
Lecture 4 | Part 1

Linear Classification

Classification

▶ We’ve been considering regression. What about
classification?

Empirical Risk Minimization

▶ Step 1: choose a hypothesis class
▶ Let’s assume we’ve chosen linear predictors

▶ Step 2: choose a loss function

▶ Step 3: minimize expected loss (empirical risk)

Exercise

Can we use the square loss for classification?

(𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)
2

Square Loss for Classification

▶ Yes! We can use the square loss, but it may not
be the best choice.

▶ E.g., suppose 𝐻(⃗𝑥(𝑖)) = 11 and 𝑦𝑖 = 1.
▶ Square loss: 100. Large!

▶ E.g., suppose 𝐻(⃗𝑥(𝑖)) = −9 and 𝑦𝑖 = 1.
▶ Square loss:

Main Idea

While the square loss can be used for classifica-
tion, it may not be the best choice because it pe-
nalizes predictions that are “very correct”.

It is designed for regression.

Least Squares Classifier

▶ Least squares classification is performed exactly
the same as least squares regression.
▶ I.e., solve the normal equations: �⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦

▶ Except the prediction is thresholded:

𝐻(⃗𝑥) = sign (Aug (⃗𝑥) ⋅ �⃗�∗)

Least Squares and Outliers

1

1Bishop, Pattern Recognition and Machine Learning

Another Loss Function

▶ What about the 0-1 loss?
▶ Loss = 0 if prediction is correct.
▶ Loss = 1 if prediction is incorrect.

▶ More formally:

𝐿0-1(𝐻(⃗𝑥
(𝑖)), 𝑦𝑖) = {

0 if sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻(⃗𝑥(𝑖))) ≠ 𝑦𝑖

Expected 0-1 Loss

▶ The expected 0-1 loss (empirical risk) has a nice
interpretation:

𝑅0-1(𝐻) =
1
𝑛

𝑛

∑
𝑖=1
{
0 if sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻(⃗𝑥(𝑖))) ≠ 𝑦𝑖

Exercise

What is it?

Answer

▶ The empirical risk with respect to the 0-1 loss is
(1 - the accuracy) of the classifier.

𝑅0-1(𝐻) =
1
𝑛

𝑛

∑
𝑖=1
{
0 if sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻(⃗𝑥(𝑖))) ≠ 𝑦𝑖

=
of incorrect predictions

𝑛

ERM for the 0-1 Loss

▶ Assume the 0-1 loss, linear prediction functions.

▶ Next step: find linear 𝐻 minimizing the empirical
risk.

▶ That is: find 𝐻 which maximizes the accuracy on
the training set.

Problem

▶ The 0-1 loss is not differentiable.

▶ Can’t even use gradient descent...

Why?
▶ The 0-1 risk surface is flat almost everywhere.

Computationally Difficult

▶ It is not feasible to minimize 0-1 risk in general.

▶ More formally: NP-Hard to optimize expected 0-1
loss in general.2

2It is efficiently doable if the classes are linearly separable by finding
convex hulls of each class. If non-separable, it is difficult.

Main Idea

It is computationally difficult (NP-Hard) to maxi-
mize the accuracy of a linear classifier.

Surrogate Loss

▶ Instead of the 0-1 loss, we use a surrogate loss.

▶ That is, a loss that is similar in spirit, but has
better mathematical properties.

The Perceptron Loss

▶ The perceptron loss is designed for binary
classification.
▶ Loss = 0 if prediction is correct.
▶ Loss > 0 if prediction incorrect.
▶ Loss increases with distance from boundary.

▶ More formally:

𝐿tron(𝐻(⃗𝑥), 𝑦) = {
0, sign(𝐻(⃗𝑥)) = sign(𝑦)
|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ sign(𝑦)

Perceptron Loss

𝐿tron(𝐻(⃗𝑥; �⃗�), 𝑦) = {
0, sign(𝐻(⃗𝑥)) = sign(𝑦)
|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ sign(𝑦)

ERM for the Perceptron

▶ Goal: minimize the empirical expected
perceptron loss (risk):

𝐿tron(𝐻(⃗𝑥), 𝑦) = {
0, sign(𝐻(⃗𝑥)) = sign(𝑦)
|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ sign(𝑦)

Optimization

▶ The perceptron risk is:

𝑅tron(�⃗�) =
1
𝑛

𝑛

∑
𝑖=1
𝐿tron(𝐻(⃗𝑥), 𝑦)

= 1
𝑛

𝑛

∑
𝑖=1
{
0, sign(𝐻(⃗𝑥)) = sign(𝑦)
|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ sign(𝑦)

Exercise

Suppose the training data are linearly separable.
What is the minimum possible value of 𝑅tron?

Optimization
▶ To optimize, solve ∇⃗𝑅tron(�⃗�) = 0?

▶ The gradient of the risk would be:

∇⃗𝑅tron(�⃗�) = ∇⃗
1
𝑛

𝑛

∑
𝑖=1
𝐿tron(𝐻(⃗𝑥), 𝑦)

= 1
𝑛

𝑛

∑
𝑖=1
∇⃗𝐿tron(𝐻(⃗𝑥), 𝑦)

▶ However, the perceptron loss is not
differentiable.

Problem

▶ The risk is not differentiable.

▶ However:
▶ it is not flat!
▶ its derivative exists almost everywhere.

▶ We can train iteratively using subgradient
descent (as we’ll see).

Some History

▶ Perceptrons were one of the first “machine
learning” models.

▶ The basis of modern neural networks.

Rosenblatt’s Perceptron

Lecture 4 | Part 2

Gradient Descent

Iterative Optimization

▶ To minimize a function 𝑓(⃗𝑥), we may try to
compute ∇⃗𝑓(⃗𝑥); set to 0; solve.

▶ Often, there is no closed-form solution.

▶ How do we minimize 𝑓?

Example
▶ Consider 𝑓(𝑥, 𝑦) = 𝑒𝑥2+𝑦2 + (𝑥 − 2)2 + (𝑦 − 3)2.

x

0.20.0 0.2 0.4 0.6 0.8 1.0

y

0.25
0.00

0.25
0.50

0.75
1.00

1.25

10
11
12
13
14
15
16
17

Example
▶ Try solving ∇⃗𝑓(𝑥, 𝑦) = 0.

▶ The gradient is:

∇⃗𝑓(𝑥, 𝑦) = (2𝑥𝑒
𝑥2+𝑦2 + 2(𝑥 − 2)

2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3)
)

▶ Can we solve the system?

2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2) = 0

2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3) = 0

Example
▶ Try solving ∇⃗𝑓(𝑥, 𝑦) = 0.

▶ The gradient is:

∇⃗𝑓(𝑥, 𝑦) = (2𝑥𝑒
𝑥2+𝑦2 + 2(𝑥 − 2)

2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3)
)

▶ Can we solve the system? Not in closed form.

2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2) = 0

2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3) = 0

Idea

▶ Apply an iterative approach.

▶ Start at an arbitrary location.

▶ “Walk downhill”, towards
minimum.

x

0.20.0 0.2 0.4 0.6 0.8 1.0

y

0.25
0.00

0.25
0.50

0.75
1.00

1.25

10
11
12
13
14
15
16
17

Which way is down?

▶ Consider a differentiable
function 𝑓(𝑥, 𝑦).

▶ We are standing at 𝑃 = (𝑥0, 𝑦0).

▶ In a small region around 𝑃, 𝑓
looks like a plane.

Which way is down?

▶ Linear approximation:

𝑓(𝑥0 + 𝛿𝑥, 𝑦0 + 𝛿𝑦) ≈ 𝑓(𝑥0, 𝑦0) + +

Which way is down?

▶ Define �⃗� = (𝛿𝑥, 𝛿𝑦)
𝑇

▶ Define the gradient: ∇⃗𝑓(𝑥, 𝑦) = (𝜕𝑓𝜕𝑥(𝑥, 𝑦),
𝜕𝑓
𝜕𝑦(𝑥, 𝑦))

𝑇

▶ Then the linear approximation becomes:

𝑓(𝑥0 + 𝛿𝑥, 𝑦0 + 𝛿𝑦) ≈ 𝑓(𝑥0, 𝑦0) + �⃗� ⋅ ∇⃗𝑓(𝑥0, 𝑦0)

Which way is up?

𝑓(𝑥0 + 𝛿𝑥, 𝑦0 + 𝛿𝑦) = 𝑓(𝑥0, 𝑦0) + �⃗� ⋅ ∇⃗𝑓(𝑥0, 𝑦0)

▶ Suppose 𝛿 is a unit vector (a direction).

▶ Which direction results in the greatest increase?

▶ Recall �⃗� ⋅ ∇⃗𝑓(𝑥0, 𝑦0) = ‖�⃗�‖‖∇⃗𝑓(𝑥0, 𝑦0)‖ cos 𝜃

▶ Answer: choosing 𝛿 in the direction of gradient.

Which way is down?

▶ ∇⃗𝑓(𝑥0, 𝑦0) points in direction
of steepest ascent at (𝑥0, 𝑦0).

▶ −∇⃗𝑓(𝑥0, 𝑦0) points in direction
of steepest descent at (𝑥0, 𝑦0).

The Gradient

▶ Let 𝑓 ∶ ℝ𝑑 → ℝ be differentiable. The gradient of
𝑓 at ⃗𝑥 is defined:

∇⃗𝑓(⃗𝑥) = (
𝜕𝑓
𝜕𝑥1

(⃗𝑥),
𝜕𝑓
𝜕𝑥2

(⃗𝑥), … ,
𝜕𝑓
𝜕𝑥𝑑

(⃗𝑥))
𝑇

▶ Note: ∇⃗𝑓(⃗𝑥) is a function mapping ℝ𝑑 → ℝ𝑑.

Gradient Properties

▶ The gradient is used in the linear approximation
of 𝑓:

𝑓(𝑥0 + 𝛿𝑥, 𝑦0 + 𝛿𝑦) ≈ 𝑓(𝑥0, 𝑦0) + �⃗� ⋅ ∇⃗𝑓(𝑥0, 𝑦0)

▶ Important properties:
▶ ∇⃗𝑓(⃗𝑥) points in direction of steepest ascent at ⃗𝑥.
▶ −∇⃗𝑓(⃗𝑥) points in direction of steepest descent at ⃗𝑥.
▶ In directions orthogonal to ∇⃗𝑓(⃗𝑥), 𝑓 does not change!
▶ ‖∇⃗𝑓(⃗𝑥)‖ measures steepness of ascent

Gradient Descent

▶ Pick arbitrary starting point ⃗𝑥(0), learning rate
parameter 𝜂 > 0.

▶ Until convergence, repeat:
▶ Compute gradient of 𝑓 at ⃗𝑥(𝑖); that is, compute ∇⃗𝑓(⃗𝑥(𝑖)).
▶ Update ⃗𝑥(𝑖+1) = ⃗𝑥(𝑖) − 𝜂∇⃗𝑓(⃗𝑥(𝑖)).

▶ When do we stop?
▶ When difference between ⃗𝑥(𝑖) and ⃗𝑥(𝑖+1) is negligible.
▶ I.e., when ‖ ⃗𝑥(𝑖) − ⃗𝑥(𝑖+1)‖ is small.

def gradient_descent(
gradient, x, learning_rate=.01,
threshold=.1e-4

):
while True:

x_new = x - learning_rate * gradient(x)
if np.linalg.norm(x - x_new) < threshold:

break
x = x_new

return x

Example

▶ Goal: minimize 𝑓(𝑥, 𝑦) = 𝑒𝑥2+𝑦2 + (𝑥 − 2)2 + (𝑦 − 3)2
with gradient descent.

▶ Initial location ⃗𝑥(0) = (12 , 0)
𝑇; learning rate 𝜂 = 0.05

▶ Recall:

∇⃗𝑓(𝑥, 𝑦) = (2𝑥𝑒
𝑥2+𝑦2 + 2(𝑥 − 2)

2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3)
)

Example: First Step

▶ Compute gradient at ⃗𝑥(0) = (12 , 0)
𝑇:

∇⃗𝑓(1/2, 0) = (2 ⋅ (1/2) ⋅ 𝑒
(1/2)2+02 + 2((1/2) − 2)

2 ⋅ 0 ⋅ 𝑒(1/2)2+02 + 2(0 − 3)) ≈ (−1.71−6)

▶ Update:

⃗𝑥(1) = ⃗𝑥(0) − 𝜂∇⃗𝑓(⃗𝑥(0))
= (1/2, 0)𝑇 − .05 ⋅ (−1.71, −6)𝑇

= (1/2, 0)𝑇 − (−.08, −.3)𝑇

= (.58, .3)𝑇

Example: Second Step

▶ Compute ∇⃗𝑓 at ⃗𝑥(1):

∇⃗𝑓(⃗𝑥(1)) = ∇⃗𝑓(.58, .3)𝑇 ≈ (−1.06, −4.48)𝑇

▶ Update:

⃗𝑥(2) = ⃗𝑥(1) − 𝜂∇⃗𝑓(⃗𝑥(1))
= (.58, .3)𝑇 − .05 ⋅ (−1.06, −4.48)𝑇

= (.63, .52)𝑇

▶ Repeat...

0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lecture 4 | Part 3

Subgradient Descent

A Problem

▶ To perform gradient descent, function must be
differentiable.

▶ What if it isn’t?

Example
▶ 𝑓(𝑥, 𝑦) = 𝑥2 + |𝑦|

x

0.40.2
0.0

0.2
0.4y

0.4 0.2
0.0

0.2
0.4

0.1
0.2
0.3
0.4
0.5
0.6
0.7

x

0.4
0.2
0.0
0.2
0.4

y
0.4 0.2 0.0 0.2 0.4

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Exercise

Where is the function not differentiable? That is,
where is there not a well-defined tangent plane?

x

0.4
0.2
0.0
0.2
0.4

y
0.4 0.2 0.0 0.2 0.4

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Answer

▶ ∇⃗𝑓(𝑥, 𝑦) is defined everywhere
except along 𝑦 = 0.

▶ If 𝑦 > 0,
𝑓(𝑥, 𝑦) = 𝑥2 + |𝑦| = 𝑥2 + 𝑦.
▶ ∇⃗𝑓(𝑥, 𝑦) = (2𝑥, 1)𝑇

▶ If 𝑦 < 0,
𝑓(𝑥, 𝑦) = 𝑥2 + |𝑦| = 𝑥2 − 𝑦.
▶ ∇⃗𝑓(𝑥, 𝑦) = (2𝑥, −1)𝑇

x

0.4
0.2
0.0
0.2
0.4

y
0.4 0.2 0.0 0.2 0.4

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Answer

▶ Piecewise gradient:

∇⃗𝑓(𝑥, 𝑦) = {
(2𝑥, 1)𝑇 , if 𝑦 > 1,
(2𝑥, −1)𝑇 , if 𝑦 < 1.

▶ Not defined along 𝑦 = 0. x

0.4
0.2
0.0
0.2
0.4

y
0.4 0.2 0.0 0.2 0.4

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Problem

▶ Gradient descent will almost work on
𝑓(𝑥, 𝑦) = 𝑥2 + |𝑦|.

▶ What if it reaches a point where 𝑦 = 0.

▶ Which direction should it go?

Intuition

Subgradient

▶ A subgradient of 𝑓 at ⃗𝑥(0) is a vector �⃗� such that:

𝑓(⃗𝑥(0)) + �⃗� ⋅ �⃗�

lies below 𝑓 for any choice of �⃗�.

▶ There are possibly (infinitely) many subgradients.

Example

▶ 𝑓(𝑥, 𝑦) = 𝑥2 + |𝑦|

▶ A subgradient:

�⃗�(𝑥, 𝑦) = {
(2𝑥, 1)𝑇 , if 𝑦 > 1,
(2𝑥, −1)𝑇 , if 𝑦 < 1,
(2𝑥, 0)𝑇 , if 𝑦 = 0. x

0.4
0.2
0.0
0.2
0.4

y
0.4 0.2 0.0 0.2 0.4

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Exercise

Find another subgradient of the function 𝑓(𝑥, 𝑦) =
𝑥2 + |𝑦|.

x

0.4
0.2
0.0
0.2
0.4

y
0.4 0.2 0.0 0.2 0.4

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Subgradient Descent

▶ Idea: use subgradient in place of gradient in
gradient descent.

▶ Subgradient is not unique; choose an arbitrary
one.

Subgradient Descent

▶ Pick arbitrary starting point ⃗𝑥(0), learning rate
parameter 𝜂 > 0.

▶ Until convergence, repeat:
▶ Compute a subgradient of 𝑓 at ⃗𝑥(𝑖).
▶ Update ⃗𝑥(𝑖+1) = ⃗𝑥(𝑖) − 𝜂∇⃗𝑓(⃗𝑥(𝑖)).

▶ When do we stop?
▶ When difference between ⃗𝑥(𝑖) and ⃗𝑥(𝑖+1) is negligible.
▶ I.e., when ‖ ⃗𝑥(𝑖) − ⃗𝑥(𝑖+1)‖ is small.

Example

▶ Subgradient descent on 𝑓(𝑥, 𝑦) = 𝑥2 + |𝑦|

▶ Starting point: (1/2, 1/2)𝑇

▶ Learning rate: 𝜂 = 0.1.

0.4 0.2 0.0 0.2 0.4
x

0.4

0.2

0.0

0.2

0.4

y

Problem

▶ Does not converge! Why?

▶ Fix: decrease learning rate with each iteration.

▶ Theory: choose 𝜂 = 𝑂(1/√𝑖), where 𝑖 is iteration #.

0.4 0.2 0.0 0.2 0.4
x

0.4

0.2

0.0

0.2

0.4

y

Lecture 4 | Part 4

(Sub)gradient Descent for ERM

ERM for the Perceptron

▶ Goal: minimize the empirical expected
perceptron loss (risk):

𝐿tron(𝐻(⃗𝑥), 𝑦) = {
0, sign(𝐻(⃗𝑥)) = sign(𝑦)
|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ sign(𝑦)

Optimization

▶ The perceptron risk is:

𝑅tron(�⃗�) =
1
𝑛

𝑛

∑
𝑖=1
𝐿tron(𝐻(⃗𝑥), 𝑦)

= 1
𝑛

𝑛

∑
𝑖=1
{
0, sign(𝐻(⃗𝑥)) = sign(𝑦)
|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ sign(𝑦)

▶ To optimize, solve ∇⃗𝑅tron(�⃗�) = 0?

Optimization

▶ The gradient of the risk would be:

∇⃗𝑅tron(�⃗�) = ∇⃗
1
𝑛

𝑛

∑
𝑖=1
𝐿tron(𝐻(⃗𝑥), 𝑦)

= 1
𝑛

𝑛

∑
𝑖=1
∇⃗𝐿tron(𝐻(⃗𝑥), 𝑦)

▶ However, the perceptron loss is not
differentiable.

Idea

▶ Instead of solving ∇⃗𝑅tron(�⃗�) = 0, use subgradient
descent.

▶ We need to compute a subgradient of the
perceptron loss.

Subgradient of Perceptron Loss

𝐿tron(𝐻(⃗𝑥; �⃗�), 𝑦) = {
0, sign(𝐻(⃗𝑥)) = sign(𝑦)
| ⃗𝑥 ⋅ �⃗�|, sign(𝐻(⃗𝑥)) ≠ sign(𝑦)

▶ If prediction is correct, ∇⃗𝐿tron = 0.

▶ If prediction is incorrect with ⃗𝑥 ⋅ �⃗� > 0,
▶ then | ⃗𝑥 ⋅ �⃗�| = ⃗𝑥 ⋅ �⃗�.
▶ ∇⃗𝐿tron =

𝑑
𝑑�⃗�
(⃗𝑥 ⋅ �⃗� − 𝑦) = ⃗𝑥

▶ If prediction is incorrect with ⃗𝑥 ⋅ �⃗� < 0,
▶ then | ⃗𝑥 ⋅ �⃗�| = − ⃗𝑥 ⋅ �⃗�.
▶ ∇⃗𝐿tron =

𝑑
𝑑�⃗�
(− ⃗𝑥 ⋅ �⃗� − 𝑦) = − ⃗𝑥

Subgradient of Perceptron Loss

▶ Gradient is not defined
when 𝐻(⃗𝑥; �⃗�) = 0.

▶ Can choose any
subgradient.

▶ 0⃗ works.

Subgradient

▶ A subgradient of the perceptron loss:

�⃗�(�⃗�, ⃗𝑥, 𝑦) = {
0, if sign(�⃗� ⋅ ⃗𝑥) = sign(𝑦) or ⃗𝑥 ⋅ �⃗� = 0,
⃗𝑥, if sign(�⃗� ⋅ ⃗𝑥) ≠ sign(𝑦) and ⃗𝑥 ⋅ �⃗� > 0,
− ⃗𝑥, if sign(�⃗� ⋅ ⃗𝑥) ≠ sign(𝑦) and ⃗𝑥 ⋅ �⃗� < 0.

▶ Subgradient of the risk

�⃗�𝑅(�⃗�) =
1
𝑛

𝑛

∑
𝑖=1
𝑔(�⃗�, ⃗𝑥(𝑖), 𝑦𝑖)

Training a Perceptron

▶ A perceptron can be training with subgradient
descent, using �⃗�𝑅 as the subgradient.

▶ If the data are linearly separable3, will obtain
perfect accuracy on training data.

3and the learning rate is appropriately chosen

Gradient Descent for ERM

▶ Suppose 𝐿 is a differentiable loss function (e.g.,
square loss).

▶ Then the gradient of the risk, 𝑅(�⃗�), is:

∇⃗𝑅(�⃗�) = 1
𝑛

𝑛

∑
𝑖=1
∇⃗𝐿(𝐻(�⃗�, ⃗𝑥(𝑖)), 𝑦𝑖)

Subgradient Descent for ERM

▶ If 𝐿 is not differentiable, we may still be able to
use subgradient descent if a subgradient exists.

▶ If �⃗�(�⃗�, ⃗𝑥, 𝑦) is a subgradient of 𝐿, then a
subgradient of the risk, 𝑅, is:

1
𝑛

𝑛

∑
𝑖=1
𝑔(�⃗�, ⃗𝑥(𝑖), 𝑦𝑖)

What’s left?

▶ Does (sub)gradient descent always work? No.
▶ When is it guaranteed to work?

▶ Computing the full gradient can be costly.

Lecture 4 | Part 5

Perceptron Demo: MNIST

Demo: MNIST

▶ MNIST is a classic machine learning data set.

▶ Many images of handwritten digits, 0-9.

▶ Multiclass classification problem.

▶ But we can make it binary: 3 vs. 7.

Example MNIST Digit

▶ Grayscale

▶ 28 x 28 pixels

MNIST Feature Vectors

▶ 28 × 28 = 784 pixels

▶ Each image is a vector in ℝ784

▶ Each feature is intensity of single pixel
▶ black→ 0, white→ 255

▶ A very simple representation.

Demo: MNIST

▶ Use only images of 3s and 7s.

▶ 4132 training images.

▶ 680 testing images.

▶ Some minor tuning.
▶ Added random noise for robustness.
▶ Picked classification threshold automatically.

Percepton Learning

▶ Linear prediction function parameterized by �⃗�.

▶ In this case, we can “reshape” �⃗� to be same size
as input image.

Weight Vector

▶ Recall that the prediction is a weighted vote:

𝐻(⃗𝑥) = sign(𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + …𝑤784𝑥784)

▶ Positive→ 7, Negative→ 3

▶ 𝑤𝑖 is the weight of pixel 𝑖
▶ positive: if this pixel is bright, I think this is a 7
▶ negative: if this pixel is bright, I think this is a 3
▶ magnitude: confidence in prediction

Perceptron Training

Perceptron Training

Perceptron Training

Perceptron Training

Perceptron Training

Perceptron Training

Perceptron Weight Vector

Perceptron Results

▶ Test accuracy: 97.3%

Square Loss for Classification

▶ What if we use square loss for classification?

▶ We can, but will it work well?

Results: Least Squares

▶ Test Accuracy: 96.7% (marginally worse)

Results: Least Squares

▶ Misclassifications are telling.

Least Squares Weight Vector

▶ Can visualize weight of each pixel as an image.

Least Squares Weight Vector

