
Lecture 4 | Part 1

Linear Classification

Classification▶ We’ve been considering regression. What about
classification?

Empirical Risk Minimization▶ Step 1: choose a hypothesis class▶ Let’s assume we’ve chosen linear predictors▶ Step 2: choose a loss function▶ Step 3: minimize expected loss (empirical risk)

Exercise
Can we use the square loss for classification?(𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)2

Square Loss for Classification▶ Yes! We can use the square loss, but it may not
be the best choice.▶ E.g., suppose 𝐻(⃗𝑥(𝑖)) = 11 and 𝑦𝑖 = 1.▶ Square loss: 100. Large!▶ E.g., suppose 𝐻(⃗𝑥(𝑖)) = −9 and 𝑦𝑖 = 1.▶ Square loss:

Main Idea
While the square loss can be used for classifica-
tion, it may not be the best choice because it pe-
nalizes predictions that are “very correct”.

It is designed for regression.

Least Squares Classifier▶ Least squares classification is performed exactly
the same as least squares regression.▶ I.e., solve the normal equations: 𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦▶ Except the prediction is thresholded:𝐻(⃗𝑥) = sign (Aug (⃗𝑥) ⋅ 𝑤⃗∗)

Least Squares and Outliers

1

1Bishop, Pattern Recognition and Machine Learning

Another Loss Function▶ What about the 0-1 loss?▶ Loss = 0 if prediction is correct.▶ Loss = 1 if prediction is incorrect.▶ More formally:𝐿0-1(𝐻(⃗𝑥(𝑖)), 𝑦𝑖) = {0 if sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖1 if sign(𝐻(⃗𝑥(𝑖))) ≠ 𝑦𝑖

Expected 0-1 Loss▶ The expected 0-1 loss (empirical risk) has a nice
interpretation:𝑅0-1(𝐻) = 1𝑛 𝑛∑𝑖=1 {0 if sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖1 if sign(𝐻(⃗𝑥(𝑖))) ≠ 𝑦𝑖
Exercise
What is it?

Answer▶ The empirical risk with respect to the 0-1 loss is
(1 - the accuracy) of the classifier.

𝑅0-1(𝐻) = 1𝑛 𝑛∑𝑖=1 {0 if sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖1 if sign(𝐻(⃗𝑥(𝑖))) ≠ 𝑦𝑖= # of incorrect predictions𝑛

ERM for the 0-1 Loss▶ Assume the 0-1 loss, linear prediction functions.▶ Next step: find linear 𝐻 minimizing the empirical
risk.▶ That is: find 𝐻 which maximizes the accuracy on
the training set.

Problem▶ The 0-1 loss is not differentiable.▶ Can’t even use gradient descent...

A R(w)
=0

Why?▶ The 0-1 risk surface is flat almost everywhere.
dR

X

Computationally Difficult▶ It is not feasible to minimize 0-1 risk in general.▶ More formally: NP-Hard to optimize expected 0-1
loss in general.2

2It is efficiently doable if the classes are linearly separable by finding
convex hulls of each class. If non-separable, it is difficult.

Main Idea
It is computationally difficult (NP-Hard) to maxi-
mize the accuracy of a linear classifier.

Surrogate Loss▶ Instead of the 0-1 loss, we use a surrogate loss.▶ That is, a loss that is similar in spirit, but has
better mathematical properties.

(H(X) - y)=

The Perceptron Loss▶ The perceptron loss is designed for binary
classification.▶ Loss = 0 if prediction is correct.▶ Loss > 0 if prediction incorrect.▶ Loss increases with distance from boundary.▶ More formally:𝐿tron(𝐻(⃗𝑥), 𝑦) = {0, sign(𝐻(⃗𝑥)) = sign(𝑦)|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ sign(𝑦)

O

it

Perceptron Loss

𝐿tron(𝐻(⃗𝑥; 𝑤⃗), 𝑦) = {0, sign(𝐻(⃗𝑥)) = sign(𝑦)|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ sign(𝑦)

ERM for the Perceptron▶ Goal: minimize the empirical expected
perceptron loss (risk):𝐿tron(𝐻(⃗𝑥), 𝑦) = {0, sign(𝐻(⃗𝑥)) = sign(𝑦)|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ sign(𝑦)

Optimization▶ The perceptron risk is:𝑅tron(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 𝐿tron(𝐻(⃗𝑥), 𝑦)= 1𝑛 𝑛∑𝑖=1 {0, sign(𝐻(⃗𝑥)) = sign(𝑦)|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ sign(𝑦)

Exercise
Suppose the training data are linearly separable.
What is the minimum possible value of 𝑅tron?

2 x
* x

x f

x X

Optimization▶ To optimize, solve ∇⃗𝑅tron(𝑤⃗) = 0?▶ The gradient of the risk would be:∇⃗𝑅tron(𝑤⃗) = ∇⃗1𝑛 𝑛∑𝑖=1 𝐿tron(𝐻(⃗𝑥), 𝑦)= 1𝑛 𝑛∑𝑖=1 ∇⃗𝐿tron(𝐻(⃗𝑥), 𝑦)▶ However, the perceptron loss is not
differentiable.

Problem▶ The risk is not differentiable.▶ However:▶ it is not flat!▶ its derivative exists almost everywhere.▶ We can train iteratively using subgradient
descent (as we’ll see).

Some History▶ Perceptrons were one of the first “machine
learning” models.▶ The basis of modern neural networks.

Rosenblatt’s Perceptron

Lecture 4 | Part 2

Gradient Descent

Iterative Optimization▶ To minimize a function 𝑓(⃗𝑥), we may try to
compute ∇⃗𝑓(⃗𝑥); set to 0; solve.▶ Often, there is no closed-form solution.▶ How do we minimize 𝑓?

Example▶ Consider 𝑓(𝑥, 𝑦) = 𝑒𝑥2+𝑦2 + (𝑥 − 2)2 + (𝑦 − 3)2.

Example▶ Try solving ∇⃗𝑓(𝑥, 𝑦) = 0.▶ The gradient is:∇⃗𝑓(𝑥, 𝑦) = (2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2)2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3))▶ Can we solve the system?2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2) = 02𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3) = 0

Example▶ Try solving ∇⃗𝑓(𝑥, 𝑦) = 0.▶ The gradient is:∇⃗𝑓(𝑥, 𝑦) = (2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2)2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3))▶ Can we solve the system? Not in closed form.2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2) = 02𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3) = 0

Idea

▶ Apply an iterative approach.▶ Start at an arbitrary location.▶ “Walk downhill”, towards
minimum.

Which way is down?

▶ Consider a differentiable
function 𝑓(𝑥, 𝑦).▶ We are standing at 𝑃 = (𝑥0, 𝑦0).▶ In a small region around 𝑃, 𝑓
looks like a plane.

Which way is down?

▶ Linear approximation:𝑓(𝑥0 + 𝛿𝑥, 𝑦0 + 𝛿𝑦) ≈ 𝑓(𝑥0, 𝑦0) + +

of (X0,y.)

(X0,Y0)

of(x,y.)5x f(x,y.)0y

Which way is down?▶ Define 𝛿⃗ = (𝛿𝑥, 𝛿𝑦)𝑇▶ Define the gradient: ∇⃗𝑓(𝑥, 𝑦) = (𝜕𝑓𝜕𝑥(𝑥, 𝑦), 𝜕𝑓𝜕𝑦(𝑥, 𝑦))𝑇▶ Then the linear approximation becomes:𝑓(𝑥0 + 𝛿𝑥, 𝑦0 + 𝛿𝑦) ≈ 𝑓(𝑥0, 𝑦0) + 𝛿⃗ ⋅ ∇⃗𝑓(𝑥0, 𝑦0)

Which way is up?

𝑓(𝑥0 + 𝛿𝑥, 𝑦0 + 𝛿𝑦) = 𝑓(𝑥0, 𝑦0) + 𝛿⃗ ⋅ ∇⃗𝑓(𝑥0, 𝑦0)▶ Suppose 𝛿 is a unit vector (a direction).▶ Which direction results in the greatest increase?▶ Recall 𝛿⃗ ⋅ ∇⃗𝑓(𝑥0, 𝑦0) = ‖𝛿⃗‖‖∇⃗𝑓(𝑥0, 𝑦0)‖ cos 𝜃▶ Answer: choosing 𝛿 in the direction of gradient.

Which way is down?

▶ ∇⃗𝑓(𝑥0, 𝑦0) points in direction
of steepest ascent at (𝑥0, 𝑦0).▶ −∇⃗𝑓(𝑥0, 𝑦0) points in direction
of steepest descent at (𝑥0, 𝑦0).

The Gradient▶ Let 𝑓 ∶ ℝ𝑑 → ℝ be differentiable. The gradient of𝑓 at ⃗𝑥 is defined:∇⃗𝑓(⃗𝑥) = (𝜕𝑓𝜕𝑥1 (⃗𝑥), 𝜕𝑓𝜕𝑥2 (⃗𝑥), … , 𝜕𝑓𝜕𝑥𝑑 (⃗𝑥))𝑇▶ Note: ∇⃗𝑓(⃗𝑥) is a function mapping ℝ𝑑 → ℝ𝑑.

Gradient Properties▶ The gradient is used in the linear approximation
of 𝑓:𝑓(𝑥0 + 𝛿𝑥, 𝑦0 + 𝛿𝑦) ≈ 𝑓(𝑥0, 𝑦0) + 𝛿⃗ ⋅ ∇⃗𝑓(𝑥0, 𝑦0)▶ Important properties:▶ ∇⃗𝑓(⃗𝑥) points in direction of steepest ascent at ⃗𝑥.▶ −∇⃗𝑓(⃗𝑥) points in direction of steepest descent at ⃗𝑥.▶ In directions orthogonal to ∇⃗𝑓(⃗𝑥), 𝑓 does not change!▶ ‖∇⃗𝑓(⃗𝑥)‖ measures steepness of ascent

Gradient Descent▶ Pick arbitrary starting point ⃗𝑥(0), learning rate
parameter 𝜂 > 0.▶ Until convergence, repeat:▶ Compute gradient of 𝑓 at ⃗𝑥(𝑖); that is, compute ∇⃗𝑓(⃗𝑥(𝑖)).▶ Update ⃗𝑥(𝑖+1) = ⃗𝑥(𝑖) − 𝜂∇⃗𝑓(⃗𝑥(𝑖)).▶ When do we stop?▶ When difference between ⃗𝑥(𝑖) and ⃗𝑥(𝑖+1) is negligible.▶ I.e., when ‖ ⃗𝑥(𝑖) − ⃗𝑥(𝑖+1)‖ is small.

def gradient_descent(
gradient, x, learning_rate=.01,
threshold=.1e-4

):
while True:

x_new = x - learning_rate * gradient(x)
if np.linalg.norm(x - x_new) < threshold:

break
x = x_new

return x

Example▶ Goal: minimize 𝑓(𝑥, 𝑦) = 𝑒𝑥2+𝑦2 + (𝑥 − 2)2 + (𝑦 − 3)2
with gradient descent.▶ Initial location ⃗𝑥(0) = (12 , 0)𝑇; learning rate 𝜂 = 0.05▶ Recall: ∇⃗𝑓(𝑥, 𝑦) = (2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2)2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3))

Example: First Step▶ Compute gradient at ⃗𝑥(0) = (12 , 0)𝑇:∇⃗𝑓(1/2, 0) = (2 ⋅ (1/2) ⋅ 𝑒(1/2)2+02 + 2((1/2) − 2)2 ⋅ 0 ⋅ 𝑒(1/2)2+02 + 2(0 − 3)) ≈ (−1.71−6)▶ Update: ⃗𝑥(1) = ⃗𝑥(0) − 𝜂∇⃗𝑓(⃗𝑥(0))= (1/2, 0)𝑇 − .05 ⋅ (−1.71, −6)𝑇= (1/2, 0)𝑇 − (−.08, −.3)𝑇= (.58, .3)𝑇

Example: Second Step▶ Compute ∇⃗𝑓 at ⃗𝑥(1):∇⃗𝑓(⃗𝑥(1)) = ∇⃗𝑓(.58, .3)𝑇 ≈ (−1.06, −4.48)𝑇▶ Update: ⃗𝑥(2) = ⃗𝑥(1) − 𝜂∇⃗𝑓(⃗𝑥(1))= (.58, .3)𝑇 − .05 ⋅ (−1.06, −4.48)𝑇= (.63, .52)𝑇▶ Repeat...

Lecture 4 | Part 3

Subgradient Descent

A Problem▶ To perform gradient descent, function must be
differentiable.▶ What if it isn’t?

Example▶ 𝑓(𝑥, 𝑦) = 𝑥2 + |𝑦|

Exercise
Where is the function not differentiable? That is,
where is there not a well-defined tangent plane?

Answer

▶ ∇⃗𝑓(𝑥, 𝑦) is defined everywhere
except along 𝑦 = 0.▶ If 𝑦 > 0,𝑓(𝑥, 𝑦) = 𝑥2 + |𝑦| = 𝑥2 + 𝑦.▶ ∇⃗𝑓(𝑥, 𝑦) = (2𝑥, 1)𝑇▶ If 𝑦 < 0,𝑓(𝑥, 𝑦) = 𝑥2 + |𝑦| = 𝑥2 − 𝑦.▶ ∇⃗𝑓(𝑥, 𝑦) = (2𝑥, −1)𝑇

f(x,y) =x(y) f(x,y) =3xy yen

Answer

▶ Piecewise gradient:∇⃗𝑓(𝑥, 𝑦) = {(2𝑥, 1)𝑇 , if 𝑦 > 1,(2𝑥, −1)𝑇 , if 𝑦 < 1.▶ Not defined along 𝑦 = 0.
o

o

Problem▶ Gradient descent will almost work on𝑓(𝑥, 𝑦) = 𝑥2 + |𝑦|.▶ What if it reaches a point where 𝑦 = 0.▶ Which direction should it go?

Intuition

Subgradient▶ A subgradient of 𝑓 at ⃗𝑥(0) is a vector 𝑔⃗ such that:𝑓(⃗𝑥(0)) + 𝛿⃗ ⋅ 𝑔⃗
lies below 𝑓 for any choice of 𝛿⃗.▶ There are possibly (infinitely) many subgradients.

Example

▶ 𝑓(𝑥, 𝑦) = 𝑥2 + |𝑦|▶ A subgradient:

𝑔⃗(𝑥, 𝑦) = {(2𝑥, 1)𝑇 , if 𝑦 > 1,(2𝑥, −1)𝑇 , if 𝑦 < 1,(2𝑥, 0)𝑇 , if 𝑦 = 0.

fix0x, y.*5y) =f(x,y.) +0x2x0 + 5y.O

10

/0

Exercise
Find another subgradient of the function 𝑓(𝑥, 𝑦) =𝑥2 + |𝑦|.

(*) (2)
-

ce [- 1,1]I

Subgradient Descent▶ Idea: use subgradient in place of gradient in
gradient descent.▶ Subgradient is not unique; choose an arbitrary
one.

Subgradient Descent▶ Pick arbitrary starting point ⃗𝑥(0), learning rate
parameter 𝜂 > 0.▶ Until convergence, repeat:▶ Compute a subgradient of 𝑓 at ⃗𝑥(𝑖).▶ Update ⃗𝑥(𝑖+1) = ⃗𝑥(𝑖) − 𝜂∇⃗𝑓(⃗𝑥(𝑖)).▶ When do we stop?▶ When difference between ⃗𝑥(𝑖) and ⃗𝑥(𝑖+1) is negligible.▶ I.e., when ‖ ⃗𝑥(𝑖) − ⃗𝑥(𝑖+1)‖ is small.
-
an

g

Example▶ Subgradient descent on 𝑓(𝑥, 𝑦) = 𝑥2 + |𝑦|▶ Starting point: (1/2, 1/2)𝑇▶ Learning rate: 𝜂 = 0.1.

(v)

V
V

Problem▶ Does not converge! Why?▶ Fix: decrease learning rate with each iteration.▶ Theory: choose 𝜂 = 𝑂(1/√𝑖), where 𝑖 is iteration #.
#

Lecture 4 | Part 4

(Sub)gradient Descent for ERM

ERM for the Perceptron▶ Goal: minimize the empirical expected
perceptron loss (risk):𝐿tron(𝐻(⃗𝑥), 𝑦) = {0, sign(𝐻(⃗𝑥)) = sign(𝑦)|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ sign(𝑦)

Optimization▶ The perceptron risk is:𝑅tron(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 𝐿tron(𝐻(⃗𝑥), 𝑦)= 1𝑛 𝑛∑𝑖=1 {0, sign(𝐻(⃗𝑥)) = sign(𝑦)|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ sign(𝑦)▶ To optimize, solve ∇⃗𝑅tron(𝑤⃗) = 0?

Optimization▶ The gradient of the risk would be:∇⃗𝑅tron(𝑤⃗) = ∇⃗1𝑛 𝑛∑𝑖=1 𝐿tron(𝐻(⃗𝑥), 𝑦)= 1𝑛 𝑛∑𝑖=1 ∇⃗𝐿tron(𝐻(⃗𝑥), 𝑦)▶ However, the perceptron loss is not
differentiable.

Idea▶ Instead of solving ∇⃗𝑅tron(𝑤⃗) = 0, use subgradient
descent.▶ We need to compute a subgradient of the
perceptron loss.

Subgradient of Perceptron Loss𝐿tron(𝐻(⃗𝑥; 𝑤⃗), 𝑦) = {0, sign(𝐻(⃗𝑥)) = sign(𝑦)| ⃗𝑥 ⋅ 𝑤⃗|, sign(𝐻(⃗𝑥)) ≠ sign(𝑦)▶ If prediction is correct, ∇⃗𝐿tron = 0.▶ If prediction is incorrect with ⃗𝑥 ⋅ 𝑤⃗ > 0,▶ then | ⃗𝑥 ⋅ 𝑤⃗| = ⃗𝑥 ⋅ 𝑤⃗.▶ ∇⃗𝐿tron = 𝑑𝑑𝑤⃗ (⃗𝑥 ⋅ 𝑤⃗ − 𝑦) = ⃗𝑥▶ If prediction is incorrect with ⃗𝑥 ⋅ 𝑤⃗ < 0,▶ then | ⃗𝑥 ⋅ 𝑤⃗| = − ⃗𝑥 ⋅ 𝑤⃗.▶ ∇⃗𝐿tron = 𝑑𝑑𝑤⃗ (− ⃗𝑥 ⋅ 𝑤⃗ − 𝑦) = − ⃗𝑥

(x) = -x

af(xw1-y)

#x

Subgradient of Perceptron Loss▶ Gradient is not defined
when 𝐻(⃗𝑥; 𝑤⃗) = 0.▶ Can choose any
subgradient.▶ 0⃗ works. X

Subgradient▶ A subgradient of the perceptron loss:

𝑔⃗(𝑤⃗, ⃗𝑥, 𝑦) = {0, if sign(𝑤⃗ ⋅ ⃗𝑥) = sign(𝑦) or ⃗𝑥 ⋅ 𝑤⃗ = 0,⃗𝑥, if sign(𝑤⃗ ⋅ ⃗𝑥) ≠ sign(𝑦) and ⃗𝑥 ⋅ 𝑤⃗ > 0,− ⃗𝑥, if sign(𝑤⃗ ⋅ ⃗𝑥) ≠ sign(𝑦) and ⃗𝑥 ⋅ 𝑤⃗ < 0.▶ Subgradient of the risk𝑔⃗𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 𝑔(𝑤⃗, ⃗𝑥(𝑖), 𝑦𝑖)

DR =+zxL

Training a Perceptron▶ A perceptron can be training with subgradient
descent, using 𝑔⃗𝑅 as the subgradient.▶ If the data are linearly separable3, will obtain
perfect accuracy on training data.

3and the learning rate is appropriately chosen

Gradient Descent for ERM▶ Suppose 𝐿 is a differentiable loss function (e.g.,
square loss).▶ Then the gradient of the risk, 𝑅(𝑤⃗), is:∇⃗𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 ∇⃗𝐿(𝐻(𝑤⃗, ⃗𝑥(𝑖)), 𝑦𝑖)

Subgradient Descent for ERM▶ If 𝐿 is not differentiable, we may still be able to
use subgradient descent if a subgradient exists.▶ If 𝑔⃗(𝑤⃗, ⃗𝑥, 𝑦) is a subgradient of 𝐿, then a
subgradient of the risk, 𝑅, is:1𝑛 𝑛∑𝑖=1 𝑔(𝑤⃗, ⃗𝑥(𝑖), 𝑦𝑖)

What’s left?▶ Does (sub)gradient descent always work? No.▶ When is it guaranteed to work?▶ Computing the full gradient can be costly.

Lecture 4 | Part 5

Perceptron Demo: MNIST

Demo: MNIST▶ MNIST is a classic machine learning data set.▶ Many images of handwritten digits, 0-9.▶ Multiclass classification problem.▶ But we can make it binary: 3 vs. 7.

Example MNIST Digit

▶ Grayscale▶ 28 x 28 pixels

MNIST Feature Vectors▶ 28 × 28 = 784 pixels▶ Each image is a vector in ℝ784▶ Each feature is intensity of single pixel▶ black→ 0, white→ 255▶ A very simple representation.

Demo: MNIST▶ Use only images of 3s and 7s.▶ 4132 training images.▶ 680 testing images.▶ Some minor tuning.▶ Added random noise for robustness.▶ Picked classification threshold automatically.

Percepton Learning▶ Linear prediction function parameterized by 𝑤⃗.▶ In this case, we can “reshape” 𝑤⃗ to be same size
as input image.

Weight Vector▶ Recall that the prediction is a weighted vote:𝐻(⃗𝑥) = sign(𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + …𝑤784𝑥784)▶ Positive→ 7, Negative→ 3▶ 𝑤𝑖 is the weight of pixel 𝑖▶ positive: if this pixel is bright, I think this is a 7▶ negative: if this pixel is bright, I think this is a 3▶ magnitude: confidence in prediction

Perceptron Training

Perceptron Training

Perceptron Training

Perceptron Training

Perceptron Training

Perceptron Training

Perceptron Weight Vector

Perceptron Results▶ Test accuracy: 97.3%

Square Loss for Classification▶ What if we use square loss for classification?▶ We can, but will it work well?

Results: Least Squares▶ Test Accuracy: 96.7% (marginally worse)

Results: Least Squares▶ Misclassifications are telling.

Least Squares Weight Vector▶ Can visualize weight of each pixel as an image.

Least Squares Weight Vector

Least Squares Weight Vector

