Ds<C /40A

Prbatifiche Medihiy ¢ Wnchine arone),

Lecture 6 Part1

Maximum Margin Classifiers

RIz)= L L2k &)
Recall: Perceptrons

Linear classifier fit using loss function:

sign(H(X)) = sign(y)

Liron(H(X),y) = [|H(x) sign(H(X)) = sign(y)

A Problem with the Perceptron

Recall: the perceptron loss assigns no penalty to
points that are correctly classified.

No matter how close the point is to the
boundary.

What is the empirical risk with respect to the per-
ceptron loss of H,? What about H,?

Xz

Linear Separability

Data are linearly separable if there exists a linear
classifier which perfectly classifies the data.

2

Margin

The margin is the smallest distance between the
decision boundary and a training point.

2

Maximum Margin Classifier

If training data are linearly separable, there are
many classifiers with zero error.

We prefer classifiers with larger margins.
Better generalization performance.

Can we find the maximum margin classifier?
l.e., the classifier with the largest possible margin?

Observation

A point is classified correctly when:
W - Aug(X®) >0, ify; =1
w - Aug(X) <0, ify; =-1
Equivalently, classification is correct if:

y, i - Aug(3) > 0

Attempt #1

Goal: Assume linear separability. Find a w so that
y; w - Aug(X") > 0 for all data points.

That is, all points are correctly classified.

Too easy!
Perceptron already does this.
Does not force margin to be maximized.

d'

L

W1 Enforce a Margin

Recall: |[H(X)| = |w - Aug(X)]| is proportional to

distance from decision boundary.
Doesn’t measure actual distance!
Scaled by a factor depending on 1/||w||.

Informal: |H(X)| measures distance in

“prediction units”
E.g., if H(X) = -2, X is 2 “prediction units” away from
boundary

Enforce a Margin
We can enforce a margin in “prediction units”.

E.g., to require a margin of one prediction unit,
we must have

y:H(XD) =y - Aug X1 > 1

for each data point

Attempt #2

Goal: Assume linear separability. Find a w so that
y; W - Aug(X Xy 2 1 for all data points.

Still “too easy”.
Problem: prediction units aren’t actual distance.
We can artificially increase distance in “prediction
units” by increasing ||w||.

Suppose His a linear predictor with parameter vec-
tor w. Shown are the lines one “prediction unit”
away from the decision boundary.

How will the decision boundary and these lines
change if w is doubled?
W

Solution

The decision boundary remains unchanged.

The lines one “prediction unit” away move closer.

Ny

Observe

H satisfies y; w - Aug(X") > 1

f=0

Wy

Observe

Any vector w satlsfylng y; W - Aug(X")) > 0 can be

made to satisfy y; w - Aug(X)) 2 1 by increasing
W] appropriately.

But this is cheating!

Fix: search for a low-norm w satisfying
y; W - Aug(X) > 1

Attempt #3

Goal: out of all w satisfying y; w - Aug(X") > 1 for
all data points, find that with minimum ||v||

That is, find:

w* = argmin ||w||
i

subject to: Vi, y;w - Aug(x) = 1

Hard-SVM

This optimization problem is called the Hard
Support Vector Machine classifier problem.

Only makes sense if data are linearly separable.

In @ moment, we’'ll see the Soft-SVM.

How?

Turn it into a convex quadratic optimization
problem: .
Minimize ||W|? subject to y.w - Aug(X") > 1 for all i.

Can be solved efficiently with quadratic
programming.
But there is no exact general formula for the solution

Can the below predictor be a solution of the Hard-

SVM?
W0

SVMs are Maximum Margin
Classifiers

Intuition says solutions of Hard-SVM will have
large margins.

Fact: they maximize the margin.
W

Support Vectors

A support vector is a training point X) such that

y;w - Aug(x?) = 1

Support Vectors

Fact: the solution to Hard-SVM is always a linear
combination of the support vectors.

That is, let S be the set of support vectors. Then

i = > yia; Aug(x)

ies

Example: Irises

3 classes: iris setosa, iris versicolor, iris virginica

4 measurements: petal width/height, sepal width/height

Example: Irises

Using only sepal width/petal width
Two classes: versicolor (black), setosa (red)

20
15
10

05

Ds<C /40A

P/’bbﬂb}ﬂ/sﬁ‘c MM&}? ¢ WMachine /éarmh?

Lecture 6 Part 2
Soft-Margin SVMs

Non-Separability
So far we've assumed data is linearly separable.

What if it isn't?

ha

The Problem

Old Goal: Minimize ||W||? subject to
y:w - Aug(X()) 2 1 for all /.

This no longer makes sense.

Cut Some Slack

Idea: allow some classifications to be ¢ wrong,
but not too wrong.

e Cut Some Slack

New problem. Fix some number C > 0.

n
min #[2+C) §
i=1

WeRd* EcRn

subject to y;w - Aug(X) > 1 - & for all i, £ 2 0.

The Slack Parameter, C

C controls how much slack is given.

n
min #[2+C) §
i=1

weRd+1 EeRn

subject to y:w - Aug(x) = 1 - & for all i, £ 2 0.
Large C: don't give much slack. Avoid
misclassifications.

Small C: allow more slack at the cost of
misclassifications.

Example: Small C

Example: Large C

2

Soft and Hard Margins
Max-margin SVM from before has hard margin.
Now: the soft margin SVM.

As C —» oo, the margin hardens.

Ds<C /40A

P/’bbﬂb}ﬂfsﬁ‘c MM&}? ¢ WMachine &m’mhg,

Lecture 6 Part 3

Hinge Loss

Loss Functions?

So far, we've learned predictors by minimizing
expected loss via ERM.

But this isn’t what we did with Hard-SVM and
Soft-SVM.

It turns out, we can frame Soft-SVM as an ERM
problem.

Recall: Perceptron Loss

0, sign(H(X)) = sign(y)
[H(X)|, sign(H(X)) # sign(y)

Y4

tron((X) y)

'3 H(=w)

Perceptron Loss

Perceptron loss did not penalize correct
classifications.

Even if they were very close to boundary.

Idea: penalize predictions that are close to the
boundary, too.

The Hinge Loss

Lhinge(H()_&)r y) = {O’

\’

1- yH()-z)'

4

AN

yH(X) 2 1,
yH(X) < 1

[8 H(Z:%)

The Hinge Loss

Lhinge(H()?)t y) = max{O, 1- yH()_%)}
A

AN

H(zw)
%

Equivalence

Recall the Soft-SVM problem:

n
min #[2+C) §
i=1

weRd+1 EeRn
subject to y:W - Aug(x™) = 1 - & for all i, £ 2 0.

Note: if X() is misclassified, then

& =1-yw - Aug(x")

Equivalence

The Soft-SVM problem is equivalent to finding w
that minimizes:

n
Roum(W) = [W[|2 + C > max{0, 1 - y; - 37}
N =1

R.,m is the regularized risk.

C is a parameter affecting “softness” of
boundary; chosen by you.

Another Way to Optimize

In practice, SGD is often used to train soft SVMs.

Ds<C /40A

Prbatifiche Medihiy ¢ Wnchine arone),

Lecture 6 Part 4

Demo: Sentiment Analysis

Why use linear predictors?

Linear classifiers look to be very simple.

That can be both good and bad.

Good: the math is tractable, less likely to overfit
Bad: may be too simple, underfit

They can work surprisingly well.

Sentiment Analysis
Given: a piece of text.
Determine: if it is postive or negative in tone

Example: “Needless to say, | wasted my money.”

The Data

Sentences from reviews on Amazon, Yelp, IMDB.

Each labeled (by a human) positive or negative.

Examples:
“Needless to say, | wasted my money.”

“I have to jiggle the plug to get it to line up right.”
“Will order from them again!”

“He was very impressed when going from the original
battery to the extended battery.”

The Plan

We'll train a soft-margin SVM.

Problem: SVMs take fixed-length vectors as
inputs, not sentences.

Bags of Words

To turn a document into a fixed-length vector:

First, choose a dictionary of words:
E.g.: ["wasted”, "impressed”, "great”, "bad”, "again”]

Count number of occurrences of each dictionary word in
document.

“It was bad. So bad that | was impressed at how bad
itwas.” - (0,1,0,3,0)"

This is called a bag of words representation.

Choosing the Dictionary
Many ways of choosing the dictionary.

Easiest: take all of the words in the training set.
Perhaps throw out stop words like “the”, “a”, etc.

Resulting dimensionality of feature vectors:
large.

Experiment
Bag of words features with 4500 word dictionary.
2500 training sentences, 500 test sentences.

Train a soft margin SVM.

Choosing C
We have to choose the slack parameter, C.

Use cross validation!

Cross Validation

n
m
o

o
m

S}

n
™~

S}

0.20

10113 UOIIBPI|BA-SSO1D

101 10! 103

103

Results

With C = 0.32, test error = 15.6%.

C | training error (%) | test error (%) | # support vectors
0.01 23.72 28.4 2294
0.1 7.88 18.4 1766
1 1.12 16.8 1306
10 0.16 19.4 1105
100 0.08 19.4 1035
1000 0.08 19.4 950

C | training error (%) | test error (%) | # support vectors
0.01 23.72 28.4 2294
0.1 7.88 18.4 1766
1 1.12 16.8 1306
10 0.16 19.4 1105
100 0.08 19.4 1035
1000 0.08 19.4 950

