𝐻∗ with the smallest mean squared
error w.r.t. the training data.

▶ That is, find linear 𝐻 minimizing:

𝑅sq(𝐻) = 1
𝑛

𝑛

∑
𝑖=1

(𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖)
2

▶ This problem is called least squares regression.



Recall

▶ A linear function 𝐻( ⃗𝑥; �⃗�) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑 is
completely determined by its parameter vector,
�⃗�:

𝐻( ⃗𝑥; �⃗�) = Aug( ⃗𝑥) ⋅ �⃗�

▶ Updated goal: find �⃗� ∈ ℝ𝑑+1 minimizing:

𝑅sq(�⃗�) = 1
𝑛

𝑛

∑
𝑖=1

(Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)
2



Two Approaches

▶ Approach #1: Vector Calculus

▶ Approach #2: Orthogonal Projection (Geometry)

▶ Different ways of arriving at same solutions.



Approach #1: Vector Calculus

▶ Find gradient of 𝑅sq(�⃗�); set to zero; solve for �⃗�.

▶ Essentially what was done last time.

▶ Now: there are many more than 2 parameters.

▶ Rely on results from vector calculus.



First Step: Rewrite Risk

▶ Step one: rewrite 𝑅sq in vector form.

▶ We’ll find:

𝑅sq(�⃗�) = 1
𝑛

𝑛

∑
𝑖=1

(Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)
2

= 1
𝑛‖𝑋�⃗� − ⃗𝑦‖2



Recall
▶ If �⃗� = (𝑢1, 𝑢2, … , 𝑢𝑘)𝑇, then:

‖�⃗�‖2 = �⃗� ⋅ �⃗� =
𝑘

∑
𝑖=1

𝑢2𝑖

▶ So, if �⃗� = (𝑎1, … , 𝑎𝑘)𝑇 and �⃗� = (𝑏1, … , 𝑏𝑘)𝑇:

‖�⃗� − �⃗�‖2 = (�⃗� − �⃗�) ⋅ (�⃗� − �⃗�)

=
𝑘

∑
𝑖=1

(𝑎𝑖 − 𝑏𝑖)2



First Step: Rewrite Risk
▶ Define 𝑝𝑖 = Aug( ⃗𝑥(𝑖)) ⋅ �⃗�, and let �⃗� = (𝑝1, … , 𝑝𝑛)𝑇.

▶ �⃗� is a vector of the predictions on training set.
▶ Note: �⃗� ∈ ℝ𝑛, not ℝ𝑑!

▶ Then:

𝑅sq(�⃗�) = 1
𝑛

𝑛

∑
𝑖=1

(Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)
2

= 1
𝑛

𝑛

∑
𝑖=1

(𝑝𝑖 − 𝑦𝑖)
2

= 1
𝑛‖�⃗� − ⃗𝑦‖2



First Step: Rewrite Risk

▶ Define the (augmented) design matrix, 𝑋:

𝑋 = (

Aug( ⃗𝑥(1))
Aug( ⃗𝑥(2))

⋮ ⋮
Aug( ⃗𝑥(𝑛))

) =
⎛⎜⎜⎜

⎝

1 𝑥(1)1 𝑥(1)2 … 𝑥(1)𝑑

1 𝑥(2)1 𝑥(2)2 … 𝑥(2)𝑑

⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥(𝑛)1 𝑥(𝑛)2 … 𝑥(𝑛)𝑑

⎞⎟⎟⎟

⎠



First Step: Rewrite Risk

▶ Observe: �⃗� = 𝑋�⃗�.

(

Aug( ⃗𝑥(1))
Aug( ⃗𝑥(2))

⋮ ⋮
Aug( ⃗𝑥(𝑛))

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑋

(

𝑤0
𝑤1
⋮
𝑤𝑑

)

⏟
�⃗�

= (

Aug( ⃗𝑥(1)) ⋅ �⃗�
Aug( ⃗𝑥(2)) ⋅ �⃗�

⋮
Aug( ⃗𝑥(𝑛)) ⋅ �⃗�

)

⏟⏟⏟⏟⏟⏟⏟
�⃗�



First Step: Rewrite Risk

▶ Therefore, the MSE can be written:

𝑅sq(�⃗�) = 1
𝑛

𝑛

∑
𝑖=1

(Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)
2

= 1
𝑛

𝑛

∑
𝑖=1

(𝑝𝑖 − 𝑦𝑖)
2

= 1
𝑛‖�⃗� − ⃗𝑦‖2

= 1
𝑛‖𝑋�⃗� − ⃗𝑦‖2



Goal

▶ Find �⃗� ∈ ℝ𝑑+1 minimizing:

𝑅sq(�⃗�) = 1
𝑛‖𝑋�⃗� − ⃗𝑦‖2

▶ Step Two: find gradient, set to zero, solve.



Recall: the Risk Surface



Step Two: Find Gradient
▶ We want to compute:

𝑑
𝑑�⃗�

[𝑅sq(�⃗�)] = 𝑑
𝑑�⃗�

[1𝑛‖𝑋�⃗� − ⃗𝑦‖2]

▶ 𝑑𝑅sq
𝑑�⃗� is the gradient of 𝑅sq.

▶ It is the vector of partial derivatives:

𝑑𝑅sq
𝑑�⃗�

= (
𝜕𝑅sq
𝜕𝑤0

,
𝜕𝑅sq
𝜕𝑤1

, … ,
𝜕𝑅sq
𝜕𝑤𝑑

)
𝑇



Idea

▶ While we could compute each of:
𝜕𝑅sq
𝜕𝑤0

,
𝜕𝑅sq
𝜕𝑤1

, ….

▶ Instead use rules from vector calculus.

▶ Example: 𝑑
𝑑�⃗� [ ⃗𝑦𝑇𝑋�⃗�] = 𝑋𝑇 ⃗𝑦



Good to know...

(𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇

(𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇

�⃗� ⋅ ⃗𝑣 = ⃗𝑣 ⋅ �⃗� = �⃗�𝑇 ⃗𝑣 = ⃗𝑣𝑇�⃗�
(�⃗� + ⃗𝑣) ⋅ (�⃗� + ⃗𝑧) = �⃗� ⋅ �⃗� + �⃗� ⋅ ⃗𝑥 + ⃗𝑣 ⋅ �⃗� + ⃗𝑣 ⋅ ⃗𝑧
‖�⃗�‖2 = �⃗� ⋅ �⃗�



Step Two: Find Gradient
▶ Expand norm to make gradient easier.

‖𝑋�⃗� − ⃗𝑦‖2 =

=

=

=



Step Two: Find Gradient

𝑑
𝑑�⃗�

[𝑅sq(�⃗�)] = 1
𝑛

𝑑
𝑑�⃗�

[�⃗�𝑇𝑋𝑇𝑋�⃗� − 2 ⃗𝑦𝑇𝑋�⃗� + ⃗𝑦𝑇 ⃗𝑦]

= ?



Claims

▶ 𝑑
𝑑�⃗� [�⃗�𝑇𝑋𝑇𝑋�⃗�] = 2𝑋𝑇𝑋�⃗�

▶ 𝑑
𝑑�⃗� [ ⃗𝑦𝑇𝑋�⃗�] = 𝑋𝑇 ⃗𝑦

▶ 𝑑
𝑑�⃗� [ ⃗𝑦𝑇 ⃗𝑦] = 0



Example

▶ Show 𝑑
𝑑�⃗� [ ⃗𝑣𝑇�⃗�] = ⃗𝑣.

▶ General procedure:
1. Expand ⃗𝑣𝑇�⃗� until coordinates 𝑢1, … , 𝑢𝑘 are visible.
2. Compute 𝜕𝑑/𝜕𝑢1, 𝜕𝑑/𝜕𝑢2, …, 𝜕𝑑/𝜕𝑢𝑘.
3. Gather result in vector form.



Step Two: Find Gradient

𝑑
𝑑�⃗�

[𝑅sq(�⃗�)] = 1
𝑛

𝑑
𝑑�⃗�

[�⃗�𝑇𝑋𝑇𝑋�⃗� − 2 ⃗𝑦𝑇𝑋�⃗� + ⃗𝑦𝑇 ⃗𝑦]

=



Solution

▶ We have found:

𝑑
𝑑�⃗�

[𝑅sq(�⃗�)] = 1
𝑛 (2𝑋𝑇𝑋�⃗� − 2𝑋𝑇 ⃗𝑦)

▶ To minimize 𝑅sq(�⃗�), set gradient to zero, solve:

2𝑋𝑇𝑋�⃗� − 2𝑋𝑇 ⃗𝑦 = 0 ⟹ 𝑋𝑇𝑋�⃗� = 𝑋𝑇 ⃗𝑦

▶ This is a system of equations in matrix form,
called the normal equations.



The Normal Equations

▶ The least squares solutions for �⃗� are found by
solving the normal equations:

𝑋𝑇𝑋�⃗� = 𝑋𝑇 ⃗𝑦

▶ Mathematically, solved by:

�⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦

▶ In practice: don’t invert! Use the Singular Value
Decomposition (SVD).



Aside

▶ 𝑋+ = (𝑋𝑇𝑋)−1𝑋𝑇 is known as the Moore-Penrose
pseudoinverse of 𝑋.

▶ A generalization of the matrix inverse for
non-square matrices.

▶ With this, the least squares solution is: �⃗�∗ = 𝑋+ ⃗𝑦



Two Approaches

▶ Approach #1: Vector Calculus

▶ Approach #2: Orthogonal Projection (Geometry)

▶ Different ways of arriving at same solutions.



Approach #2: Geometry

▶ In the collinear case, ⃗𝑦 can be predicted exactly.

▶ That is, there is a �⃗� such that 𝑋�⃗� = ⃗𝑦.



Approach #2: Geometry

▶ In practice, ⃗𝑦 is not in the column space of 𝑋.

▶ Goal: choose �⃗� so that 𝑋�⃗� ≈ ⃗𝑦.



Approach #2: Geometry

▶ Idea: ‖𝑋�⃗� − ⃗𝑦‖ is smallest when 𝑋�⃗� is the
orthogonal projection of ⃗𝑦 onto the column
space of 𝑋.



Recall: Projections

▶ Let 𝐴 be a matrix and �⃗� be a vector.

▶ The orthogonal projection of �⃗� onto the column
space of 𝐴 is given by:

𝐴(𝐴𝑇𝐴)−1𝐴𝑇�⃗�



Approach #2: Geometry

▶ So, the orthogonal projection of ⃗𝑦 onto the
column space of 𝑋 is given by:

𝑋 (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦⏟
�⃗�∗



Least Squares Regression

▶ We can now fit functions of the form:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑

by minimizing expected square loss.

▶ Example:
▶ 𝑥1: years of experience
▶ 𝑥2: # of interview questions missed
▶ 𝑥3: favorite number



Procedure
1. Form (augmented) 𝑛 × (𝑑 + 1) design matrix:

𝑋 = (

Aug( ⃗𝑥(1))
Aug( ⃗𝑥(2))

⋮ ⋮
Aug( ⃗𝑥(𝑛))

) =
⎛⎜⎜⎜

⎝

1 𝑥(1)1 𝑥(1)2 … 𝑥(1)𝑑

1 𝑥(2)1 𝑥(2)2 … 𝑥(2)𝑑

⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥(𝑛)1 𝑥(𝑛)2 … 𝑥(𝑛)𝑑

⎞⎟⎟⎟

⎠

2. Solve the normal equations:

�⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦



Lecture 3 | Part 2

Example: Gaussian Basis Functions



Recall: Basis Functions

▶ We can fit any function of the form:

𝐻( ⃗𝑥; �⃗�) = 𝑤0 + 𝑤1𝜙1( ⃗𝑥) + 𝑤2𝜙2( ⃗𝑥) + … + 𝑤𝑘𝜙𝑘( ⃗𝑥)

▶ 𝜙𝑖( ⃗𝑥) ∶ ℝ𝑑 → ℝ is called a basis function.



Procedure
1. Define �⃗�(𝑖) = (𝜙1( ⃗𝑥(𝑖)), 𝜙2( ⃗𝑥(𝑖)), … , 𝜙𝑘( ⃗𝑥(𝑖)))𝑇

2. Form 𝑛 × 𝑘 design matrix:

Φ = (
Aug(�⃗�(1))
Aug(�⃗�(2))

⋮ ⋮
Aug(�⃗�(𝑛))

) = (
𝜙1( ⃗𝑥(1)) 𝜙2( ⃗𝑥(1)) … 𝜙𝑘( ⃗𝑥(1))
𝜙1( ⃗𝑥(2)) 𝜙2( ⃗𝑥(2)) … 𝜙𝑘( ⃗𝑥(2))

⋮ ⋮ ⋮ ⋮
𝜙1( ⃗𝑥(𝑛)) 𝜙2( ⃗𝑥(𝑛)) … 𝜙𝑘( ⃗𝑥(𝑛))

)

3. Solve the normal equations:

�⃗�∗ = (Φ𝑇Φ)−1Φ𝑇 ⃗𝑦



Example: Polynomial Curve Fitting

▶ Fit a function of the form:

𝐻(𝑥; �⃗�) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + 𝑤3𝑥3

▶ Use basis functions:

𝜙0(𝑥) = 1 𝜙1(𝑥) = 𝑥 𝜙2(𝑥) = 𝑥2 𝜙3(𝑥) = 𝑥3



Example: Polynomial Curve Fitting

▶ Design matrix becomes:

Φ =
⎛⎜⎜⎜⎜

⎝

1 𝑥1 𝑥21 𝑥31

1 𝑥2 𝑥22 𝑥32

… … ⋱ ⋮

1 𝑥𝑛 𝑥2𝑛 𝑥3𝑛

⎞⎟⎟⎟⎟

⎠



Gaussian Basis Functions

▶ Gaussians make for useful basis functions.

𝜙𝑖(𝑥) = exp (−
(𝑥 − 𝜇𝑖)2

𝜎2𝑖
)

▶ Must specify1 center 𝜇𝑖 and width 𝜎𝑖 for each
Gaussian basis function.

1You pick these; they are not learned!



Example: 𝑘 = 3
▶ A function of the form: 𝐻(𝑥) = 𝑤1𝜙1(𝑥) + 𝑤2𝜙2(𝑥) + 𝑤3𝜙3(𝑥),
using 3 Gaussian basis functions.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.5

0.0

0.5

1.0

1.5

2.0



Example: 𝑘 = 10
▶ The more basis functions, the more complex 𝐻 can be.

1 0 1 2 3 4 5 6

1.0

0.5

0.0

0.5

1.0

1.5

2.0



Example

0 1 2 3 4 5 6

1.0

0.5

0.0

0.5

1.0



Example

▶ Will use 𝑘 Gaussian basis functions, equally
spaced in interval [0, 2𝜋].

▶ Same width for each: 𝜎𝑖 = 𝜎 = 2𝜋/𝑘.

▶ Will fit on 50 random sinusoidal datasets.



k = 2
Average of Fits
Ground Truth



k = 4
Average of Fits
Ground Truth



k = 8
Average of Fits
Ground Truth



k = 16

Average of Fits
Ground Truth



k = 24

Average of Fits
Ground Truth



Observation #1
▶ Mean Squared Error decreases as 𝑘 increases.

2 4 8 16 24
k

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE



Observation #2



Observation #2

▶ When 𝑘 is small: high bias, low variance

▶ When 𝑘 is large low bias, high variance

▶ There appears to be a tradeoff.



Lecture 3 | Part 3

Linear Classification



Classification

▶ We’ve been considering regression. What about
classification?

▶ In classification, output is a discrete label.



Example: Mango Ripeness

▶ Predict whether a mango is ripe given greenness
and hardness.

▶ Convention: encode “yes“ as 1 and “no” as -1.
Greenness Hardness Ripe

0.7 0.9 1
0.2 0.5 -1
0.3 0.1 -1
⋮ ⋮ ⋮



Binary vs. Multiclass Classification

▶ Binary classification: predict “yes” / “no”.
▶ E.g., is this picture of a dog? (“yes” / “no”)

▶ Multiclass classification: predict one of 𝑘
possible labels.
▶ E.g., what animal is in this picture?
▶ cat, dog, giraffe, mongoose, etc.

▶ We’ll focus on binary for simplicity.



Linear Classification
▶ Linear prediction functions output real numbers:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑

▶ Can turn output into a “yes” / “no” answer by
thresholding:

sign(𝑧) = {
1 𝑧 > 0
−1 𝑧 < 0
0 otherwise

▶ Final prediction: sign(𝐻( ⃗𝑥))



Interpretation: Weighted Vote

▶ A linear decision function can be thought of as a
weighted vote:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑



Interpretation: A Simple Neuron

▶ A linear decision function is a simple model for a
neuron.

▶ Are the basis of modern neural networks.







Decision Boundary

▶ The decision boundary is the place where the
output of 𝐻(𝑥) switches from “yes” to “no”.
▶ If 𝐻 > 0 ↦ “yes” and 𝐻 < 0 ↦ “no”, the decision
boundary is where 𝐻 = 0.

▶ If 𝐻 is a linear predictor and2
▶ ⃗𝑥 ∈ 𝑅1, then the decision boundary is just a number.
▶ ⃗𝑥 ∈ ℝ2, the boundary is a straight line.
▶ ⃗𝑥 ∈ ℝ𝑑, the boundary is a 𝑑 − 1 dimensional (hyper)
plane.

2when plotted in the original feature coordinate space!



Example

2 1 0 1 2 3 4 5 6
greenness

1

0

1

2

3

4

5

ha
rd

ne
ss

ripe
not ripe



Prediction Surface

▶ Although our final prediction uses only the sign,
the magnitude of 𝐻 is useful.

▶ Recall: the plot of a linear prediction function 𝐻
is a (hyper)plane.

▶ The problem of binary classification can be
though of as regression where the targets are 1
and -1.



Example

2 1 0 1 2 3 4 5 6
greenness

1

0

1

2

3

4

5

ha
rd

ne
ss

ripe
not ripe



Useful Fact

▶ |𝐻( ⃗𝑥)| is proportional to the distance from the
decision boundary.

▶ If 𝐻( ⃗𝑥(1)) = 𝐻( ⃗𝑥(2)), ⃗𝑥(1) and ⃗𝑥(2) are equally far
away from the boundary.

▶ If 𝐻( ⃗𝑥) = 0, ⃗𝑥 is on the boundary.

▶ |𝐻( ⃗𝑥)| can be used as a measure of “confidence”.



Lecture 3 | Part 4

ERM for Linear Classifiers



Learning a Classifier

▶ We can learn a linear classifier using the same
ERM paradigm as before.



Empirical Risk Minimization

▶ Step 1: choose a hypothesis class
▶ Let’s assume we’ve chosen linear predictors

▶ Step 2: choose a loss function

▶ Step 3: minimize expected loss (empirical risk)



Exercise

Can we use the square loss for classification?

(𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖)2



Square Loss for Classification

▶ Yes! We can use the square loss, but it may not
be the best choice.

▶ E.g., suppose 𝐻( ⃗𝑥(𝑖)) = 11 and 𝑦𝑖 = 1.
▶ Square loss: 100. Large!

▶ E.g., suppose 𝐻( ⃗𝑥(𝑖)) = −9 and 𝑦𝑖 = 1.
▶ Square loss:



Main Idea

While the square loss can be used for classifica-
tion, it may not be the best choice because it pe-
nalizes predictions that are “very correct”.

It is designed for regression.



Least Squares Classifier

▶ Least squares classification is performed exactly
the same as least squares regression.
▶ I.e., solve the normal equations: �⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦

▶ Except the prediction is thresholded:

𝐻( ⃗𝑥) = sign (Aug ( ⃗𝑥) ⋅ �⃗�∗)



Least Squares and Outliers

3

3Bishop, Pattern Recognition and Machine Learning



Another Loss Function

▶ What about the 0-1 loss?
▶ Loss = 0 if prediction is correct.
▶ Loss = 1 if prediction is incorrect.

▶ More formally:

𝐿0-1(𝐻( ⃗𝑥(𝑖)), 𝑦𝑖) = {
0 if sign(𝐻( ⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻( ⃗𝑥(𝑖))) ≠ 𝑦𝑖



Expected 0-1 Loss

▶ The expected 0-1 loss (empirical risk) has a nice
interpretation:

𝑅0-1(𝐻) = 1
𝑛

𝑛

∑
𝑖=1

{
0 if sign(𝐻( ⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻( ⃗𝑥(𝑖))) ≠ 𝑦𝑖

Exercise

What is it?



Answer

▶ The empirical risk with respect to the 0-1 loss is
(1 - the accuracy) of the classifier.

𝑅0-1(𝐻) = 1
𝑛

𝑛

∑
𝑖=1

{
0 if sign(𝐻( ⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻( ⃗𝑥(𝑖))) ≠ 𝑦𝑖

= # of incorrect predictions𝑛



ERM for the 0-1 Loss

▶ Assume the 0-1 loss, linear prediction functions.

▶ Next step: find linear 𝐻 minimizing the empirical
risk.

▶ That is: find 𝐻 which maximizes the accuracy on
the training set.



Problem

▶ The 0-1 loss is not differentiable.

▶ Can’t even use gradient descent...



Why?
▶ The 0-1 risk surface is flat almost everywhere.



Computationally Difficult

▶ It is not feasible to minimize 0-1 risk in general.

▶ More formally: NP-Hard to optimize expected 0-1
loss in general.4

4It is efficiently doable if the classes are linearly separable by finding
convex hulls of each class. If non-separable, it is difficult.



Main Idea

It is computationally difficult (NP-Hard) to maxi-
mize the accuracy of a linear classifier.



Surrogate Loss

▶ Instead of the 0-1 loss, we use a surrogate loss.

▶ That is, a loss that is similar in spirit, but has
better mathematical properties.



The Perceptron Loss

▶ The perceptron loss is designed for binary
classification.
▶ Loss = 0 if prediction is correct.
▶ Loss > 0 if prediction incorrect.
▶ Loss increases with distance from boundary.

▶ More formally:

𝐿tron(𝐻( ⃗𝑥), 𝑦) = {
0, sign(𝐻( ⃗𝑥)) = sign(𝑦)
|𝐻( ⃗𝑥)|, sign(𝐻( ⃗𝑥)) ≠ sign(𝑦)



ERM for the Perceptron

▶ Goal: minimize the empirical expected
perceptron loss (risk):

𝐻tron(𝐻( ⃗𝑥), 𝑦) = {
0, sign(𝐻( ⃗𝑥)) = sign(𝑦)
|𝐻( ⃗𝑥)|, sign(𝐻( ⃗𝑥)) ≠ sign(𝑦)



Problem

▶ The percepton loss is not differentiable.

▶ However:
▶ it is not flat!
▶ its derivative exists almost everywhere.

▶ We can train iteratively using gradient descent
(next time).



Some History

▶ Perceptrons were one of the first “machine
learning” models.

▶ The basis of modern neural networks.



Rosenblatt’s Perceptron




