$$
\text { DSC } 140 A
$$

## Classification

We've been considering regression. What about classification?

## Empirical Risk Minimization

- Step 1: choose a hypothesis class
- Let's assume we've chosen linear predictors
- Step 2: choose a loss function
- Step 3: minimize expected loss (empirical risk)


## Exercise

Can we use the square loss for classification?

$$
\left(H\left(\vec{x}^{(i)}\right)-y_{i}\right)^{2}
$$

## Square Loss for Classification

- Yes! We can use the square loss, but it may not be the best choice.
E.g., suppose $H\left(\vec{x}^{(i)}\right)=11$ and $y_{i}=1$.
- Square loss: 100. Large!
- E.g., suppose $H\left(\vec{x}^{(i)}\right)=-9$ and $y_{i}=1$.
- Square loss:


## Main Idea

While the square loss can be used for classification, it may not be the best choice because it penalizes predictions that are "very correct".

It is designed for regression.

## Least Squares Classifier

- Least squares classification is performed exactly the same as least squares regression.
- I.e., solve the normal equations: $\vec{w}^{*}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}$
- Except the prediction is thresholded:

$$
H(\vec{x})=\operatorname{sign}\left(\operatorname{Aug}(\vec{x}) \cdot \vec{w}^{*}\right)
$$

## Least Squares and Outliers




Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive to outliers, unlike logistic regression.

## Another Loss Function

- What about the 0-1 loss?

Loss $=0$ if prediction is correct.
L Loss $=1$ if prediction is incorrect.
> More formally:

$$
L_{0-1}\left(H\left(\vec{x}^{(i)}\right), y_{i}\right)= \begin{cases}0 & \text { if } \operatorname{sign}\left(H\left(\vec{x}^{(i)}\right)\right)=y_{i} \\ 1 & \text { if } \operatorname{sign}\left(H\left(\vec{x}^{(i)}\right)\right) \neq y_{i}\end{cases}
$$

## Expected 0-1 Loss

- The expected 0-1 loss (empirical risk) has a nice interpretation:

$$
R_{0-1}(H)=\frac{1}{n} \sum_{i=1}^{n} \begin{cases}0 & \text { if } \operatorname{sign}\left(H\left(\vec{x}^{(i)}\right)\right)=y_{i} \\ 1 & \text { if } \operatorname{sign}\left(H\left(\vec{x}^{(i)}\right)\right) \neq y_{i}\end{cases}
$$

## Exercise

What is it?

## Answer

- The empirical risk with respect to the 0-1 loss is (1- the accuracy) of the classifier.

$$
\begin{aligned}
R_{0-1}(H) & =\frac{1}{n} \sum_{i=1}^{n} \begin{cases}0 & \text { if } \operatorname{sign}\left(H\left(\vec{x}^{(i)}\right)\right)=y_{i} \\
1 & \text { if } \operatorname{sign}\left(H\left(\vec{x}^{(i)}\right)\right) \neq y_{i}\end{cases} \\
& =\frac{\# \text { of incorrect predictions }}{n}
\end{aligned}
$$

## ERM for the 0-1 Loss

- Assume the 0-1 loss, linear prediction functions.
- Next step: find linear H minimizing the empirical risk.
- That is: find $H$ which maximizes the accuracy on the training set.


## Problem

- The 0-1 loss is not differentiable.
- Can't even use gradient descent...


## Why?

- The 0-1 risk surface is flat almost everywhere.



## Computationally Difficult

- It is not feasible to minimize 0-1 risk in general.
- More formally: NP-Hard to optimize expected 0-1 loss in general. ${ }^{2}$

[^0]
## Main Idea

It is computationally difficult (NP-Hard) to maximize the accuracy of a linear classifier.

## Surrogate Loss

- Instead of the 0-1 loss, we use a surrogate loss.
- That is, a loss that is similar in spirit, but has better mathematical properties.


## The Perceptron Loss

- The perceptron loss is designed for binary classification.

Loss $=0$ if prediction is correct.

- Loss > 0 if prediction incorrect.
- Loss increases with distance from boundary.
- More formally:

$$
L_{\text {tron }}(H(\vec{x}), y)= \begin{cases}0, & \operatorname{sign}(H(\vec{x}))=\operatorname{sign}(y) \\ |H(\vec{x})|, & \operatorname{sign}(H(\vec{x})) \neq \operatorname{sign}(y)\end{cases}
$$

Perceptron Loss

$$
\begin{gathered}
L_{\text {tron }}(H(\vec{x} ; \vec{w}), y)= \begin{cases}0, & \operatorname{sign}(H(\vec{x}))=\operatorname{sign}(y) \\
|H(\vec{x})|, & \operatorname{sign}(H(\vec{x})) \neq \operatorname{sign}(y)\end{cases} \\
\uparrow \mathcal{L}_{\text {trom }}(H(\vec{x}),-1) \\
\longleftrightarrow H(\vec{x} ; \vec{w})
\end{gathered}
$$

## ERM for the Perceptron

- Goal: minimize the empirical expected perceptron loss (risk):

$$
L_{\text {tron }}(H(\vec{x}), y)= \begin{cases}0, & \operatorname{sign}(H(\vec{x}))=\operatorname{sign}(y) \\ |H(\vec{x})|, & \operatorname{sign}(H(\vec{x})) \neq \operatorname{sign}(y)\end{cases}
$$

## Optimization

- The perceptron risk is:

$$
\begin{aligned}
R_{\text {tron }}(\vec{w}) & =\frac{1}{n} \sum_{i=1}^{n} L_{\text {tron }}(H(\vec{x}), y) \\
& =\frac{1}{n} \sum_{i=1}^{n} \begin{array}{ll}
0, & \operatorname{sign}(H(\vec{x}))=\operatorname{sign}(y) \\
|H(\vec{x})|, & \operatorname{sign}(H(\vec{x})) \neq \operatorname{sign}(y)
\end{array}
\end{aligned}
$$

## Exercise

Suppose the training data are linearly separable. What is the minimum possible value of $R_{\text {tron }}$ ?

## Optimization

- To optimize, solve $\vec{\nabla} R_{\text {tron }}(\vec{w})=0$ ?
- The gradient of the risk would be:

$$
\begin{aligned}
\vec{\nabla} R_{\text {tron }}(\vec{w}) & =\vec{\nabla} \frac{1}{n} \sum_{i=1}^{n} L_{\text {tron }}(H(\vec{x}), y) \\
& =\frac{1}{n} \sum_{i=1}^{n} \vec{\nabla} L_{\text {tron }}(H(\vec{x}), y)
\end{aligned}
$$

- However, the perceptron loss is not differentiable.


## Problem

- The risk is not differentiable.
- However:
- it is not flat!
- its derivative exists almost everywhere.
- We can train iteratively using subgradient descent (as we'll see).


## Some History

- Perceptrons were one of the first "machine learning" models.
- The basis of modern neural networks.


## Rosenblatt's Perceptron




$$
\text { DSC } 140 A
$$

## Iterative Optimization

- To minimize a function $f(\vec{x})$, we may try to compute $\vec{\nabla} f(\vec{x})$; set to 0 ; solve.
- Often, there is no closed-form solution.
- How do we minimize $f$ ?


## Example

Consider $f(x, y)=e^{x^{2}+y^{2}}+(x-2)^{2}+(y-3)^{2}$.


## Example

- Try solving $\vec{\nabla} f(x, y)=0$.
- The gradient is:

$$
\vec{\nabla} f(x, y)=\binom{2 x e^{x^{2}+y^{2}}+2(x-2)}{2 y e^{x^{2}+y^{2}}+2(y-3)}
$$

- Can we solve the system?

$$
\begin{aligned}
& 2 x e^{x^{2}+y^{2}}+2(x-2)=0 \\
& 2 y e^{x^{2}+y^{2}}+2(y-3)=0
\end{aligned}
$$

## Example

- Try solving $\vec{\nabla} f(x, y)=0$.
- The gradient is:

$$
\vec{\nabla} f(x, y)=\binom{2 x e^{x^{2}+y^{2}}+2(x-2)}{2 y e^{x^{2}+y^{2}}+2(y-3)}
$$

- Can we solve the system? Not in closed form.

$$
\begin{aligned}
& 2 x e^{x^{2}+y^{2}}+2(x-2)=0 \\
& 2 y e^{x^{2}+y^{2}}+2(y-3)=0
\end{aligned}
$$

## Idea

- Apply an iterative approach.
- Start at an arbitrary location.
- "Walk downhill", towards minimum.



## Which way is down?

- Consider a differentiable function $f(x, y)$.
- We are standing at $P=\left(x_{0}, y_{0}\right)$.
- In a small region around $P, f$ looks like a plane.



## Which way is down?



- Linear approximation:

$$
f\left(x_{0}+\delta_{x}, y_{0}+\delta_{y}\right) \approx f\left(x_{0}, y_{0}\right)+
$$

## Which way is down?

$\Rightarrow$ Define $\vec{\delta}=\left(\delta_{x}, \delta_{y}\right)^{\top}$

- Define the gradient: $\vec{\nabla} f(x, y)=\left(\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)\right)^{T}$
- Then the linear approximation becomes:

$$
f\left(x_{0}+\delta_{x}, y_{0}+\delta_{y}\right) \approx f\left(x_{0}, y_{0}\right)+\vec{\delta} \cdot \vec{\nabla} f\left(x_{0}, y_{0}\right)
$$

## Which way is up?

$$
f\left(x_{0}+\delta_{x}, y_{0}+\delta_{y}\right)=f\left(x_{0}, y_{0}\right)+\vec{\delta} \cdot \vec{\nabla} f\left(x_{0}, y_{0}\right)
$$

- Suppose $\delta$ is a unit vector (a direction).
- Which direction results in the greatest increase?
- Recall $\vec{\delta} \cdot \vec{\nabla} f\left(x_{0}, y_{0}\right)=\|\vec{\delta}\|\left\|\vec{\nabla} f\left(x_{0}, y_{0}\right)\right\| \cos \theta$

Answer: choosing $\delta$ in the direction of gradient.

## Which way is down?

- $\vec{\nabla} f\left(x_{0}, y_{0}\right)$ points in direction of steepest ascent at $\left(x_{0}, y_{0}\right)$.
- $-\vec{\nabla} f\left(x_{0}, y_{0}\right)$ points in direction of steepest descent at ( $x_{0}, y_{0}$ ).



## The Gradient

$\Rightarrow$ Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be differentiable. The gradient of $f$ at $\vec{x}$ is defined:

$$
\vec{\nabla} f(\vec{x})=\left(\frac{\partial f}{\partial x_{1}}(\vec{x}), \frac{\partial f}{\partial x_{2}}(\vec{x}), \ldots, \frac{\partial f}{\partial x_{d}}(\vec{x})\right)^{\top}
$$

- Note: $\vec{\nabla} f(\vec{x})$ is a function mapping $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$.


## Gradient Properties

- The gradient is used in the linear approximation of $f$ :

$$
f\left(x_{0}+\delta_{x}, y_{0}+\delta_{y}\right) \approx f\left(x_{0}, y_{0}\right)+\vec{\delta} \cdot \vec{\nabla} f\left(x_{0}, y_{0}\right)
$$

- Important properties:
- $\vec{\nabla} f(\vec{x})$ points in direction of steepest ascent at $\vec{x}$.
- $-\vec{\nabla} f(\vec{x})$ points in direction of steepest descent at $\vec{x}$.
- In directions orthogonal to $\vec{\nabla} f(\vec{x}), f$ does not change!
- \|\| $\vec{\nabla} f(\vec{x}) \|$ measures steepness of ascent


## Gradient Descent

- Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta>0$.
- Until convergence, repeat:
- Compute gradient of $f$ at $\vec{x}^{(i)}$; that is, compute $\vec{\nabla} f\left(\vec{x}^{(i)}\right)$.
$>$ Update $\vec{x}^{(i+1)}=\vec{x}^{(i)}-\eta \vec{\nabla} f\left(\vec{x}^{(i)}\right)$.
- When do we stop?
$\Rightarrow$ When difference between $\vec{x}^{(i)}$ and $\vec{x}^{(i+1)}$ is negligible.
$\Rightarrow$ I.e., when $\left\|\vec{x}^{(i)}-\vec{x}^{(i+1)}\right\|$ is small.

```
def gradient_descent(
    gradient, x, learning_rate=.01,
    threshold=.1e-4
):
```

```
while True:
```

while True:
x_new = x - learning_rate * gradient(x)
x_new = x - learning_rate * gradient(x)
if np.linalg.norm(x - x_new) < threshold:
if np.linalg.norm(x - x_new) < threshold:
break
break
x = x_new
x = x_new
return x

```
    return x
```


## Example

- Goal: minimize $f(x, y)=e^{x^{2}+y^{2}}+(x-2)^{2}+(y-3)^{2}$ with gradient descent.
- Initial location $\vec{x}^{(0)}=\left(\frac{1}{2}, 0\right)^{\top}$; learning rate $\eta=0.05$
- Recall:

$$
\vec{\nabla} f(x, y)=\binom{2 x e^{x^{2}+y^{2}}+2(x-2)}{2 y e^{x^{2}+y^{2}}+2(y-3)}
$$

## Example: First Step

Compute gradient at $\vec{x}^{(0)}=\left(\frac{1}{2}, 0\right)^{\top}$ :

$$
\vec{\nabla} f(1 / 2,0)=\binom{2 \cdot(1 / 2) \cdot e^{(1 / 2)^{2}+0^{2}}+2((1 / 2)-2)}{2 \cdot 0 \cdot e^{(1 / 2)^{2}+0^{2}}+2(0-3)} \approx\binom{-1.71}{-6}
$$

> Update:

$$
\begin{aligned}
\vec{x}^{(1)} & =\vec{x}^{(0)}-\eta \vec{\nabla} f\left(\vec{x}^{(0)}\right) \\
& =(1 / 2,0)^{T}-.05 \cdot(-1.71,-6)^{T} \\
& =(1 / 2,0)^{T}-(-.08,-.3)^{T} \\
& =(.58, .3)^{T}
\end{aligned}
$$

## Example: Second Step

Compute $\vec{\nabla} f$ at $\vec{x}^{(1)}$ :

$$
\vec{\nabla} f\left(\vec{x}^{(1)}\right)=\vec{\nabla} f(.58, .3)^{T} \approx(-1.06,-4.48)^{T}
$$

- Update:

$$
\begin{aligned}
\vec{x}^{(2)} & =\vec{x}^{(1)}-\eta \vec{\nabla} f\left(\vec{x}^{(1)}\right) \\
& =(.58, .3)^{T}-.05 \cdot(-1.06,-4.48)^{T} \\
& =(.63, .52)^{T}
\end{aligned}
$$

- Repeat...


$$
\text { DSC } 140 A
$$

## A Problem

To perform gradient descent, function must be differentiable.

What if it isn't?

## Example

$$
\stackrel{f}{ }(x, y)=x^{2}+|y|
$$




## Exercise

Where is the function not differentiable? That is, where is there not a well-defined tangent plane?


## Answer

- $\vec{\nabla} f(x, y)$ is defined everywhere except along $y=0$.
- If $y>0$,

$$
\begin{gathered}
f(x, y)=x^{2}+|y|=x^{2}+y . \\
\forall \vec{\nabla} f(x, y)=(2 x, 1)^{\top}
\end{gathered}
$$

- If $y<0$,

$$
\begin{gathered}
f(x, y)=x^{2}+|y|=x^{2}-y . \\
\forall \nabla f(x, y)=(2 x,-1)^{\top}
\end{gathered}
$$

## Answer

Piecewise gradient:

$$
\vec{\nabla} f(x, y)= \begin{cases}(2 x, 1)^{\top} & , \text { if } y>1, \\ (2 x,-1)^{\top} & , \text { if } y<1\end{cases}
$$

- Not defined along $y=0$.



## Problem

- Gradient descent will almost work on $f(x, y)=x^{2}+|y|$.
- What if it reaches a point where $y=0$.
- Which direction should it go?


## Intuition



## Subgradient

- A subgradient of $f$ at $\vec{x}^{(0)}$ is a vector $\vec{g}$ such that:

$$
f\left(\vec{x}^{(0)}\right)+\vec{\delta} \cdot \vec{g}
$$

lies below $f$ for any choice of $\vec{\delta}$.

- There are possibly (infinitely) many subgradients.


## Example

- $f(x, y)=x^{2}+|y|$

A subgradient:

$$
\vec{g}(x, y)= \begin{cases}(2 x, 1)^{\top} & , \text { if } y>1, \\ (2 x,-1)^{\top} & , \text { if } y<1, \\ (2 x, 0)^{\top} & , \text { if } y=0\end{cases}
$$



## Exercise

Find another subgradient of the function $f(x, y)=$ $x^{2}+|y|$.


## Subgradient Descent

- Idea: use subgradient in place of gradient in gradient descent.
- Subgradient is not unique; choose an arbitrary one.


## Subgradient Descent

- Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta>0$.
- Until convergence, repeat:
$\Rightarrow$ Compute a subgradient of $f$ at $\vec{x}^{(i)}$.
$>$ Update $\vec{x}^{(i+1)}=\vec{x}^{(i)}-\eta \vec{\nabla} f\left(\vec{x}^{(i)}\right)$.
- When do we stop?
$\Rightarrow$ When difference between $\vec{x}^{(i)}$ and $\vec{x}^{(i+1)}$ is negligible.
$\Rightarrow$ I.e., when $\left\|\vec{x}^{(i)}-\vec{x}^{(i+1)}\right\|$ is small.


## Example

- Subgradient descent on $f(x, y)=x^{2}+|y|$
- Starting point: $(1 / 2,1 / 2)^{T}$
- Learning rate: $\eta=0.1$.



## Problem

- Does not converge! Why?
- Fix: decrease learning rate with each iteration.
- Theory: choose $\eta=O(1 / \sqrt{i})$, where $i$ is iteration \#.


$$
\text { DSC } 140 A
$$

## ERM for the Perceptron

- Goal: minimize the empirical expected perceptron loss (risk):

$$
L_{\text {tron }}(H(\vec{x}), y)= \begin{cases}0, & \operatorname{sign}(H(\vec{x}))=\operatorname{sign}(y) \\ |H(\vec{x})|, & \operatorname{sign}(H(\vec{x})) \neq \operatorname{sign}(y)\end{cases}
$$

## Optimization

- The perceptron risk is:

$$
\begin{aligned}
R_{\text {tron }}(\vec{W}) & =\frac{1}{n} \sum_{i=1}^{n} L_{\text {tron }}(H(\vec{x}), y) \\
& =\frac{1}{n} \sum_{i=1}^{n} \begin{cases}0, & \operatorname{sign}(H(\vec{x}))=\operatorname{sign}(y) \\
|H(\vec{x})|, & \operatorname{sign}(H(\vec{x})) \neq \operatorname{sign}(y)\end{cases}
\end{aligned}
$$

- To optimize, solve $\vec{\nabla} R_{\text {tron }}(\vec{W})=0$ ?


## Optimization

- The gradient of the risk would be:

$$
\begin{aligned}
\vec{\nabla} R_{\text {tron }}(\vec{w}) & =\vec{\nabla} \frac{1}{n} \sum_{i=1}^{n} L_{\text {tron }}(H(\vec{x}), y) \\
& =\frac{1}{n} \sum_{i=1}^{n} \vec{\nabla} L_{\text {tron }}(H(\vec{x}), y)
\end{aligned}
$$

- However, the perceptron loss is not differentiable.


## Idea

- Instead of solving $\vec{\nabla} R_{\text {tron }}(\vec{w})=0$, use subgradient descent.
- We need to compute a subgradient of the perceptron loss.


## Subgradient of Perceptron Loss

$L_{\text {tron }}(H(\vec{x} ; \vec{w}), y)= \begin{cases}0, & \operatorname{sign}(H(\vec{x}))=\operatorname{sign}(y) \\ |\vec{x} \cdot \vec{w}|, & \operatorname{sign}(H(\vec{x})) \neq \operatorname{sign}(y)\end{cases}$

- If prediction is correct, $\vec{\nabla} L_{\text {tron }}=0$.
- If prediction is incorrect with $\vec{x} \cdot \vec{w}>0$, then $|\vec{x} \cdot \vec{w}|=\vec{x} \cdot \vec{w}$.
- $\vec{\nabla} L_{\text {tron }}=\frac{d}{d \vec{x}}(\vec{x} \cdot \vec{w}-y)=\vec{x}$
- If prediction is incorrect with $\vec{x} \cdot \vec{w}<0$,
then $|\vec{x} \cdot \vec{w}|=-\vec{x} \cdot \vec{w}$.
$-\vec{\nabla} L_{\text {tron }}=\frac{d}{d \vec{x}}(-\vec{x} \cdot \vec{w}-y)=-\vec{x}$


## Subgradient of Perceptron Loss

- Gradient is not defined when $H(\vec{x} ; \vec{w})=0$.
- Can choose any subgradient.
- $\overrightarrow{0}$ works.



## Subgradient

- A subgradient of the perceptron loss:

$$
\vec{g}(\vec{w}, \vec{x}, y)= \begin{cases}0, & \text { if } \operatorname{sign}(\vec{w} \cdot \vec{x})=\operatorname{sign}(y) \text { or } \vec{x} \cdot \vec{w}=0, \\ \vec{x}, & \text { if } \operatorname{sign}(\vec{w} \cdot \vec{x}) \neq \operatorname{sign}(y) \text { and } \vec{x} \cdot \vec{w}>0, \\ -\vec{x}, & \text { if } \operatorname{sign}(\vec{w} \cdot \vec{x}) \neq \operatorname{sign}(y) \text { and } \vec{x} \cdot \vec{w}<0 .\end{cases}
$$

- Subgradient of the risk

$$
\vec{g}_{R}(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} g\left(\vec{w}, \vec{x}^{(i)}, y_{i}\right)
$$

## Training a Perceptron

- A perceptron can be training with subgradient descent, using $\vec{g}_{R}$ as the subgradient.
- If the data are linearly separable ${ }^{3}$, will obtain perfect accuracy on training data.


## Gradient Descent for ERM

- Suppose $L$ is a differentiable loss function (e.g., square loss).
- Then the gradient of the risk, $R(\vec{w})$, is:

$$
\vec{\nabla} R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \vec{\nabla} L\left(H\left(\vec{w}, \vec{x}^{(i)}\right), y_{i}\right)
$$

## Subgradient Descent for ERM

- If $L$ is not differentiable, we may still be able to use subgradient descent if a subgradient exists.
- If $\vec{g}(\vec{w}, \vec{x}, y)$ is a subgradient of $L$, then a subgradient of the risk, $R$, is:

$$
\frac{1}{n} \sum_{i=1}^{n} g\left(\vec{w}, \vec{x}^{(i)}, y_{i}\right)
$$

## What's left?

- Does (sub)gradient descent always work? No. - When is it guaranteed to work?
- Computing the full gradient can be costly.

$$
\text { DSC } 140 A
$$

## Demo: MNIST

- MNIST is a classic machine learning data set.
- Many images of handwritten digits, 0-9.
- Multiclass classification problem.
- But we can make it binary: 3 vs. 7 .


## Example MNIST Digit



Grayscale<br>$28 \times 28$ pixels

## MNIST Feature Vectors

- $28 \times 28=784$ pixels
- Each image is a vector in $\mathbb{R}^{784}$
- Each feature is intensity of single pixel - black $\rightarrow 0$, white $\rightarrow 255$
- A very simple representation.


## Demo: MNIST

- Use only images of 3s and 7s.
- 4132 training images.
- 680 testing images.
- Some minor tuning.
- Added random noise for robustness.
- Picked classification threshold automatically.



## Percepton Learning

- Linear prediction function parameterized by $\vec{w}$.
- In this case, we can "reshape" $\overrightarrow{\text { w }}$ to be same size as input image.


## Weight Vector

- Recall that the prediction is a weighted vote:

$$
H(\vec{x})=\operatorname{sign}\left(w_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots w_{784} x_{784}\right)
$$

- Positive $\rightarrow 7$, Negative $\rightarrow 3$
$w_{i}$ is the weight of pixel $i$
- positive: if this pixel is bright, I think this is a 7
- negative: if this pixel is bright, I think this is a 3
- magnitude: confidence in prediction


## Perceptron Training



## Perceptron Weight Vector

I predict that this is a 3 !


I predict that this is a 7 !


I predict that this is a 3 !


## Perceptron Results

Test accuracy: 97.3\%

## Square Loss for Classification

- What if we use square loss for classification?
- We can, but will it work well?


## Results: Least Squares

Test Accuracy: $96.7 \%$ (marginally worse)


## Results: Least Squares

Misclassifications are telling.


## Least Squares Weight Vector

Can visualize weight of each pixel as an image.


## Least Squares Weight Vector

I predict that this is a 7 !


I predict that this is a 3 !


I predict that this is a 7 !



[^0]:    ${ }^{2}$ It is efficiently doable if the classes are linearly separable by finding convex hulls of each class. If non-separable, it is difficult.

