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Linear Classification



Classification

We've been considering regression. What about
classification?



Empirical Risk Minimization

Step 1: choose a hypothesis class
Let's assume we've chosen linear predictors

Step 2: choose a loss function

Step 3: minimize expected loss (empirical risk)



Can we use the square loss for classification?

(H(XD) - y,)?




Square Loss for Classification

Yes! We can use the square loss, but it may not
be the best choice.

E.g., suppose H(X") =11 and y; = 1.
Square loss: 100. Large!

E.g, suppose H(X) = -9 and y; = 1.
Square loss:



While the square loss can be used for classifica-
tion, it may not be the best choice because it pe-
nalizes predictions that are “very correct”.

It is designed for regression.




Least Squares Classifier

Least squares classification is performed exactly

the same as least squares regression.
l.e., solve the normal equations: w* = (X'X)'XTy

Except the prediction is thresholded:

H(X) = sign (Aug(X) - w*)



Least Squares and Outliers
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Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

'Bishop, Pattern Recognition and Machine Learning



Another Loss Function

What about the 0-1 loss?
Loss = 0 if prediction is correct.
Loss = 1if prediction is incorrect.

More formally:

P (¢ ifsign(H(i”)) Y,
L0-1(H(X()) i) = 1 if sign(H(XU ))¢V,



Expected 0-1 Loss

The expected 0-1 loss (empirical risk) has a nice
interpretation:

_1<-]0 if sign(H(x™)) = y;
Ry-1(H) = nZL if sign(H(X")) # y.

What is it?




Answer

The empirical risk with respect to the 0-1 loss is
(1 - the accuracy) of the classifier.

1 i 0 if sign(H( x(’:))) =y,
n& |1 if sign(HX")) # y,

_ #of incorrect predictions
n




ERM for the 0-1 Loss

Assume the 0-1 loss, linear prediction functions.

Next step: find linear H minimizing the empirical
risk.

That is: find H which maximizes the accuracy on
the training set.



Problem
The 0-1 loss is not differentiable.

Can't even use gradient descent...



Why?

The 0-1 risk surface is flat almost everywhere.
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Computationally Difficult
It is not feasible to minimize 0-1 risk in general.

More formally: NP-Hard to optimize expected 0-1
loss in general.?

2|t is efficiently doable if the classes are linearly separable by finding
convex hulls of each class. If non-separable, it is difficult.



Main Idea

It is computationally difficult (NP-Hard) to maxi-
mize the accuracy of a linear classifier.




Surrogate Loss
Instead of the 0-1 loss, we use a surrogate loss.

That is, a loss that is similar in spirit, but has
better mathematical properties.



The Perceptron Loss

The perceptron loss is designed for binary

classification.
Loss = 0 if prediction is correct.
Loss > 0 if prediction incorrect.
Loss increases with distance from boundary.

More formally:

sign(H(X)) = sign(y)
%

tron( ( ) y) |H(X) sign(H( )) # 5|gn(y)



Perceptron Loss

. . 0, sign(H(X)) = sign(y)
G =1 Hez)l, sign(H(R)) * sign(y)

N Lieon (HG, 1)

tron




ERM for the Perceptron

Goal: minimize the empirical expected
perceptron loss (risk):

sign(H(X)) = sign(y)
Liron(H(X), ¥) = (7<)|, sign(H(X)) # sign(y)



Optimization

The perceptron risk is:

sign(H(X)) = sign(y)
|H(x sign(H(X)) # sign(y)

) 1<
tronW EZ ron(H(X
1 n
n j=1



Suppose the training data are linearly separable.
What is the minimum possible value of R, _ ?

tron ®




Optimization

To optimize, solve VR, _ (i) = 0?

tron(

The gradient of the risk would be:

However, the perceptron loss is not
differentiable.



Problem
The risk is not differentiable.

However:
it is not flat!
its derivative exists almost everywhere.

We can train iteratively using subgradient
descent (as we'll see).



Some History

Perceptrons were one of the first “machine
learning” models.

The basis of modern neural networks.



Rosenblatt’s Perceptron







Dsc /40A

Prbabfete Motfry ¢ Vachine daronel,

Lecture 4  Part2

Gradient Descent



Iterative Optimization

To minimize a function f(X), we may try to
compute Vf(X); set to 0; solve.

Often, there is no closed-form solution.

How do we minimize f?



Example
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Example
Try solving Vf(x, y) = 0.

The gradient is:
o) - 2xe"2*yj +2(x - 2)
' 2yeX V" + 2(y - 3)

Can we solve the system?
2%+ 2(x - 2)

2ye"2"y2 +2(y -3)

0
0



Example
Try solving Vf(x, y) = 0.

The gradient is:

[2xe** Y 4 2(x - 2)

Vf(x,y) =
foay) 2ye’<2+y2 +2(y - 3)

Can we solve the system? Not in closed form.
2xe" Y +2(x-2) = 0
2yeX Y’ + 2(y -3) = 0



Idea

Apply an iterative approach.
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Which way is down?

Consider a differentiable
function f(x, y).

Tangent plane at P

/

We are standing at P = (x,, ¥,). s
=TI

In a small region around P, f
looks like a plane. S

X



Which way is down?

Tangent plane at P

Linear approximation:

FXo+ 6, Vo +6,) = fX5¥) + +



Which way is down?
Define 6 = (6,,6,)'
Define the gradient: VF(x,y) = ( (x,v), (x y))

Then the linear approximation becomes:

F(Xo + 6,0 Vo +6,) = f(Xo, Vo) + & - VF (x5, V)



Which way is up?

F(Xo + 6,0 Yo +6,) = F(Xo, Vo) + & - VF (X0, o)
Suppose & is a unit vector (a direction).
Which direction results in the greatest increase?
Recall & - Vf(xy, Vo) = I8IIVf(xy, ¥)ll cos 6

Answer: choosing 6 in the direction of gradient.



Which way is down?

o . . Tangent Plane atP
Vf(x, ¥,) points in direction /
of steepest ascent at (x,, y,).

z=f(x,y)

-Vf(x,,V,) points in direction
of steepest descent at (x, y,). /\
T~y

X



The Gradient

Let f : RY - R be differentiable. The gradient of
f at X is defined:

U = 550 e 5

axd

() ()

Note: Vf(X) is a function mapping RY — RY.



Gradient Properties

The gradient is used in the linear approximation
of f:

F(Xo + 6,0 Yo +6,) = F(Xgr Vo) + & - Vf(Xg, ¥,)

Important properties:
Vf(X) points in direction of steepest ascent at X.
-Vf(X) points in direction of steepest descent at X.
In directions orthogonal to Vf(X), f does not change!
IVf(X)|| measures steepness of ascent



Gradient Descent

Pick arbitrary starting point X%, learning rate
parameter n > 0.

Until convergence, repeat:
Compute gradlent offat x : that is, compute VF(X™).
Update X" = X0 - nU£(xD).

When do we stop? ' _
When difference between X and X" is negligible.
l.e., when [| X% - X(*D|| is small.



def gradient_descent(
gradient, x, learning_rate=.01,
threshold=.1e-4

while True:
Xx_new = x - learning_rate * gradient(x)
if np.linalg.norm(x - x_new) < threshold:
break
X = X_new
return X



Example

Goal: minimize f(x,y) = e + (x - 2)? + (y - 3)2
with gradient descent.

Initial location X% = (3,0)"; learning rate n = 0.05

Recall:

[2xe** Y 4 2(x - 2)

VF(x,y) =
foay) 2ye"2+y2 +2(y - 3)



Example: First Step

Compute gradient at X = (3,0)":

> 2-(1/2)- eM20* L 2((1/2) - 2) 1.71
Vf(1/2,0)=( (2 0) ol1/2)2402 +2(((§ 32) ) ( -6 )

Update:

% = 30 - T f(3O)
= (1/2,0)" - .05 - (-1.71,-6)"
= (1/2,0) - (-.08,-.3)"
- (.58,.3)"



Example: Second Step

Compute V£ at x("):

V(M) = VF(.58,.3)" = (-1.06, -4.48)"

Update:

)?(2) = )-2(1) - nﬁf()?(‘l))
= (.58,.3)" - .05 - (-1.06, -4.48)T
= (.63,.52)7

Repeat...
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Subgradient Descent



A Problem

To perform gradient descent, function must be
differentiable.

What if it isn't?
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Where is the function not differentiable? That is,
where is there not a well-defined tangent plane?
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Answer

Vf(x,y) is defined everywhere
except alongy = 0.

Ify>0, o
fl,y)=x2+lyl=x*+y. 06
Vi(x,y) = (2x,1)" 05

0.4

0.3

Ify<o, 0.2
fl,y)=x2+ 1yl =x*-y. o1

ﬁf(X, y) = (2X1 _1)T
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Answer

Piecewise gradient:

(2x, 1) ,ify>1, °

Vf(x,y) = {(2x,—1)T fy<n ‘t

Not defined along y = 0.
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Problem

Gradient descent will almost work on
fx,y) = x> +yl.

What if it reaches a point where y = 0.

Which direction should it go?



Intuition




Subgradient

A subgradient of f at X(? is a vector § such that:
f(x)+6-9
lies below f for any choice of 5.

There are possibly (infinitely) many subgradients.



f(x,y) = x>+ |y

A subgradient:
(2x, 1)

g(xr y) = (2X1 -1 )T
(2x,0)"

ity >1,
’ify<1r
,ify=0.

Example
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Find another subgradient of the function f(x,y) =

0.7
0.6
0.5
0.4
0.3
0.2
0.1
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Subgradient Descent

Idea: use subgradient in place of gradient in
gradient descent.

Subgradient is not unique; choose an arbitrary
one.



Subgradient Descent

Pick arbitrary starting point X, learning rate
parameter n > 0.

Until convergence, repeat: |
Compute a subgradient of f at X",
Update x(*" = X0 - nU£(X").

When do we stop? . '
When difference between X and X" is negligible.
l.e., when || X% - X(*D| is small.



Example
Subgradient descent on f(x,y) = x> + |y|
Starting point: (1/2,1/2)"

Learning rate: n = 0.1.
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Problem
Does not converge! Why?

Fix: decrease learning rate with each iteration.

Theory: choose n = O(1 /ﬁ), where i is iteration #.
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(Sub)gradient Descent for ERM



ERM for the Perceptron

Goal: minimize the empirical expected
perceptron loss (risk):

sign(H(X)) = sign(y)
Liron(H(X), ¥) = (7<)|, sign(H(X)) # sign(y)



Optimization

The perceptron risk is:
n
z Ltron(H(X

i=1
1i 0, sign(H(X)) = sign(y)
n |H(X)|, sign(H(X)) # sign(y)

3|—\

tron

i=1

To optimize, solve VRtron( w) = 07



Optimization

The gradient of the risk would be:

-) 1 -)
tron E ’Z Ltron (%),

<¢

n
_12 VL (H(X),y
n’ tron

However, the perceptron loss is not
differentiable.



Idea

Instead of solving ﬁRtron(vT/) = 0, use subgradient
descent.

We need to compute a subgradient of the
perceptron loss.



Subgradient of Perceptron Loss

0, sign(H(X)) = sign(y)
|X-w|, sign(H(X)) # sign(y)
If prediction is correct, VL, =0.

Ltron(H()-er VT/) y)

tron

If prediction is i ncorrect with X - w > 0,
then |X-w| =
= _ d /> _3
vLtron B d_(X y) =X

§¢ ><¢

If prediction is mcorrect with X - W < 0,
then |X-w| = I
UL, = %(-)?-W-y)=-7<



Subgradient of Perceptron Loss

Gradient is not defined
when H(X; w) = 0.

Can choose any
subgradient.

0 works.

Lion (B(E),1)

Vv

§L

g



Subgradient

A subgradient of the perceptron loss:

0, ifsign(w-X)=sign(y)orx-w-=0,
g(w,x,y)=1{x, ifsign(w-X) = sign(y)and X -w > 0,
-X, if sign(w - X) # sign(y) and X - w < 0.

Subgradient of the risk



Training a Perceptron

A perceptron can be training with subgradient
descent, using g, as the subgradient.

If the data are linearly separable®, will obtain
perfect accuracy on training data.

3and the learning rate is appropriately chosen



Gradient Descent for ERM

Suppose L is a differentiable loss function (e.g.,
square loss).

Then the gradient of the risk, R(W), is:

TR(7) 1< - 0y
R(w) HZVH(WX Vi)



Subgradient Descent for ERM

If L is not differentiable, we may still be able to
use subgradient descent if a subgradient exists.

If g(w, X, y) is a subgradient of L, then a
subgradient of the risk, R, is:



What'’s left?

Does (sub)gradient descent always work? No.
When is it guaranteed to work?

Computing the full gradient can be costly.
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Perceptron Demo: MNIST



Demo: MNIST

MNIST is a classic machine learning data set.
Many images of handwritten digits, 0-9.
Multiclass classification problem.

But we can make it binary: 3 vs. 7.



Example MNIST Digit

Grayscale

28 x 28 pixels




MNIST Feature Vectors
28 x 28 =784 pixels
Each image is a vector in R’8

Each feature is intensity of single pixel
black - 0, white — 255

A very simple representation.



Demo: MNIST

Use only images of 3s and 7s.
132 training images.
680 testing images.

Some minor tuning.
Added random noise for robustness.
Picked classification threshold automatically.






Percepton Learning
Linear prediction function parameterized by w.

In this case, we can “reshape” w to be same size
as input image.



Weight Vector

Recall that the prediction is a weighted vote:

H(X) = sign(wy + W, X, + W,y X, + ... Wog, Xog,)

Positive — 7, Negative — 3

w; is the weight of pixel i
positive: if this pixel is bright, | think thisisa 7
negative: if this pixel is bright, | think this is a 3
magnitude: confidence in prediction



Perceptron Training




Perceptron Training




Perceptron Training




Perceptron Training




Perceptron Training
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Perceptron Training
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Perceptron Weight Vector




Perceptron Results

Test accuracy: 97.3%



Square Loss for Classification
What if we use square loss for classification?

We can, but will it work well?



Results: Least Squares

Test Accuracy: 96.7% (marginally worse)

I think that this is a 3. I think that thisis a 7. I think that thisis a 7.




Results: Least Squares

Misclassifications are telling.

I think that thisis a 7. I think that thisis a 7. I think that thisis a 7.

81 E




Least Squares Weight Vector

Can visualize weight of each pixel as an image.

Positive (7)
0] 5 10 15 20 25
oI — L L ) !

10 A
15 A

20 A |

h : . l
Negative (3)




Least Squares Weight Vector

| predict that this is a 3! | predict that this isa 7!

=1 K




