

Lecture 5 | Part 1

Stochastic Gradient Descent

Recall: (Sub)gradient descent

- **Goal:** minimize function $f(\vec{x})$.
- Iterative procedure that takes small steps in direction of steepest descent.

Recall: Gradient Descent

- Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta > 0$.
- Until convergence, repeat:
 - Compute gradient of f at $\vec{x}^{(i)}$; that is, compute $\vec{\nabla} f(\vec{x}^{(i)})$.
 - Update $\vec{x}^{(i+1)} = \vec{x}^{(i)} \eta \vec{\nabla} f(\vec{x}^{(i)})$.

When do we stop?

- When difference between $\vec{x}^{(i)}$ and $\vec{x}^{(i+1)}$ is negligible.
- ▶ I.e., when $\|\vec{x}^{(i)} \vec{x}^{(i+1)}\|$ is small.

```
def gradient descent(
         gradient, x, learning rate=.01,
         threshold=.1e-4
):
    while True:
         x \text{ new} = x - \text{learning rate } * \text{gradient}(x)
         if np.linalg.norm(x - x new) < threshold:
             break
         x = x new
    return x
```

Gradient Descent for Minimizing Risk

In ML, we often want to minimize a risk function:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} L(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Observation

The gradient of the risk function is a sum of gradients:

$$\vec{\nabla} R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \vec{\nabla} L(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

One term for each point in training data.

Problem

- In machine learning, the number of training points n can be very large.
- Computing the gradient can be expensive when n is large.
- Therefore, each step of gradient descent can be expensive.

Idea

The (full) gradient of the risk uses all of the training data:

$$\nabla R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \nabla L(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

- It is an average of n gradients.
- Idea: instead of using all n points, randomly choose « n.

Stochastic Gradient

Choose a random subset (mini-batch) B of the training data.

Compute a stochastic gradient:

$$\nabla R(\vec{w}) \approx \sum_{i \in B} \vec{\nabla} L(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Stochastic Gradient

$$\nabla R(\vec{w}) \approx \sum_{i \in B} \vec{\nabla} L(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

• **Good:** if $|B| \ll n$, this is much faster to compute.

Bad: it is a (random) approximation of the full gradient, noisy.

Stochastic Gradient Descent (SGD) for ERM

- Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta > 0$, batch size $m \ll n$.
- Until convergence, repeat:
 - Randomly sample a batch B of m training data points.
 - Compute stochastic gradient of f at $\vec{x}^{(i)}$:

$$\vec{g} = \sum_{i \in B} \vec{\nabla} L(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

• Update
$$\vec{x}^{(i+1)} = \vec{x}^{(i)} - \eta \vec{g}$$

Idea

- In practice, a stochastic gradient often works well enough.
- It is better to take many noisy steps quickly than few exact steps slowly.

Batch Size

- Batch size *m* is a parameter of the algorithm.
- The larger *m*, the more reliable the stochastic gradient, but the more time it takes to compute.
- Extreme case when m = 1 will still work.

Usefulness of SGD

- SGD allows learning on **massive** data sets.
- Useful even when exactly solutions available.
 E.g., least squares regression / classification.

Lecture 5 | Part 2

Convexity

Question

When is gradient descent guaranteed to work?

Convex Functions

f is convex if for every a, b the line segment between

(a, f(a)) and (b, f(b))does not go below the plot of f.

f is convex if for every a, b the line segment between

(a, f(a)) and (b, f(b))does not go below the plot of f.

f is convex if for every a, b the line segment between

(a, f(a)) and (b, f(b))

does not go below the plot of f.

f is convex if for every a, b the line segment between

(a, f(a)) and (b, f(b))

does not go below the plot of f.

Other Terms

If a function is not convex, it is non-convex.

- Strictly convex: the line lies strictly above curve.
- **Concave**: the line lines on or below curve.

Convexity: Formal Definition

A function $f : \mathbb{R} \to \mathbb{R}$ is **convex** if for every choice of $a, b \in \mathbb{R}$ and $t \in [0, 1]$:

$$(1 - t)f(a) + tf(b) \ge f((1 - t)a + tb).$$

Is f(x) = |x| convex?

Another View: Second Derivatives

► If
$$\frac{d^2f}{dx^2}(x) \ge 0$$
 for all x, then f is convex.

- Example: $f(x) = x^4$ is convex.
- Warning! Only works if f is twice differentiable!

Another View: Second Derivatives

- "Best" parabola at x₀:
 - At x_0 , f looks likes $h_2(z) = \frac{1}{2}f''(x_0) \cdot z^2 + f'(x_0)z + c$
 - Possibilities: upward-facing, downward-facing.

Convexity and Parabolas

Convex if for every x₀, parabola is upward-facing.
 That is, f"(x₀) ≥ 0.

Proving Convexity Using Properties

Suppose that f(x) and g(x) are convex. Then:

- w₁f(x) + w₂g(x) is convex, provided w₁, w₂ ≥ 0
 Example: 3x² + |x| is convex
- g(f(x)) is convex, provided g is non-decreasing.
 Example: e^{x²} is convex

max{f(x), g(x)} is convex
 Example:
$$\begin{cases} 0, & x < 0 \\ x, & x ≥ 0 \end{cases}$$
 is convex

Convexity and Gradient Descent

- Convex functions are (relatively) easy to optimize.
- Theorem: if f(x) is convex and "not too steep"¹ then (stochastic) (sub)gradient descent converges to a global optimum of f provided that the step size is small enough².

¹Technically, *c*-Lipschitz

²step size related to steepness, should decrease like $1/\sqrt{t}$, where t is step number

Nonconvexity and Gradient Descent

- Nonconvex functions are (relatively) hard to optimize.
- Gradient descent can still be useful.
- But not guaranteed to converge to a global minimum.

Lecture 5 | Part 3

Convexity in Many Dimensions

► $f(\vec{x})$ is **convex** if for **every** \vec{a} , \vec{b} the line segment between

 $(\vec{a}, f(\vec{a}))$ and $(\vec{b}, f(\vec{b}))$ does not go below the plot of f.

Convexity: Formal Definition

► A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if for every choice of $\vec{a}, \vec{b} \in \mathbb{R}^d$ and $t \in [0, 1]$:

$$(1-t)f(\vec{a})+tf(\vec{b})\geq f((1-t)\vec{a}+t\vec{b}).$$

The Second Derivative Test

For 1-d functions, convex if second derivative \geq 0.

► For 2-d functions, convex if ???

Second Derivatives in 2-d

► In 2-d, there are 4 second derivatives of $f(\vec{x})$: ► $\frac{\partial f^2}{\partial x_1^2}, \frac{\partial f^2}{\partial x_2^2}, \frac{\partial f^2}{\partial x_1 x_2}, \frac{\partial f^2}{\partial x_2 x_1}$

Convexity in 2-d

• "Best" quadratic function approximating f at \vec{x} :

$$h_{2}(z_{1}, z_{2}) = az_{1}^{2} + bz_{2}^{2} + cz_{1}z_{2} + \dots$$

= $\frac{1}{2} \frac{\partial f^{2}}{\partial x_{1}^{2}}(\vec{x}) \cdot z_{1} + \frac{1}{2} \frac{\partial f^{2}}{\partial x_{2}^{2}}(\vec{x}) \cdot z_{2} + \frac{\partial f^{2}}{\partial x_{1}x_{2}}(\vec{x}) \cdot z_{1}z_{2} + \dots$

- ▶ *a*, *b*, *c* determine rough shape. Possibilities:

 - Upward-facing bowl.
 Downward-facing bowl.
 - "Saddle"

Convexity in 2-d

• Convex if at any \vec{x} , for any z_1, z_2 :

$$\frac{1}{2}\frac{\partial f^2}{\partial x_1^2}(\vec{x}) \cdot z_1 + \frac{1}{2}\frac{\partial f^2}{\partial x_2^2}(\vec{x}) \cdot z_2 + \frac{\partial f^2}{\partial x_1 x_2}(\vec{x}) \cdot z_1 z_2 \ge 0$$

The Hessian Matrix

Create the Hessian matrix of second derivatives:

$$H(\vec{x}) = \begin{pmatrix} \frac{\partial f^2}{\partial x_1^2}(\vec{x}) & \frac{\partial f^2}{\partial x_1 x_2}(\vec{x}) \\ \frac{\partial f^2}{\partial x_2 x_1}(\vec{x}) & \frac{\partial f^2}{\partial x_2^2}(\vec{x}) \end{pmatrix}$$

In General

▶ If $f : \mathbb{R}^d \to \mathbb{R}$, the **Hessian** at \vec{x} is:

Observations

► *H* is square.

► *H* is symmetric.

Convexity in 2-d

• Convex if at any \vec{x} , for any z_1, z_2 :

$$\frac{1}{2}\frac{\partial f^2}{\partial x_1^2}(\vec{x}) \cdot z_1 + \frac{1}{2}\frac{\partial f^2}{\partial x_2^2}(\vec{x}) \cdot z_2 + \frac{\partial f^2}{\partial x_1 x_2}(\vec{x}) \cdot z_1 z_2 \ge 0$$

► Equivalently, convex if for any \vec{x} and any \vec{z} : $\vec{z}^T H(\vec{x}) \vec{z} \ge 0$

Positive Semi-Definite

A square, d × d symmetric matrix X is positive semi-definite (PSD) if for any u:

 $\vec{u}^T X \vec{u} \geq 0$

The Second Derivative Test

► A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if for any $\vec{x} \in \mathbb{R}^d$, the Hessian matrix $H(\vec{x})$ is positive semi-definite.

But wait...

How can we tell if a matrix is positive semi-definite?

$$M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

 $ls f(x, y) = x^2 + 4xy + y^2$ convex?

Sums of Convex Functions

Suppose that $f(\vec{x})$ and $g(\vec{x})$ are convex. Then $w_1 f(\vec{x}) + w_2 g(\vec{x})$ is convex, provided $w_1, w_2 \ge 0$.

Affine Composition

Suppose that f(x) is convex. Let A be a matrix, and \vec{x} and \vec{b} be vectors. Then

$$g(\vec{x}) = f(A\vec{x} + \vec{b})$$

is convex as a function of \vec{x} .

Useful!

Lecture 5 | Part 4

Convex Loss Functions

Convexity and Gradient Descent

- Convex functions are (relatively) easy to optimize.
- Theorem: if f(x) is convex and "not too steep"³ then (stochastic) (sub)gradient descent converges to a global optimum of f provided that the step size is small enough⁴.

³Technically, *c*-Lipschitz

⁴step size related to steepness, should decrease like $1/\sqrt{t}$, where t is step number

Convex Loss

- **Recall:** sums of convex functions are convex.
- Implication: if loss function is convex as a function of w, so is the risk.
- Convex losses are nice.

Recall the square loss:

$$L(H(\vec{x},\vec{w}),y)=(\vec{x}\cdot\vec{w}-y)^2$$

▶ Is this convex as a function of \vec{w} ?

Mean Squared Error

The square loss is a convex function of \vec{w} .

• We had an explicit solution for the best \vec{w} :

$$\vec{w} = (X^T X)^{-1} X^T \vec{y}$$

But we could also have used gradient descent.

Perceptron Loss

► The perceptron loss is:

$$L_{\text{tron}}(H(\vec{x};\vec{w}),y) = \begin{cases} 0, & \text{sign}(\vec{w}\cdot\vec{x}) = \text{sign}(y) \\ |\vec{w}\cdot\vec{x}|, & \text{sign}(\vec{w}\cdot\vec{x}) \neq \text{sign}(y) \end{cases}$$

▶ Is it convex as a function of \vec{w} ?

Summary

- We learned what it means for a function to be convex.
- Convex functions are (relatively) easy to optimize with gradient descent.
- We like convex loss functions, like the square loss.