

Lecture 6 | Part 1

Maximum Margin Classifiers

 $R(\vec{w}) = -\frac{1}{2} \sum z(\vec{x}^{(m)}, y_{i}, \vec{w})$

Recall: Perceptrons

Linear classifier fit using loss function:

$$L_{\text{tron}}(H(\vec{x}), y) = \begin{cases} 0, & \text{sign}(H(\vec{x})) = \text{sign}(y) \\ |H(\vec{x})|, & \text{sign}(H(\vec{x})) \neq \text{sign}(y) \end{cases}$$

A Problem with the Perceptron

- Recall: the perceptron loss assigns no penalty to points that are correctly classified.
- No matter how close the point is to the boundary.

Exercise

What is the empirical risk with respect to the perceptron loss of H_1 ? What about H_2 ?

Linear Separability

Data are linearly separable if there exists a linear classifier which perfectly classifies the data.

Margin

The margin is the smallest distance between the decision boundary and a training point.

Maximum Margin Classifier

- If training data are linearly separable, there are many classifiers with zero error.
- We prefer classifiers with larger margins.
 Better generalization performance.
- Can we find the maximum margin classifier?
 I.e., the classifier with the largest possible margin?

Observation

A point is classified correctly when:

$$\begin{cases} \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) > 0, & \text{if } y_i = 1 \\ \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) < 0, & \text{if } y_i = -1 \end{cases}$$

Equivalently, classification is correct if:

$$y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) > 0$$

Attempt #1

- **Goal:** Assume linear separability. Find a \vec{w} so that $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) > 0$ for all data points.
- That is, all points are correctly classified.
- Too easy!
 - Perceptron already does this.
 - Does not force margin to be maximized.

Enforce a Margin

- **Recall:** $|H(\vec{x})| = |\vec{w} \cdot \text{Aug}(\vec{x})|$ is **proportional** to distance from decision boundary.
 - Doesn't measure actual distance!
 - Scaled by a factor depending on $1/\|\vec{w}\|$.
- Informal: |H(x)| measures distance in "prediction units"
 - ► E.g., if H(x) = -2, x is 2 "prediction units" away from boundary

Enforce a Margin

- We can enforce a margin in "prediction units".
- E.g., to require a margin of one prediction unit, we must have

$$y_i H(\vec{x}^{(i)}) = y_i \vec{w} \cdot \text{Aug } \vec{x}^{(i)} \ge 1$$

for each data point

Attempt #2

■ **Goal:** Assume linear separability. Find a \vec{w} so that $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \ge 1$ for all data points.

▶ Still "too easy".

- Problem: prediction units aren't actual distance.
- We can artificially increase distance in "prediction units" by increasing ||₩||.

Exercise

Suppose *H* is a linear predictor with parameter vector \vec{w} . Shown are the lines one "prediction unit" away from the decision boundary.

How will the decision boundary and these lines change if \vec{w} is doubled? ψ_{1} ψ_{2} ψ_{1} ψ_{2} ψ_{3} ψ_{4} ψ_{4}

Solution

The decision boundary remains unchanged.

► The lines one "prediction unit" away move closer.

Observe

► *H* satisfies $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \ge 1$

Observe

- Any vector w satisfying y_i w ⋅ Aug(x⁽ⁱ⁾) > 0 can be made to satisfy y_i w ⋅ Aug(x⁽ⁱ⁾) ≥ 1 by increasing ||w|| appropriately.
- But this is cheating!
- ► Fix: search for a low-norm \vec{w} satisfying $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \ge 1$

Attempt #3

- Goal: out of all w satisfying y_i w · Aug(x⁽ⁱ⁾) ≥ 1 for all data points, find that with minimum ||w||
- ► That is, find:

$$\vec{w}^* = \underset{\vec{w}}{\operatorname{arg\,min}} \|\vec{w}\|$$

subject to: $\forall i, y_i \vec{w} \cdot Aug(\vec{x}) \ge 1$

Hard-SVM

This optimization problem is called the Hard Support Vector Machine classifier problem.

- Only makes sense if data are linearly separable.
- ▶ In a moment, we'll see the Soft-SVM.

How?

- Turn it into a convex quadratic optimization problem:
 - ▶ Minimize $\|\vec{w}\|^2$ subject to $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \ge 1$ for all *i*.
- Can be solved efficiently with quadratic programming.
 - But there is no exact general formula for the solution

SVMs are Maximum Margin Classifiers

- Intuition says solutions of Hard-SVM will have large margins.
- ► Fact: they maximize the margin.

Support Vectors

• A support vector is a training point $\vec{x}^{(i)}$ such that

 $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) = 1$

Support Vectors

- Fact: the solution to Hard-SVM is always a linear combination of the support vectors.
- That is, let S be the set of support vectors. Then

$$\vec{w}^* = \sum_{i \in S} y_i \alpha_i \operatorname{Aug}(\vec{x}^{(i)})$$

Example: Irises

- 3 classes: iris setosa, iris versicolor, iris virginica
- 4 measurements: petal width/height, sepal width/height

Example: Irises

- Using only sepal width/petal width
- Two classes: versicolor (black), setosa (red)

Lecture 6 | Part 2 Soft-Margin SVMs

Non-Separability

So far we've assumed data is linearly separable.

▶ What if it isn't?

The Problem

- ▶ **Old Goal**: Minimize $\|\vec{w}\|^2$ subject to $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \ge 1$ for all *i*.
- ► This **no longer makes sense**.

Cut Some Slack

 Idea: allow some classifications to be ξ_i wrong, but not too wrong.

New problem. Fix some number $C \ge 0$.

$$\min_{\vec{w}\in\mathbb{R}^{d+1},\vec{\xi}\in\mathbb{R}^n}\|\vec{w}\|^2+C\sum_{i=1}^n\xi_i$$

subject to $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \ge 1 - \xi_i$ for all $i, \vec{\xi} \ge 0$.

The Slack Parameter, C

C controls how much slack is given.

$$\min_{\vec{w}\in\mathbb{R}^{d+1},\vec{\xi}\in\mathbb{R}^n}\|\vec{w}\|^2+C\sum_{i=1}^n\xi_i$$

subject to $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \ge 1 - \xi_i$ for all $i, \vec{\xi} \ge 0$.

- Large C: don't give much slack. Avoid misclassifications.
- Small C: allow more slack at the cost of misclassifications.

Example: Small C

Example: Large C

Soft and Hard Margins

- Max-margin SVM from before has hard margin.
- Now: the **soft margin** SVM.
- ► As $C \rightarrow \infty$, the margin hardens.

Lecture 6 | Part 3

Loss Functions?

So far, we've learned predictors by minimizing expected loss via ERM.

- But this isn't what we did with Hard-SVM and Soft-SVM.
- It turns out, we can frame Soft-SVM as an ERM problem.
Recall: Perceptron Loss

Perceptron Loss

- Perceptron loss did not penalize correct classifications.
- Even if they were very close to boundary.
- Idea: penalize predictions that are close to the boundary, too.

The Hinge Loss

The Hinge Loss

Equivalence

Recall the Soft-SVM problem:

$$\min_{\vec{w}\in\mathbb{R}^{d+1},\vec{\xi}\in\mathbb{R}^n}\|\vec{w}\|^2+C\sum_{i=1}^n\xi_i$$

subject to $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \ge 1 - \xi_i$ for all $i, \vec{\xi} \ge 0$.

Note: if $\vec{x}^{(i)}$ is misclassified, then

$$\xi_i = 1 - y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)})$$

Equivalence

The Soft-SVM problem is equivalent to finding w that minimizes:

$$R_{\text{svm}}(\vec{w}) = \|\vec{w}\|^2 + C \sum_{i=1}^n \max\{0, 1 - y_i \vec{w} \cdot \vec{x}^{(i)}\}$$

- *R*_{svm} is the regularized risk.
- C is a parameter affecting "softness" of boundary; chosen by you.

Another Way to Optimize

In practice, SGD is often used to train soft SVMs.

Lecture 6 | Part 4

Demo: Sentiment Analysis

Why use linear predictors?

Linear classifiers look to be very simple.

- That can be both good and bad.
 - Good: the math is tractable, less likely to overfit
 - Bad: may be too simple, underfit
- They can work surprisingly well.

Sentiment Analysis

- **Given**: a piece of text.
- Determine: if it is postive or negative in tone
- Example: "Needless to say, I wasted my money."

The Data

- Sentences from reviews on Amazon, Yelp, IMDB.
- Each labeled (by a human) positive or negative.
- Examples:
 - "Needless to say, I wasted my money."
 - "I have to jiggle the plug to get it to line up right."
 - "Will order from them again!"
 - "He was very impressed when going from the original battery to the extended battery."

The Plan

- ▶ We'll train a soft-margin SVM.
- Problem: SVMs take fixed-length vectors as inputs, not sentences.

Bags of Words

To turn a document into a fixed-length vector:

First, choose a **dictionary** of words:

E.g.: ["wasted", "impressed", "great", "bad", "again"]

- Count number of occurrences of each dictionary word in document.
 - ▶ "It was bad. So bad that I was impressed at how bad it was." $\rightarrow (0, 1, 0, 3, 0)^T$
- This is called a bag of words representation.

Choosing the Dictionary

Many ways of choosing the dictionary.

- Easiest: take all of the words in the training set.
 Perhaps throw out stop words like "the", "a", etc.
- Resulting dimensionality of feature vectors: large.

Experiment

Bag of words features with 4500 word dictionary.

- 2500 training sentences, 500 test sentences.
- ► Train a soft margin SVM.

Choosing C

- ▶ We have to choose the slack parameter, *C*.
- Use cross validation!

Cross Validation

Results

▶ With C = 0.32, test error $\approx 15.6\%$.

С	training error (%)	test error (%)	# support vectors
0.01	23.72	28.4	2294
0.1	7.88	18.4	1766
1	1.12	16.8	1306
10	0.16	19.4	1105
100	0.08	19.4	1035
1000	0.08	19.4	950

С	training error (%)	test error (%)	# support vectors
0.01	23.72	28.4	2294
0.1	7.88	18.4	1766
1	1.12	16.8	1306
10	0.16	19.4	1105
100	0.08	19.4	1035
1000	0.08	19.4	950