Probatilistic Modeling $\&$ Machine Learning
Lecture 6 Part 1
Maximum Margin Classifiers

$$
\left.R(\vec{w})=\frac{1}{n} \sum d\left(\vec{x}^{(}\right), y, \vec{w}\right)
$$

Recall: Perceptrons

- Linear classifier fit using loss function:

$$
L_{\text {tron }}(H(\vec{x}), y)= \begin{cases}0, & \operatorname{sign}(H(\vec{x}))=\operatorname{sign}(y) \\ |H(\vec{x})|, & \operatorname{sign}(H(\vec{x})) \neq \operatorname{sign}(y)\end{cases}
$$

A Problem with the Perceptron

- Recall: the perceptron loss assigns no penalty to points that are correctly classified.
- No matter how close the point is to the boundary.

Exercise
What is the empirical risk with respect to the perceptron loss of H_{1} ? What about H_{2} ?

Linear Separability

- Data are linearly separable if there exists a linear classifier which perfectly classifies the data.

Margin

- The margin is the smallest distance between the decision boundary and a training point.

Maximum Margin Classifier

- If training data are linearly separable, there are many classifiers with zero error.
- We prefer classifiers with larger margins.
- Better generalization performance.
- Can we find the maximum margin classifier?
- I.e., the classifier with the largest possible margin?

Observation

- A point is classified correctly when:

$$
\begin{cases}\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)>0, & \text { if } y_{i}=1 \\ \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)<0, & \text { if } y_{i}=-1\end{cases}
$$

- Equivalently, classification is correct if:

$$
y_{i} \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)>0
$$

Attempt \#1

- Goal: Assume linear separability. Find a \vec{w} so that $y_{i} \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)>0$ for all data points.
- That is, all points are correctly classified.
- Too easy!
- Perceptron already does this.
- Does not force margin to be maximized.
$d=\frac{|H(\bar{x})|}{\left\|\mid \vec{w}^{\prime}\right\|}$

Enforce a Margin

- Recall: $|H(\vec{x})|=|\vec{w} \cdot \operatorname{Aug}(\vec{x})|$ is proportional to distance from decision boundary.
- Doesn't measure actual distance!
- Scaled by a factor depending on $1 /\|\vec{w}\|$.
- Informal: $|H(\vec{x})|$ measures distance in "prediction units"

E E.g., if $H(\vec{x})=-2, \vec{x}$ is 2 "prediction units" away from boundary

Enforce a Margin

- We can enforce a margin in "prediction units".
- E.g., to require a margin of one prediction unit, we must have

$$
y_{i} H\left(\vec{x}^{(i)}\right)=y_{i} \vec{w} \cdot \operatorname{Aug} \vec{x}^{(i)} \geq 1
$$

for each data point

Attempt \#2

- Goal: Assume linear separability. Find a \vec{w} so that $y_{i} \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right) \geq 1$ for all data points.
- Still "too easy".
- Problem: prediction units aren't actual distance.
- We can artificially increase distance in "prediction units" by increasing $\|\vec{w}\|$.

Exercise
Suppose H is a linear predictor with parameter vactor \vec{w}. Shown are the lines one "prediction unit" away from the decision boundary.

How will the decision boundary and these lines change if \vec{w} is doubled?

$$
H_{1}(\vec{x})=\vec{w} \cdot \vec{x}
$$

$$
H_{2}(\vec{x})=2 \vec{w} \cdot \vec{x}
$$

Solution

- The decision boundary remains unchanged.
- The lines one "prediction unit" away move closer.

Observe
$-H$ satisfies $y_{i} \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right) \geq 1$

Observe

- Any vector \vec{w} satisfying $y_{i} \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)>0$ can be made to satisfy $y_{i} \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right) \geq 1$ by increasing $\|\vec{w}\|$ appropriately.
- But this is cheating!
- Fix: search for a low-norm \vec{w} satisfying $y_{i} \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right) \geq 1$

Attempt \#3

- Goal: out of all \vec{w} satisfying $y_{i} \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right) \geq 1$ for all data points, find that with minimum $\|\vec{w}\|$
- That is, find:

$$
\vec{w}^{*}=\underset{\vec{w}}{\arg \min }\|\vec{w}\|
$$

subject to: $\forall i, y_{i} \vec{W} \cdot \operatorname{Aug}(\vec{x}) \geq 1$

Hard-SVM

- This optimization problem is called the Hard Support Vector Machine classifier problem.
- Only makes sense if data are linearly separable.
- In a moment, we'll see the Soft-SVM.

How?

- Turn it into a convex quadratic optimization problem:
- Minimize $\|\vec{w}\|^{2}$ subject to $y_{i} \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right) \geq 1$ for all i.
- Can be solved efficiently with quadratic programming.
- But there is no exact general formula for the solution

Exercise

Can the below predictor be a solution of the HardSVM?

SVMs are Maximum Margin Classifiers

- Intuition says solutions of Hard-SVM will have large margins.
- Fact: they maximize the margin.

Support Vectors

- A support vector is a training point $\vec{x}^{(i)}$ such that

$$
y_{i} \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)=1
$$

Support Vectors

- Fact: the solution to Hard-SVM is always a linear combination of the support vectors.
- That is, let S be the set of support vectors. Then

$$
\vec{w}^{*}=\sum_{i \in S} y_{i} \alpha_{i} \operatorname{Aug}\left(\vec{x}^{(i)}\right)
$$

Example: Irises

- 3 classes: iris setosa, iris versicolor, iris virginica
- 4 measurements: petal width/height, sepal width/height

Example: Irises

- Using only sepal width/petal width
- Two classes: versicolor (black), setosa (red)

$$
\text { DSC } 140 A
$$

Non-Separability

- So far we've assumed data is linearly separable.
- What if it isn't?

The Problem

Old Goal: Minimize $\|\vec{w}\|^{2}$ subject to $y_{i} \vec{W} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right) \geq 1$ for all i.

- This no longer makes sense.

Cut Some Slack

Idea: allow some classifications to be ξ_{i} wrong, but not too wrong.

\therefore Cut Some Slack

New problem. Fix some number $C \geq 0$.

$$
\min _{\vec{w} \in \mathbb{R}^{d+1}, \vec{\xi} \in \mathbb{R}^{n}}\|\vec{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}
$$

subject to $y_{i} \vec{W} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right) \geq 1-\xi_{i}$ for all $i, \vec{\xi} \geq 0$.

The Slack Parameter, C

- C controls how much slack is given.

$$
\min _{\vec{w} \in \mathbb{R}^{d+1}, \xi \in \mathbb{R}^{n}}\|\vec{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}
$$

subject to $y_{i} \vec{W} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right) \geq 1-\xi_{i}$ for all $i, \vec{\xi} \geq 0$.

- Large C: don't give much slack. Avoid misclassifications.
- Small C: allow more slack at the cost of misclassifications.

Example: Small C

Example: Large C

Soft and Hard Margins

- Max-margin SVM from before has hard margin.
- Now: the soft margin SVM.
- As $C \rightarrow \infty$, the margin hardens.

$$
\text { DSC } 140 \mathrm{~A}
$$

Loss Functions?

- So far, we've learned predictors by minimizing expected loss via ERM.
- But this isn't what we did with Hard-SVM and Soft-SVM.
- It turns out, we can frame Soft-SVM as an ERM problem.

Recall: Perceptron Loss

$$
L_{\text {tron }}(H(\vec{x}), y)= \begin{cases}0, & \operatorname{sign}(H(\vec{x}))=\operatorname{sign}(y) \\ |H(\vec{x})|, & \operatorname{sign}(H(\vec{x})) \neq \operatorname{sign}(y)\end{cases}
$$

Perceptron Loss

- Perceptron loss did not penalize correct classifications.
- Even if they were very close to boundary.
- Idea: penalize predictions that are close to the boundary, too.

The Hinge Loss

$$
L_{\text {hinge }}(H(\vec{x}), y)= \begin{cases}0, & y H(\vec{x}) \geq 1, \\ 1-y H(\vec{x}), & y H(\vec{x})<1\end{cases}
$$

The Hinge Loss

$L_{\text {hinge }}(H(\vec{x}), y)=\max \{0,1-y H(\vec{x})\}$

Equivalence

- Recall the Soft-SVM problem:

$$
\min _{\vec{w} \in \mathbb{R}^{d+1}, \vec{\xi} \in \mathbb{R}^{n}}\|\vec{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}
$$

subject to $y_{i} \vec{W} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right) \geq 1-\xi_{i}$ for all $i, \vec{\xi} \geq 0$.

- Note: if $\vec{x}^{(i)}$ is misclassified, then

$$
\xi_{i}=1-y_{i} \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)
$$

Equivalence

- The Soft-SVM problem is equivalent to finding \vec{W} that minimizes:

$$
R_{\mathrm{svm}}(\vec{w})=\|\vec{w}\|^{2}+\frac{c}{n} \sum_{i=1}^{n} \max \left\{0,1-y_{i} \overrightarrow{\vec{w}} \cdot \vec{x}^{(i)}\right\}
$$

$\downarrow R_{\text {sum }}$ is the regularized risk.

- C is a parameter affecting "softness" of boundary; chosen by you.

Another Way to Optimize

- In practice, SGD is often used to train soft SVMs.

$$
\text { DSC } 140 \mathrm{~A}
$$

Why use linear predictors?

- Linear classifiers look to be very simple.
- That can be both good and bad.
- Good: the math is tractable, less likely to overfit
- Bad: may be too simple, underfit
- They can work surprisingly well.

Sentiment Analysis

- Given: a piece of text.
- Determine: if it is postive or negative in tone
- Example: "Needless to say, I wasted my money."

The Data

- Sentences from reviews on Amazon, Yelp, IMDB.
- Each labeled (by a human) positive or negative.
- Examples:
- "Needless to say, I wasted my money."
- "I have to jiggle the plug to get it to line up right."
- "Will order from them again!"
- "He was very impressed when going from the original battery to the extended battery."

The Plan

- We'll train a soft-margin SVM.
- Problem: SVMs take fixed-length vectors as inputs, not sentences.

Bags of Words

To turn a document into a fixed-length vector:

- First, choose a dictionary of words:
- E.g.: ["wasted", "impressed", "great", "bad", "again"]
- Count number of occurrences of each dictionary word in document.
- "It was bad. So bad that I was impressed at how bad it was." $\rightarrow(0,1,0,3,0)^{\top}$
- This is called a bag of words representation.

Choosing the Dictionary

- Many ways of choosing the dictionary.
- Easiest: take all of the words in the training set.
- Perhaps throw out stop words like "the", "a", etc.
> Resulting dimensionality of feature vectors: large.

Experiment

- Bag of words features with 4500 word dictionary.
- 2500 training sentences, 500 test sentences.
- Train a soft margin SVM.

Choosing C

We have to choose the slack parameter, C.

- Use cross validation!

Cross Validation

Results

With $C=0.32$, test error $\approx 15.6 \%$.

C	training error (\%)	test error (\%)	\# support vectors
0.01	23.72	28.4	2294
0.1	7.88	18.4	1766
1	1.12	16.8	1306
10	0.16	19.4	1105
100	0.08	19.4	1035
1000	0.08	19.4	950

C	training error (\%)	test error (\%)	\# support vectors
0.01	23.72	28.4	2294
0.1	7.88	18.4	1766
1	1.12	16.8	1306
10	0.16	19.4	1105
100	0.08	19.4	1035
1000	0.08	19.4	950

