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Lecture 5  Part1

Stochastic Gradient Descent



Recall: (Sub)gradient descent

Goal: minimize function f(X).

lterative procedure that takes small steps in
direction of steepest descent.



Recall: Gradient Descent

Pick arbitrary starting point X%, learning rate
parameter n > 0.

Until convergence, repeat:
Compute gradient of f at X; that is, compute Vf(X®).
Update XD = X0 - pvf(x?).

When do we stop? . _
When difference between X and X" is negligible.
l.e., when [| X% - X(*D|| is small.



def gradient_descent(
gradient, x, learning_rate=.01,
threshold=.1e-4

while True:
Xx_new = x - learning_rate * gradient(x)
if np.linalg.norm(x - x_new) < threshold:
break
X = X_new
return X



Gradient Descent for Minimizing Risk

In ML, we often want to minimize a risk function:
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Observation

The gradient of the risk function is a sum of
gradients:
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One term for each point in training data.



Problem

In machine learning, the number of training
points n can be very large.

Computing the gradient can be expensive when
nis large.

Therefore, each step of gradient descent can be
expensive.



Idea

The (full) gradient of the risk uses all of the
training data:

It is an average of n gradients.

Idea: instead of using all n points, randomly
choose « n.



Stochastic Gradient

Choose a random subset (mini-batch) B of the
training data.

Compute a stochastic gradient:
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Stochastic Gradient
VR(W) = Y VL(H(XD; ), y;)
ieB
Good: if |B| < n, this is much faster to compute.

Bad: it is a (random) approximation of the full
gradient, noisy.



Stochastic Gradient Descent (SGD)
for ERM

Pick arbitrary starting pomt X, learning rate
parameter n > 0, batch size m < n.

Until convergence, repeat:
Randomly sample a batch B of m training data points.
Compute stochastic gradient of f at X(:

G = > VLHED; W), y.)
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Update x(*" = 30 - ng



Idea

In practice, a stochastic gradient often works
well enough.

It is better to take many noisy steps quickly than
few exact steps slowly.



Batch Size

Batch size m is a parameter of the algorithm.

The larger m, the more reliable the stochastic
gradient, but the more time it takes to compute.

Extreme case when m = 1 will still work.






Usefulness of SGD

SGD allows learning on massive data sets.

Useful even when exactly solutions available.
E.g., least squares regression / classification.
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Convexity



Question

When is gradient descent guaranteed to work?



Not here...




Convex Functions

Convex Non-convex



Convexity: Definition

f is convex if for every a, b the line segment
between

(a,f(a)) and (b, f(b))
does not go below the plot of f.
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Other Terms
If a function is not convex, it is non-convex.
Strictly convex: the line lies strictly above curve.

Concave: the line lines on or below curve.



Convexity: Formal Definition

A function f : R - R is convex if for every
choice of a,b €e Rand t € [0, 1]:

(1-1)f(a) + tf(b) 2 f((1 - t)a + tb).




Example

Is f(x) = | x| convex?



Another View: Second Derivatives

If Z—Z(x) > 0 for all x, then fis convex.

Example: f(x) = x* is convex.

Warning! Only works if f is twice differentiable!

e




Another View: Second Derivatives

“Best” straight line at x:
h1(z) = f,(xo) -z+b

“Best” parabola at x:
At x,, f looks likes h,(2) = 2f"(x,) - 22 + f'(xp)z + €
Possibilities: upward-facing, downward-facing.



Convexity and Parabolas

Convex if for every x,,, parabola is upward-facing.
That is, f"(x,) 2 0.

T b




Proving Convexity Using Properties

Suppose that f(x) and g(x) are convex. Then:

w, f(x) + w,g(x) is convex, provided w,,w, 20
Example: 3x? + | x| is convex

g(f(x)) is convex, provided g is non-decreasing.
Example: e is convex

max{f(x), g(x)} is convex

0, x<0

Example: { is convex

) -



Convexity and Gradient Descent

Convex functions are (relatively) easy to
optimize.

Theorem: if f(x) is convex and “not too steep”’
then (stochastic) (sub)gradient descent
converges to a global optimum of f provided
that the step size is small enough?.

Technically, c-Lipschitz
2step size related to steepness, should decrease like 1/\/t, where tis step
number



Nonconvexity and Gradient Descent

Nonconvex functions are (relatively) hard to
optimize.

Gradient descent can still be useful.

But not guaranteed to converge to a global
minimum.
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Convexity in Many Dimensions



Convexity: Definition

f(X) is convex if for every d, b the line segment
between

(Gf(@) and (b f(b)
does not go below the plot of f.




Convexity: Formal Definition

A function f : RY - R is convex if for every
choice of d,b € R%and t € [0, 1]:

(1 - t)f(d) + tf(B) 2 F((1 - t)d + tb).



The Second Derivative Test
For 1-d functions, convex if second derivative > 0.

For 2-d functions, convex if ???



Second Derivatives in 2-d

In 2-d, there are 4 second derivatives of f(X):
of off off  of
oxi’ ax3’ axx," axyx,




Convexity in 2-d

“Best” quadratic function approximating f at x:

h,(z,,2,) = az? + bz + cz,z, + ...
19f% 19f% of?

= 5—2(X) . Z1 + E—Z(X) . 22 + 3
9X7 0X5 X1X2

(X)- 2,2, + ...

a, b, c determine rough shape. Possibilities:
Upward-facing bowl.
Downward-facing bowl.
“Saddle”



Convexity in 2-d

Convex if at any X, for any z,, z:




The Hessian Matrix

Create the Hessian matrix of second derivatives:

of2 5y of% /o
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0X5 X4 9x5

H(R) =



In General

If f : RY - R, the Hessian at X is:
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Observations
H is square.

H is symmetric.



Convexity in 2-d

Convex if at any X, for any z,, z,:

of? | of? | of? |
1 302,03 (02,0 (32,2, 2 0
2aX1 26X2 aX'IXZ



Positive Semi-Definite

A square, d x d symmetric matrix X is positive
semi-definite (PSD) if for any i:

UTXii =0



The Second Derivative Test

A function f : RY - R is convex if for any X € RY,
the Hessian matrix H(X) is positive semi-definite.



But wait...

How can we tell if a matrix is positive
semi-definite?



Example

u=(r )



Example

u=[z )



Example

Is f(x,y) = X% + 4xy + y? convex?



Sums of Convex Functions

Suppose that f(x) and g(X) are convex. Then

w, f(X) + w,g(X) is convex, provided w.,w, 2 0.



Affine Composition

Suppose that f(x) is convex. Let A be a matrix,
and X and b be vectors. Then

g(X) = f(A% + b)

is convex as a function of X.

Useful!
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Convex Loss Functions



Convexity and Gradient Descent

Convex functions are (relatively) easy to
optimize.

Theorem: if f(x) is convex and “not too steep”
then (stochastic) (sub)gradient descent
converges to a global optimum of f provided
that the step size is small enough*.

3Technically, c-Lipschitz
“step size related to steepness, should decrease like 1/\/t, where tis step
number



Convex Loss
Recall: sums of convex functions are convex.

Implication: if loss function is convex as a
function of w, so is the risk.

Convex losses are nice.



Example

Recall the square loss:

L(H()_er)ry) = ()?W_y)z

Is this convex as a function of w?



Mean Squared Error

The square loss is a convex function of w.

We had an explicit solution for the best w:

w=(X"X)"XTy

But we could also have used gradient descent.



Perceptron Loss

The perceptron loss is:

5 o 0, sign
Ltron(H(X; W)Iy) g (

_ W - X) = sign(y)
1w X, sign(w -

X) # sign(y)

Is it convex as a function of w?



Summary

We learned what it means for a function to be
convex.

Convex functions are (relatively) easy to optimize
with gradient descent.

We like convex loss functions, like the square
loss.



