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Stochastic Gradient Descent



Recall: (Sub)gradient descent

▶ Goal: minimize function 𝑓( ⃗𝑥).

▶ Iterative procedure that takes small steps in
direction of steepest descent.



Recall: Gradient Descent

▶ Pick arbitrary starting point ⃗𝑥(0), learning rate
parameter 𝜂 > 0.

▶ Until convergence, repeat:
▶ Compute gradient of 𝑓 at ⃗𝑥(𝑖); that is, compute ∇⃗𝑓( ⃗𝑥(𝑖)).
▶ Update ⃗𝑥(𝑖+1) = ⃗𝑥(𝑖) − 𝜂∇⃗𝑓( ⃗𝑥(𝑖)).

▶ When do we stop?
▶ When difference between ⃗𝑥(𝑖) and ⃗𝑥(𝑖+1) is negligible.
▶ I.e., when ‖ ⃗𝑥(𝑖) − ⃗𝑥(𝑖+1)‖ is small.



def gradient_descent(
gradient, x, learning_rate=.01,
threshold=.1e-4

):
while True:

x_new = x - learning_rate * gradient(x)
if np.linalg.norm(x - x_new) < threshold:

break
x = x_new

return x



Gradient Descent for Minimizing Risk

▶ In ML, we often want to minimize a risk function:

𝑅(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1
𝐿(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)



Observation

▶ The gradient of the risk function is a sum of
gradients:

∇⃗𝑅(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1
∇⃗𝐿(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

▶ One term for each point in training data.



Problem

▶ In machine learning, the number of training
points 𝑛 can be very large.

▶ Computing the gradient can be expensive when
𝑛 is large.

▶ Therefore, each step of gradient descent can be
expensive.



Idea

▶ The (full) gradient of the risk uses all of the
training data:

∇𝑅(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1
∇𝐿(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

▶ It is an average of 𝑛 gradients.

▶ Idea: instead of using all 𝑛 points, randomly
choose ≪ 𝑛.



Stochastic Gradient

▶ Choose a random subset (mini-batch) 𝐵 of the
training data.

▶ Compute a stochastic gradient:

∇𝑅(𝑤⃗) ≈ ∑
𝑖∈𝐵

∇⃗𝐿(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)



Stochastic Gradient

∇𝑅(𝑤⃗) ≈ ∑
𝑖∈𝐵

∇⃗𝐿(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

▶ Good: if |𝐵| ≪ 𝑛, this is much faster to compute.

▶ Bad: it is a (random) approximation of the full
gradient, noisy.



Stochastic Gradient Descent (SGD)
for ERM

▶ Pick arbitrary starting point ⃗𝑥(0), learning rate
parameter 𝜂 > 0, batch size 𝑚 ≪ 𝑛.

▶ Until convergence, repeat:
▶ Randomly sample a batch 𝐵 of 𝑚 training data points.
▶ Compute stochastic gradient of 𝑓 at ⃗𝑥(𝑖):

𝑔⃗ = ∑
𝑖∈𝐵

∇⃗𝐿(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

▶ Update ⃗𝑥(𝑖+1) = ⃗𝑥(𝑖) − 𝜂𝑔⃗



Idea

▶ In practice, a stochastic gradient often works
well enough.

▶ It is better to take many noisy steps quickly than
few exact steps slowly.



Batch Size

▶ Batch size 𝑚 is a parameter of the algorithm.

▶ The larger 𝑚, the more reliable the stochastic
gradient, but the more time it takes to compute.

▶ Extreme case when 𝑚 = 1 will still work.
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Usefulness of SGD

▶ SGD allows learning on massive data sets.

▶ Useful even when exactly solutions available.
▶ E.g., least squares regression / classification.
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Convexity



Question

▶ When is gradient descent guaranteed to work?



Not here...



Convex Functions

Convex Non-convex



Convexity: Definition
▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between

(𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))

does not go below the plot of 𝑓.



Convexity: Definition
▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between

(𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))

does not go below the plot of 𝑓.



Convexity: Definition
▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between

(𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))

does not go below the plot of 𝑓.



Convexity: Definition
▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between

(𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))

does not go below the plot of 𝑓.



Other Terms

▶ If a function is not convex, it is non-convex.

▶ Strictly convex: the line lies strictly above curve.

▶ Concave: the line lines on or below curve.



Convexity: Formal Definition

▶ A function 𝑓 ∶ ℝ → ℝ is convex if for every
choice of 𝑎, 𝑏 ∈ ℝ and 𝑡 ∈ [0, 1]:

(1 − 𝑡)𝑓(𝑎) + 𝑡𝑓(𝑏) ≥ 𝑓((1 − 𝑡)𝑎 + 𝑡𝑏).



Example

Is 𝑓(𝑥) = |𝑥| convex?



Another View: Second Derivatives
▶ If 𝑑

2𝑓
𝑑𝑥2 (𝑥) ≥ 0 for all 𝑥, then 𝑓 is convex.

▶ Example: 𝑓(𝑥) = 𝑥4 is convex.

▶ Warning! Only works if 𝑓 is twice differentiable!



Another View: Second Derivatives

▶ “Best” straight line at 𝑥0:
▶ ℎ1(𝑧) = 𝑓

′(𝑥0) ⋅ 𝑧 + 𝑏

▶ “Best” parabola at 𝑥0:
▶ At 𝑥0, 𝑓 looks likes ℎ2(𝑧) =

1
2
𝑓″(𝑥0) ⋅ 𝑧

2 + 𝑓′(𝑥0)𝑧 + 𝑐
▶ Possibilities: upward-facing, downward-facing.



Convexity and Parabolas

▶ Convex if for every 𝑥0, parabola is upward-facing.
▶ That is, 𝑓″(𝑥0) ≥ 0.



Proving Convexity Using Properties
Suppose that 𝑓(𝑥) and 𝑔(𝑥) are convex. Then:

▶ 𝑤1𝑓(𝑥) + 𝑤2𝑔(𝑥) is convex, provided 𝑤1, 𝑤2 ≥ 0
▶ Example: 3𝑥2 + |𝑥| is convex

▶ 𝑔(𝑓(𝑥)) is convex, provided 𝑔 is non-decreasing.
▶ Example: 𝑒𝑥2 is convex

▶ max{𝑓(𝑥), 𝑔(𝑥)} is convex

▶ Example: {
0, x < 0
𝑥, x ≥0

is convex



Convexity and Gradient Descent

▶ Convex functions are (relatively) easy to
optimize.

▶ Theorem: if 𝑓(𝑥) is convex and “not too steep”1
then (stochastic) (sub)gradient descent
converges to a global optimum of 𝑓 provided
that the step size is small enough2.

1Technically, 𝑐-Lipschitz
2step size related to steepness, should decrease like 1/√𝑡, where 𝑡 is step

number



Nonconvexity and Gradient Descent

▶ Nonconvex functions are (relatively) hard to
optimize.

▶ Gradient descent can still be useful.

▶ But not guaranteed to converge to a global
minimum.
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Convexity in Many Dimensions



Convexity: Definition

▶ 𝑓( ⃗𝑥) is convex if for every 𝑎⃗, 𝑏⃗ the line segment
between

(𝑎⃗, 𝑓(𝑎⃗)) and (𝑏⃗, 𝑓(𝑏⃗))

does not go below the plot of 𝑓.



Convexity: Formal Definition

▶ A function 𝑓 ∶ ℝ𝑑 → ℝ is convex if for every
choice of 𝑎⃗, 𝑏⃗ ∈ ℝ𝑑 and 𝑡 ∈ [0, 1]:

(1 − 𝑡)𝑓(𝑎⃗) + 𝑡𝑓(𝑏⃗) ≥ 𝑓((1 − 𝑡)𝑎⃗ + 𝑡𝑏⃗).



The Second Derivative Test

▶ For 1-d functions, convex if second derivative ≥ 0.

▶ For 2-d functions, convex if ???



Second Derivatives in 2-d

▶ In 2-d, there are 4 second derivatives of 𝑓( ⃗𝑥):
▶ 𝜕𝑓2

𝜕𝑥21
, 𝜕𝑓

2

𝜕𝑥22
, 𝜕𝑓2

𝜕𝑥1𝑥2
, 𝜕𝑓2

𝜕𝑥2𝑥1



Convexity in 2-d

▶ “Best” quadratic function approximating 𝑓 at ⃗𝑥:

ℎ2(𝑧1, 𝑧2) = 𝑎𝑧
2
1 + 𝑏𝑧

2
2 + 𝑐𝑧1𝑧2 + …

= 1
2
𝜕𝑓2

𝜕𝑥21
( ⃗𝑥) ⋅ 𝑧1 +

1
2
𝜕𝑓2

𝜕𝑥22
( ⃗𝑥) ⋅ 𝑧2 +

𝜕𝑓2

𝜕𝑥1𝑥2
( ⃗𝑥) ⋅ 𝑧1𝑧2 + …

▶ 𝑎, 𝑏, 𝑐 determine rough shape. Possibilities:
▶ Upward-facing bowl.
▶ Downward-facing bowl.
▶ “Saddle”



Convexity in 2-d

▶ Convex if at any ⃗𝑥, for any 𝑧1, 𝑧2:

1
2
𝜕𝑓2

𝜕𝑥21
( ⃗𝑥) ⋅ 𝑧1 +

1
2
𝜕𝑓2

𝜕𝑥22
( ⃗𝑥) ⋅ 𝑧2 +

𝜕𝑓2

𝜕𝑥1𝑥2
( ⃗𝑥) ⋅ 𝑧1𝑧2 ≥ 0



The Hessian Matrix

▶ Create the Hessian matrix of second derivatives:

𝐻( ⃗𝑥) = (

𝜕𝑓2

𝜕𝑥21
( ⃗𝑥) 𝜕𝑓2

𝜕𝑥1𝑥2
( ⃗𝑥)

𝜕𝑓2

𝜕𝑥2𝑥1
( ⃗𝑥) 𝜕𝑓2

𝜕𝑥22
( ⃗𝑥)

)



In General

▶ If 𝑓 ∶ ℝ𝑑 → ℝ, the Hessian at ⃗𝑥 is:

𝐻( ⃗𝑥) =
⎛⎜⎜⎜

⎝

𝜕𝑓2

𝜕𝑥21
( ⃗𝑥) 𝜕𝑓2

𝜕𝑥1𝑥2
( ⃗𝑥) ⋯ 𝜕𝑓2

𝜕𝑥1𝑥𝑑
( ⃗𝑥)

𝜕𝑓2

𝜕𝑥2𝑥1
( ⃗𝑥) 𝜕𝑓2

𝜕𝑥22
( ⃗𝑥) ⋯ 𝜕𝑓2

𝜕𝑥2𝑥𝑑
( ⃗𝑥)

⋯ ⋯ ⋯ ⋯
𝜕𝑓2

𝜕𝑥𝑑𝑥1
( ⃗𝑥) 𝜕𝑓2

𝜕𝑥2𝑑
( ⃗𝑥) ⋯ 𝜕𝑓2

𝜕𝑥2𝑑
( ⃗𝑥)

⎞⎟⎟⎟

⎠



Observations

▶ 𝐻 is square.

▶ 𝐻 is symmetric.



Convexity in 2-d

▶ Convex if at any ⃗𝑥, for any 𝑧1, 𝑧2:

1
2
𝜕𝑓2

𝜕𝑥21
( ⃗𝑥) ⋅ 𝑧1 +

1
2
𝜕𝑓2

𝜕𝑥22
( ⃗𝑥) ⋅ 𝑧2 +

𝜕𝑓2

𝜕𝑥1𝑥2
( ⃗𝑥) ⋅ 𝑧1𝑧2 ≥ 0

▶ Equivalently, convex if for any ⃗𝑥 and any ⃗𝑧:

⃗𝑧𝑇𝐻( ⃗𝑥) ⃗𝑧 ≥ 0



Positive Semi-Definite

▶ A square, 𝑑 × 𝑑 symmetric matrix 𝑋 is positive
semi-definite (PSD) if for any 𝑢⃗:

𝑢⃗𝑇𝑋𝑢⃗ ≥ 0



The Second Derivative Test

▶ A function 𝑓 ∶ ℝ𝑑 → ℝ is convex if for any ⃗𝑥 ∈ ℝ𝑑,
the Hessian matrix 𝐻( ⃗𝑥) is positive semi-definite.



But wait...

▶ How can we tell if a matrix is positive
semi-definite?



Example

𝑀 = (1 1
1 1)



Example

𝑀 = (1 2
2 1)



Example

Is 𝑓(𝑥, 𝑦) = 𝑥2 + 4𝑥𝑦 + 𝑦2 convex?



Sums of Convex Functions

▶ Suppose that 𝑓( ⃗𝑥) and 𝑔( ⃗𝑥) are convex. Then
𝑤1𝑓( ⃗𝑥) + 𝑤2𝑔( ⃗𝑥) is convex, provided 𝑤1, 𝑤2 ≥ 0.



Affine Composition

▶ Suppose that 𝑓(𝑥) is convex. Let 𝐴 be a matrix,
and ⃗𝑥 and 𝑏⃗ be vectors. Then

𝑔( ⃗𝑥) = 𝑓(𝐴 ⃗𝑥 + 𝑏⃗)

is convex as a function of ⃗𝑥.

▶ Useful!
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Convex Loss Functions



Convexity and Gradient Descent

▶ Convex functions are (relatively) easy to
optimize.

▶ Theorem: if 𝑓(𝑥) is convex and “not too steep”3
then (stochastic) (sub)gradient descent
converges to a global optimum of 𝑓 provided
that the step size is small enough4.

3Technically, 𝑐-Lipschitz
4step size related to steepness, should decrease like 1/√𝑡, where 𝑡 is step

number



Convex Loss

▶ Recall: sums of convex functions are convex.

▶ Implication: if loss function is convex as a
function of 𝑤⃗, so is the risk.

▶ Convex losses are nice.



Example

▶ Recall the square loss:

𝐿(𝐻( ⃗𝑥, 𝑤⃗), 𝑦) = ( ⃗𝑥 ⋅ 𝑤⃗ − 𝑦)2

▶ Is this convex as a function of 𝑤⃗?



Mean Squared Error

▶ The square loss is a convex function of 𝑤⃗.

▶ We had an explicit solution for the best 𝑤⃗:

𝑤⃗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦

▶ But we could also have used gradient descent.



Perceptron Loss

▶ The perceptron loss is:

𝐿tron(𝐻( ⃗𝑥; 𝑤⃗), 𝑦) = {
0, sign(𝑤⃗ ⋅ ⃗𝑥) = sign(𝑦)
|𝑤⃗ ⋅ ⃗𝑥|, sign(𝑤⃗ ⋅ ⃗𝑥) ≠ sign(𝑦)

▶ Is it convex as a function of 𝑤⃗?



Summary

▶ We learned what it means for a function to be
convex.

▶ Convex functions are (relatively) easy to optimize
with gradient descent.

▶ We like convex loss functions, like the square
loss.


