$$
\text { DSC } 140 A
$$

Recall: (Sub)gradient descent

- Goal: minimize function $f(\vec{x})$.
- Iterative procedure that takes small steps in direction of steepest descent.

Recall: Gradient Descent

- Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta>0$.
- Until convergence, repeat:
$>$ Compute gradient of f at $\vec{x}^{(i)}$; that is, compute $\vec{\nabla} f\left(\vec{x}^{(i)}\right)$.
$>$ Update $\vec{x}^{(i+1)}=\vec{x}^{(i)}-\eta \vec{\nabla} f\left(\vec{x}^{(i)}\right)$.
- When do we stop?
\Rightarrow When difference between $\vec{x}^{(i)}$ and $\vec{x}^{(i+1)}$ is negligible.
\Rightarrow I.e., when $\left\|\vec{x}^{(i)}-\vec{x}^{(i+1)}\right\|$ is small.

```
def gradient_descent(
    gradient, x, learning_rate=.01,
    threshold=.1e-4
):
```

```
while True:
```

while True:
x_new = x - learning_rate * gradient(x)
x_new = x - learning_rate * gradient(x)
if np.linalg.norm(x - x_new) < threshold:
if np.linalg.norm(x - x_new) < threshold:
break
break
x = x_new
x = x_new
return x

```
    return x
```


Gradient Descent for Minimizing Risk

- In ML, we often want to minimize a risk function:

$$
R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} L\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

Observation

- The gradient of the risk function is a sum of gradients:

$$
\vec{\nabla} R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \vec{\nabla} L\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- One term for each point in training data.

Problem

- In machine learning, the number of training points n can be very large.
- Computing the gradient can be expensive when n is large.
- Therefore, each step of gradient descent can be expensive.

Idea

- The (full) gradient of the risk uses all of the training data:

$$
\nabla R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \nabla L\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- It is an average of n gradients.
- Idea: instead of using all n points, randomly choose <<n.

Stochastic Gradient

- Choose a random subset (mini-batch) B of the training data.
- Compute a stochastic gradient:

$$
\nabla R(\vec{w}) \approx \sum_{i \in B} \vec{\nabla} L\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

Stochastic Gradient

$$
\nabla R(\vec{w}) \approx \sum_{i \in B} \vec{\nabla} L\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

\downarrow Good: if $|B| \ll n$, this is much faster to compute.

- Bad: it is a (random) approximation of the full gradient, noisy.

Stochastic Gradient Descent (SGD) for ERM

- Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta>0$, batch size $m \ll n$.
- Until convergence, repeat:
$>$ Randomly sample a batch B of m training data points.
$>$ Compute stochastic gradient of f at $\vec{x}^{(i)}$:

$$
\vec{g}=\sum_{i \in B} \vec{\nabla} L\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

$>$ Update $\vec{x}^{(i+1)}=\vec{x}^{(i)}-\eta \vec{g}$

Idea

- In practice, a stochastic gradient often works well enough.
- It is better to take many noisy steps quickly than few exact steps slowly.

Batch Size

- Batch size m is a parameter of the algorithm.
- The larger m, the more reliable the stochastic gradient, but the more time it takes to compute.
- Extreme case when $m=1$ will still work.

Usefulness of SGD

- SGD allows learning on massive data sets.
- Useful even when exactly solutions available.
- E.g., least squares regression / classification.

140A
Probabilistic Modeling \& Machine Learning
Lecture 5 Part 2
Convexity

Question

When is gradient descent guaranteed to work?

Not here...

Convex Functions

Non-convex

Convexity: Definition

> f is convex if for every a, b the line segment between

$$
(a, f(a)) \quad \text { and } \quad(b, f(b))
$$

does not go below the plot of f.

Convexity: Definition

- f is convex if for every a, b the line segment between

$$
(a, f(a)) \quad \text { and } \quad(b, f(b))
$$

does not go below the plot of f.

Convexity: Definition

- f is convex if for every a, b the line segment between

$$
(a, f(a)) \quad \text { and } \quad(b, f(b))
$$

does not go below the plot of f.

Convexity: Definition

> f is convex if for every a, b the line segment between

$$
(a, f(a)) \quad \text { and } \quad(b, f(b))
$$

does not go below the plot of f.

Other Terms

- If a function is not convex, it is non-convex.
- Strictly convex: the line lies strictly above curve.
- Concave: the line lines on or below curve.

Convexity: Formal Definition

- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if for every choice of $a, b \in \mathbb{R}$ and $t \in[0,1]$:

$$
(1-t) f(a)+t f(b) \geq f((1-t) a+t b) .
$$

Example

$$
\text { Is } f(x)=|x| \text { convex? }
$$

Another View: Second Derivatives

- If $\frac{d^{2} f}{d x^{2}}(x) \geq 0$ for all x, then f is convex.
- Example: $f(x)=x^{4}$ is convex.
- Warning! Only works if f is twice differentiable!

Another View: Second Derivatives

"Best" straight line at x_{0} :

- $h_{1}(z)=f^{\prime}\left(x_{0}\right) \cdot z+b$
> "Best" parabola at x_{0} :
- At x_{0}, f looks likes $h_{2}(z)=\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) \cdot z^{2}+f^{\prime}\left(x_{0}\right) z+c$
> Possibilities: upward-facing, downward-facing.

Convexity and Parabolas

- Convex if for every x_{0}, parabola is upward-facing.
- That is, $f^{\prime \prime}\left(x_{0}\right) \geq 0$.

Proving Convexity Using Properties

Suppose that $f(x)$ and $g(x)$ are convex. Then:

- $w_{1} f(x)+w_{2} g(x)$ is convex, provided $w_{1}, w_{2} \geq 0$ - Example: $3 x^{2}+|x|$ is convex
- $g(f(x))$ is convex, provided g is non-decreasing. Example: $e^{x^{2}}$ is convex
$\downarrow \max \{f(x), g(x)\}$ is convex
- Example: $\left\{\begin{array}{ll}0, & x<0 \\ x, & x \geq 0\end{array}\right.$ is convex

Convexity and Gradient Descent

- Convex functions are (relatively) easy to optimize.
- Theorem: if $f(x)$ is convex and "not too steep"1 then (stochastic) (sub)gradient descent converges to a global optimum of f provided that the step size is small enough ${ }^{2}$.

[^0]
Nonconvexity and Gradient Descent

- Nonconvex functions are (relatively) hard to optimize.
- Gradient descent can still be useful.
- But not guaranteed to converge to a global minimum.

Probabilistic Modeling \& Machine Learning
Lecture 5 Part 3
Convexity in Many Dimensions

Convexity: Definition

- $f(\vec{x})$ is convex if for every \vec{a}, \vec{b} the line segment between

$$
(\vec{a}, f(\vec{a})) \quad \text { and } \quad(\vec{b}, f(\vec{b}))
$$

does not go below the plot of f.

Convexity: Formal Definition

\Rightarrow A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if for every choice of $\vec{a}, \vec{b} \in \mathbb{R}^{d}$ and $t \in[0,1]$:

$$
(1-t) f(\vec{a})+t f(\vec{b}) \geq f((1-t) \vec{a}+t \vec{b}) .
$$

The Second Derivative Test

- For 1-d functions, convex if second derivative ≥ 0.
- For 2-d functions, convex if ???

Second Derivatives in 2-d

- In 2-d, there are 4 second derivatives of $f(\vec{x})$:
$>\frac{\partial f^{2}}{\partial x_{1}^{2}}, \frac{\partial f^{2}}{\partial x_{2}^{2}}, \frac{\partial f^{2}}{\partial x_{1} x_{2}}, \frac{\partial f^{2}}{\partial x_{2} x_{1}}$

Convexity in 2-d

- "Best" quadratic function approximating f at \vec{x} :

$$
\begin{aligned}
h_{2}\left(z_{1}, z_{2}\right) & =a z_{1}^{2}+b z_{2}^{2}+c z_{1} z_{2}+\ldots \\
& =\frac{\partial f^{2}}{2} \frac{\partial x_{1}^{2}}{(\vec{x}) \cdot z_{1}+\frac{\partial f^{2}}{2} \frac{\partial f_{2}^{2}}{\partial x_{2}^{2}}(\vec{x}) \cdot z_{2}+\frac{\partial f^{2}}{\partial x_{1} x_{2}}(\tilde{x}) \cdot \overrightarrow{1}_{1} z_{2}+\ldots}
\end{aligned}
$$

- a, b, c determine rough shape. Possibilities: - Upward-facing bowl.
- Downward-facing bowl.
- "Saddle"

Convexity in 2-d

Convex if at any \vec{x}, for any z_{1}, z_{2} :

$$
\frac{1}{2} \frac{\partial f^{2}}{\partial x_{1}^{2}}(\vec{x}) \cdot z_{1}+\frac{1}{2} \frac{\partial f^{2}}{\partial x_{2}^{2}}(\vec{x}) \cdot z_{2}+\frac{\partial f^{2}}{\partial x_{1} x_{2}}(\vec{x}) \cdot z_{1} z_{2} \geq 0
$$

The Hessian Matrix

Create the Hessian matrix of second derivatives:

$$
H(\vec{x})=\left(\begin{array}{ll}
\frac{\partial f^{2}}{\partial x_{1}^{2}}(\vec{x}) & \frac{\partial f^{2}}{\partial x_{1} x_{2}}(\vec{x}) \\
\frac{\partial f^{2}}{\partial x_{2} x_{1}}(\vec{x}) & \frac{\partial f^{2}}{\partial x_{2}^{2}}(\vec{x})
\end{array}\right)
$$

In General

- If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, the Hessian at \vec{x} is:

$$
H(\vec{x})=\left(\begin{array}{cccc}
\frac{\partial f^{2}}{\partial x_{1}^{2}}(\vec{x}) & \frac{\partial f^{2}}{\partial x_{1} x_{2}}(\vec{x}) & \cdots & \frac{\partial f^{2}}{\partial x_{1} x_{d}}(\vec{x}) \\
\frac{\partial f^{2}}{\partial x_{2} x_{1}}(\vec{x}) & \frac{\partial f^{2}}{\partial x_{2}^{2}}(\vec{x}) & \cdots & \frac{\partial f^{2}}{\partial x_{2} x_{d}}(\vec{x}) \\
\cdots & \cdots & \cdots & \cdots \\
\frac{\partial f^{2}}{\partial x_{d} x_{1}}(\vec{x}) & \frac{\partial f^{2}}{\partial x_{d}^{2}}(\vec{x}) & \cdots & \frac{\partial f^{2}}{\partial x_{d}^{2}}(\vec{x})
\end{array}\right)
$$

Observations

H is square.
$\Rightarrow H$ is symmetric.

Convexity in 2-d

- Convex if at any \vec{x}, for any z_{1}, z_{2} :

$$
\frac{1}{2} \frac{\partial f^{2}}{\partial x_{1}^{2}}(\vec{x}) \cdot z_{1}+\frac{1}{2} \frac{\partial f^{2}}{\partial x_{2}^{2}}(\vec{x}) \cdot z_{2}+\frac{\partial f^{2}}{\partial x_{1} x_{2}}(\vec{x}) \cdot z_{1} z_{2} \geq 0
$$

- Equivalently, convex if for any \vec{x} and any \vec{z} :

$$
\vec{z}^{\top} H(\vec{x}) \vec{z} \geq 0
$$

Positive Semi-Definite

\Rightarrow A square, $d \times d$ symmetric matrix X is positive semi-definite (PSD) if for any \vec{u} :

$$
\vec{u}^{\top} x \vec{u} \geq 0
$$

The Second Derivative Test

- A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if for any $\vec{x} \in \mathbb{R}^{d}$, the Hessian matrix $H(\vec{x})$ is positive semi-definite.

But wait...

How can we tell if a matrix is positive semi-definite?

Example

$$
m=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Example

$$
M=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)
$$

Example

$$
\text { Is } f(x, y)=x^{2}+4 x y+y^{2} \text { convex? }
$$

Sums of Convex Functions

- Suppose that $f(\vec{x})$ and $g(\vec{x})$ are convex. Then $w_{1} f(\vec{x})+w_{2} g(\vec{x})$ is convex, provided $w_{1}, w_{2} \geq 0$.

Affine Composition

- Suppose that $f(x)$ is convex. Let A be a matrix, and \vec{x} and \vec{b} be vectors. Then

$$
g(\vec{x})=f(A \vec{x}+\vec{b})
$$

is convex as a function of \vec{x}.

- Useful!

$$
\text { DSC } 140 A
$$

Convexity and Gradient Descent

- Convex functions are (relatively) easy to optimize.
> Theorem: if $f(x)$ is convex and "not too steep"3 then (stochastic) (sub)gradient descent converges to a global optimum of f provided that the step size is small enough ${ }^{4}$.

[^1]
Convex Loss

- Recall: sums of convex functions are convex.
- Implication: if loss function is convex as a function of \vec{w}, so is the risk.
- Convex losses are nice.

Example

- Recall the square loss:

$$
L(H(\vec{x}, \vec{w}), y)=(\vec{x} \cdot \vec{w}-y)^{2}
$$

\Rightarrow Is this convex as a function of \vec{w} ?

Mean Squared Error

- The square loss is a convex function of \vec{w}.
- We had an explicit solution for the best \vec{w} :

$$
\vec{w}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}
$$

- But we could also have used gradient descent.

Perceptron Loss

- The perceptron loss is:

$$
L_{\text {tron }}(H(\vec{x} ; \vec{w}), y)= \begin{cases}0, & \operatorname{sign}(\vec{w} \cdot \vec{x})=\operatorname{sign}(y) \\ |\vec{w} \cdot \vec{x}|, & \operatorname{sign}(\vec{w} \cdot \vec{x}) \neq \operatorname{sign}(y)\end{cases}
$$

- Is it convex as a function of \vec{w} ?

Summary

- We learned what it means for a function to be convex.
- Convex functions are (relatively) easy to optimize with gradient descent.
- We like convex loss functions, like the square loss.

[^0]: ${ }^{1}$ Technically, c-Lipschitz
 ${ }^{2}$ step size related to steepness, should decrease like $1 / \sqrt{t}$, where t is step number

[^1]: ${ }^{3}$ Technically, c-Lipschitz
 ${ }^{4}$ step size related to steepness, should decrease like $1 / \sqrt{t}$, where t is step number

